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Abstract—Intelligent terminals often produce a large num-
ber of data packets of small lengths. For these packets, it
is inefficient to follow the conventional medium access control
(MAC) protocols because they lead to poor utilization of service
resources. We propose a novel multiple access scheme that targets
massive multiple-input multiple-output (MIMO) systems based
on compressive sensing (CS). We employ block precoding in
the time domain to enable the simultaneous transmissions of
many users, which could be even more than the number of
receive antennas at the base station. We develop a block-sparse
system model and adopt the block orthogonal matching pursuit
(BOMP) algorithm to recover the transmitted signals. Conditions
for data recovery guarantees are identified and numerical results
demonstrate that our scheme is efficient for uplink small packet
transmission.

I. I NTRODUCTION

As intelligent terminals such as smart phones and tablets
get more popular, they produce an increasing number of data
packets of short lengths. Modern mobile applications that
produce such small packets include instant messaging, social
networking, and other services [1], [2]. Although the lengths
of messages are relatively short, small packet services put
great burden on the communication network. Two kinds of
messages contribute to the traffic of small packets: one is the
small packets of conversation produced by active users that
occupy only a small percentage of the total online users [2];
the other is the signaling overheads needed to transmit these
conversation packets [3].

In current wireless communication systems, a user follows
the medium access control (MAC) protocols to obtain the
service resources. Either resources are preallocated to the users
in a noncompetitive fashion, or certain random access scheme
with collision resolution is used. For small and random pack-
ets, the reservation-based approach is inefficient in resource
utilization due to irregularity of the packets. The collision-
resolution based approaches, on the other hand, can suffer
from too many retransmissions due to frequent collisions.

Recently, massive multiple-input multiple-output (MIMO)
was studied as a way to improve the system throughput of
cellular systems [5]- [8]. In massive MIMO systems, the num-
ber of antennas at the base station (BS) can be more than the
number of active single-antenna users that are simultaneously
served. When the number of antennas at BS is large, the
different propagation links from the users to the BS tend to be
orthogonal, and the large amount of spatial degrees of freedom

are useful for mitigating the effect of fast fading [6], [7].
Overall, massive MIMO technique provides higher data rate,
better spectral and energy efficiencies [8]. All these advantages
make massive MIMO a promising technique.

In this paper, we propose a novel uplink small packet trans-
mission scheme based on precoding at the transmitters and
sparsity-aware detection at the receiver. The main motivation is
to allow for a large number of users to transmit simultaneously,
although each user may be transmitting only a small amount
of data. Besides frame-level synchronization, no competition
for resources or other coordinations are required. This saves
the signaling overhead for collision resolution, and improves
the resource utilization efficiency.

The contributions of our work are as follows:
1) block-sparse system model is established:We apply

block precoding at each transmitter in time domain, and
by considering the user activities, develop a block-sparse
system model [9]- [11].

2) conditions for signal recovery are given:The result
of our analyses about the block orthogonal matching
pursuit (BOMP) algorithm is milder than those in the
related work in [10]. Furthermore, we characterize the
data recovery condition from information theoretic point
of view.

Thanks to the precoding operation and our sparsity-aware
detection algorithms, our scheme enable the system to support
more active users to be simultaneously served. The number of
active users can be even more than the number of antennas at
BS. This is of great practical significance for networks offering
small packet services to a large number of users.

Applications of compressive sensing (CS) to random MAC
channels have been considered in [12]- [15]. In [12], CS based
decoding scheme at the BS has been used for the multiuser
detection task in asynchronous random access channels. A
technique based on CS for meter reading in smart grid is
proposed in [13], and its consideration is limited to single-
antenna systems. Besides, a novel neighbor discovery method
in wireless networks with Reed-Muller Codes has been pro-
posed in [15], where CS technique is also adopted. All the
referred works depend on the idea that the MAC channel is
sparse, and all their works are classified to initial category of
CS, where no structure property have been taken into account.
This is one of the main distinctions that differentiate our work
from the referred ones.
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The rest of the paper is organized as follows. In Section II,
the system model of block-sparsity are given. In Section III,
we introduce the BOMP algorithm to recover the transmitted
signals, and discuss performance guarantees for data recovery.
Section IV will present the numerical experiments that verify
the effectiveness of our scheme.

II. SYSTEM MODEL

Assume the propagation environment is a block-fading
channel and the antennas at the BS, as well as the antennas
among users, are uncorrelated and uncoupled. We also assume
that the transmissions are in blocks and the users are synchro-
nized at the block level. When a terminal has successfully
connected to the network, it becomes an online user, and the
BS always has the perfect channel state information (CSI) of
online users. Our consideration is only limited to uplink small
packet transmission for single-antenna users in massive MIMO
system.

Consider an uplink system withN mobile users, each with a
single antenna, and a base station withM antennas.Na active
users of the totalN online users have small packets to send.
For small packet services,Na < N , and usuallyNa ≫ M ,
even with massive MIMO, we may haveNa > M . We assume
that each frame of transmission consists ofT symbols, andT
is no longer than the coherent interval of block-fading channel.
Let sn ∈ Cd×1 denotes the symbols to be transmitted by user
n, with d < T . Usern applies a precoding tosn to yield

xn = Pnsn (1)

wherePn is a complex precoding matrix of sizeT × d. The
entries ofxn are transmitted inT successive time slots. The
received signals at all antennas within one frame can be written
as

Y =
√
ρ0

N∑

n=1

hnx
T
n + Z =

√
ρ0

N∑

n=1

hns
T
nP

T
n + Z (2)

whereρ0 is the signal to noise ratio (SNR) of the uplink,Y
is noisy measurement of sizeM × T , Z ∈ C

M×T represents
the additive noise, with i.i.d. circularly symmetric complex
Gaussian distributed random entries of zero mean and unit
variance, andhn ∈ CM×1 represents the channel coefficients
from the usern to the base station, without loss of generally,
let hmn ∼ CN (0, 1), m = 1, 2, · · · ,M . Using the linear
algebra identityvec (ABC) =

(
CT ⊗A

)
vec (B), wherevec

denotes vectorizingB by column stacking and⊗ denotes
the Kronecker product of two matrices, we can rewrite the
received signal as

vec(Y) =
√
ρ0

N∑

n=1

(Pn ⊗ hn)sn + vec(Z) (3)

Define y := vec(Y), Bn := (Pn ⊗ hn) /
√
M andB :=

[B1,B2, · · · ,BN ], s :=
[
sT1 , s

T
2 , · · · , sTN

]T
. Then we can

write the model in (3) as

y =
√
ρ0MBs+ z (4)

In this formulation, we have assumed that all the users have
messages of equal lengthd. This may not be the case in
practice. We viewd as the maximum length of the messages of
all users within a frame. For the users whose message length is
less thand, we assume their messages have been zero-padded
to d before precoding. Also, for those users that are not active,
we assume their transmitted symbols are all zeros.

Model (4) indicates that the signals to recover present the
structure of block-sparsity where transmitted signals areonly
located in a small fraction of blocks and all other blocks are
zeros. We collect all the indices of blocks corresponding to
active users to form a setI, with |I| = Na. When precoding
matrix Pn is reasonably designed, matrixB can meet the
requirement for sensing matrix in CS, and this kind ofPn

is of wide range, for instance, Gaussian or Bernoulli matrix.
Therefore, model (4) can be viewed as block-sparse model in
CS.

A few remarks about the precoding are needed. The pre-
coding scheme is proposed because in reality,T is usually
several times longer than the lengths of small packets. Also,
the precoding scheme contributes to solving signal recovery
problem in the situation whereNa > M . Secondly, each
user knows its own precoding matrix and the BS knows all
precoding matrices of all users. Thirdly, a basic requirement
on the precoding matrix is that it should be full column rank,
which is a requirement for data recovery. Additionally, in
order to balance the power of every symbol of the messages
before and after being precoded, each column ofPn should
be normalized to unit energy. And finally, our precoding
scheme is different from spreading schemes in [14], where
direct sequence spread spectrum (DSSS) is utilized for CS
formulation.

III. D ATA RECOVERY

A. BOMP Algorithm For Data Recovery

The main idea of BOMP algorithm is that, for each iteration,
it chooses a block which has the maximum correlation with the
residual signal, and after that, it will use the selected blocks
to approximate the original signals by solving a least squares
problem. In our scheme, we will adopt the BOMP algorithm
to recover the transmitted signal vectors. About the detailed
calculation process of BOMP algorithm, we refer readers to
article [10].

B. Data Recovery Guarantees

In this section, we will present conditions that guarantee
data recovery. Before analyzing conditions for data recovery,
some notation and definitions will be introduced first. From
the definition ofB, we can see that each column of it is
statistically normalized to one when number of antennaM
becomes large. Here we expandB as

B =


b1 · · ·bd︸ ︷︷ ︸

B1

bd+1 · · ·b2d︸ ︷︷ ︸
B2

· · ·b(N−1)d+1 · · ·bNd︸ ︷︷ ︸
BN


 (5)



As in [10], we give the definitions of block-coherence in
the form of spectral norm

µB :=
1

d
max
i6=j

∥∥BH
i Bj

∥∥ (6)

and sub-coherence as

ν := max
1≤l≤N

max
(l−1)d+1≤i6=j≤ld

∣∣bH
i bj

∣∣ (7)

At the same time define

sl := min
i∈I

‖si‖2 su := max
i∈I

‖si‖2 (8)

In the following we will give two theorems to characterize
conditions for signal recovery, the proofs of which will be
presented in the journal version of this paper.

C. Data Recovery Conditions For BOMP Algorithm

The following theorem characterizes the block-sparse data
recovery performance by BOMP algorithm.

Theorem 1: Consider the block-sparse model above, sup-
pose that condition

ρ0M [1− (d− 1) ν]
2
s2l > τ2

+ρ0MdµB

{
2 (Na − 1) [1 + (d− 1) ν] +N2

adµB

}
s2l

+2
√
ρ0Mτ {(2Na − 1) dµB + [1 + (d− 1) ν]} sl

(9)
is satisfied, then the BOMP algorithm identifies the correct
support of signal vectors and at the same time achieves a
bounded error given by

‖ŝ− s‖22 ≤ Kτ2

[1− (d− 1) ν − (K − 1) dµB]
2
ρ0M

(10)

where ŝ is the signal vector recovered by BOMP algorithm,
K ≤

⌊
MT
d

⌋
is the maximum number of iterations for

BOMP algorithm,1 − (d− 1) ν − (K − 1) dµB > 0 and
τ = max

1≤j≤N

∥∥BH
j z

∥∥
2
.

Remark 1: Since T > d and MT ≫ d, we can design
orthogonal columns for precoding matrixPn of user n,
n = 1, 2, · · · , N , then each block of matrixB is sub-
matrix with orthogonal columns, meaningν = 0. On the
other hand, we haveτ ≫ sl when each nonzero element
of sn satisfies a reasonable power constrain. Additionally, if
µB = 0, then condition (9) can be simplified asρ0Ms2l >
τ2 + 2

√
ρ0Mτsl ≈ τ2, which is milder when compared with

[10, Theorem 5], where resultρ0Ms2l > 4τ2 is given when
applied to our scenario.
Remark 2:In our scheme, when the number of active users
are more than that of the antennas at BS, the channel vec-
tors among users are no longer orthogonal or asymptotically
orthogonal. However, by our precoding scheme, correlations
among columns inB can be smaller than correlations among
channel vectors of different users, which means that block-
coherenceµB can still be rather small, as long as precoding
is well designed.

D. Condition From Information Point Of View

From the BS’s point of view, it is desirable to recover all
the information conveyed bys, including number of active
users, exact indices of these active users, their transmitted
information bits, etc.. When all the information are measured
by bits, then The number of bits representing the indices
of active users and signal bits of the transmitted messages
are respectivelylog2

(
N
Na

)
and

∑Na

i=1 bi. Assume all bits are
generated with equal probability, and letS denote the set of
bits needed to represent the total information, then we have
|S| ≥ log2

(
N
Na

)
+
∑Na

i=1 bi.
The following theorem characterizes the data recovery prob-

lem from information theoretic point of view. Its proof is not
included due to lack of space.

Theorem 2: Definepe as the probability that some error
has happened in the recovery of information in setS, then the
following condition is necessary for the data recovery

|S| ≤ 1

1− pe
[H(pe) + log2 det(IMT + ρ0BIB

H
I )] (11)

IV. N UMERICAL RESULTS

The experimental studies for verifying the proposed scheme
are presented in this section. In all simulations, the channel
response matrix is i.i.d. Gaussian matrix of complex values
and theNa active users are chosen uniformly at random
among allN online users. As for the block-sparse data vectors
to be transmitted, we assume quadrature phase shift keying
(QPSK) for data modulation. The symbol error rate (SER) and
frame error rate (FER) are used as the performance metrics.
In all simulations, we do not set the number of antennas
to a large value, say one hundred or more, for the sake of
simplicity. We will choose the frame length to be a multiple
of the maximum length of short messages. We assume that all
messages have the same lengthd unless otherwise specified.
We simply designPn a random matrix with(v = 0) or without
(v 6= 0) orthogonal columns,n = 1, 2, . . . , N .

Fig. 1. signal recovery with8 antennas at BS



Test Case 1:Figure 1 shows the performance of the proposed
scheme with8 antennas at BS, whereK is the iterative
number for BOMP algorithm. Other parameters are given
as (N, d, T, v) = (80, 200, 1000, v = 0). The results indicate
that, the SER decreases whenEs/N0 increases and at the
same time, increases when the number of active users becomes
larger. For case where iterative number is35, when the number
of active users is lower than a certain number, say24 in our
results, the SER is basically independent of this number. When
the number of active users exceeds the certain number, the
performance will get a lot worse; see e.g.,Na = 28 in our
results as an example. Besides, the results we obtain for8 and
24 active users are nearly identical to those achieved by least
square algorithm when active users are already picked out and
otherK−Na off-support users are chosen at random. Also in
Figure 1, we give results when less iterations are employed for
BOMP algorithm. When there are not too many active users,
less iterations benefit a lot, just like30 iterations for8 active
users. But for24 active users, fluctuations exist which means
30 iterations are not enough to include all the active users.

FER is also presented in Figure 1 with the same parameters
as that for SER. In our simulation, the FER is counted as
follows: when more than8 bits in a message are demodulated
in error, we claim a frame error, and if the bit errors are equal
to or less than8, we hypothesize that they can be detected
and corrected by some channel coding schemes, such as BCH
Code. The same trend in performance of FER can be observed
as that of SER. As theEs/N0 increases, FER decreases
quickly and when theEs/N0 exceeds a certain value, the FER
will be negligible.

The normalized throughput is defined as
(1− PFER)Nad/ (MT ), where (1− PFER)Na is the
maximum number of allowed active users in our scheme,
PFER is the value of FER; andMT/d is the maximum
number of users that can be served when all timeslots of a
frame are effectively used for data transmission, which is40
under the given parameters. Take only the signaling needed
for resources competition before data transmission into
account, if24 active users are allowed to be simultaneously
served, since our scheme requires no additional signaling
messages for data transmission, the throughput will reach
60%; while by conventional random access protocols, if we
regard the signaling messages (such as request-to-send (RTS)
signaling [4]) as some kinds of small packets we considered,
its throughput will be no more than 60%, and if collision
happens, which is often the case, the throughput will decrease
a step further. Therefore, our scheme will greatly improve the
system throughput.

Test Case 2:By Figure 2, we can see that when the number
of active users is fixed, the SER increases as the number
of online users increases, but the performance degradationis
rather small, even when the number of online users has been
doubled, nearly no more than1dB degradation can be observed
for 24 active users. ByTheorem 2, the number of online users
is not the dominant factor to affect the performance under the

Fig. 2. signal recovery with different numbers of online users

given parameters.

Fig. 3. symbol recovery with different numbers of BS antennas and with
different frame lengths

Test Case 3:Figure 3 depicts the performance when BS
are equipped with different numbers of antennas, and when
frame lengths are different. The results show that, under
the same ratioNa/M , when the number of antennasM
increases, the SER performance becomes remarkably better
and a higher ratioNa/M can be accepted, which suggests a
higher throughput. With massive MIMO technique, this benefit
can be reaped. On the other hand, a big performance gap
between antenna numbers of8 and 12 is observed, for the
reason of iterative number demonstrated by Figure 1. More
antennas at BS allows a larger iterative number for BOMP
algorithm to accommodate more active users, and the big
performance gap appears when we set both cases to the same
number35 of iterations. The curves respectively forT = 4d,
T = 5d andT = 6d show that, the longer the frame length
is, the better performance we can achieve, and thus the more



users that can be simultaneously served. However, affected
by the normalization of columns in precoding matrix, even
when the length of frame grows, the benefits diminish. This
phenomenon will be observed when parameters are chosen to
ensure thatMT/(dK) is a constant.

Fig. 4. symbol recovery with or without column orthogonal blocks

Test Case 4:In Figure 4, we examine the performance when
each block of the matrix is column orthogonal or not. As
we can see, for column non-orthogonal case, nearly1dB
performance degradation is observed when compared with that
of column orthogonal case, since the former case will amplify
the influence of noise to some degree.
Remark 3:In all simulations, we set the number of antennas
at BS just8 or 12, which is not enough for massive MIMO.
In fact, the expected performance of more antennas at BS can
be significantly better, as demonstrated by Figure 3.
Remark 4:In all simulations, we have setd as the length of all
messages. In practice, this may not be the case. In fact, when
different lengths for messages exist and the number of active
users is large, it has some performance degradation. We have
done the simulation and the result shows that the performance
gap is slight under wide conditions.
Remark 5:The results given by ourTheorem 1 in terms of
allow active users is pessimistic whem compared with our
simulation results. For example, under the same conditionsof
Figure 1, whenEs/N0 = 10dB, only 1 active user is allowed
by (9). This is because in the derivation ofTheorem 1, we
always consider the least favorable situation.

V. CONCLUSION

In this paper, we propose an uplink data transmission
scheme for small packets. The proposed scheme combines
the techniques of CS and massive MIMO. Particularly, under
the assumption that the BS has perfect CSI of every online
user and by a precoding scheme for block signal transmission,
we develope a block-sparse system model and adopte BOMP
algorithm to recover the transmitted data.

The transmission scheme addressed in this paper is appli-
cable to future wireless communication system. The reason
is that small packet plays a more and more important role
in data traffic with the wide use of intelligent terminals. The
overall throughput of such a system is hampered by small
packet because of its heavy signaling overhead. Our scheme
will greatly reduce the signaling overhead and improve the
throughput of the system.
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