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Abstract—The topology of base stations (BSs) in cellular regard, stochastic geometry has proven to be an effective
networks, serving as a basis of networking performance angbis, means to model BS placemeqi [2]. It is demonstrated_in [3]
is considered to be obviously distinctive with the traditicmal that the Poisson point process (PPP), of which the points
hexagonal grid or square lattice model, thus stimulating a . . 7o . .
fundamental rethinking. Recently, stochastic geometry bsed are independently _and qnlformly distributed in Certamaar,e
models, especially thePoisson point process (PPP), have been tracks the real configurations as accurately as the comreaiti
attracting an ever-increasing popularity in modeling BS deloy- grid model. Particularly, it is applicable in deriving ttable
ment of cellular networks due to its merits of tractability and theoretical results for downlink performance evaluatiower
capability for capturing non-uniformity. In this study, a d etailed some assumptions. However, as population usually disesbu

comparison between common stochastic models and real BS | d tical BSs tend to be deol d with a t t
locations is performed. Results indicate that the PPP failgo unevenly and practica S tend 1o be deployed with a targe

precisely characterize either urban or rural BS deployment (€.9., coverage-centric or capacity-centric) being glpasso-
Furthermore, the topology of real data in both regions are ciated with human activities, the PPP exhibits some urstali

examined and distinguished by statistical methods accordg characteristics. Conversely, alternative spatial pastenight
to the point interaction trends they exhibit. By comparing the yield superior modeling precision. For example, reseaghe

corresponding real data with aggregative point process magls as . . .
well as repulsive point process models, we verify that the gacity- have showed the fitness of th@eyer saturation process in

centric BS deployment in urban areas can be modeled by typi¢a Modeling the spatial patterns of WiFi spols [4]. For cellula
aggregative processes such as théatern cluster process, while the networks, Taylor et al. proposed to use tBeauss process

coverage-centric BS deployment in rural areas can be modedeby  and theGeyer saturation process to model macro-cellular BS
representative repulsive processes such as ti®rauss hard-core deployment[[5]. The study ir [6] indicated the accuracy of
Process. Poisson cluster models in characterizing BS spatial Oigtri
tions in large cities. Guo and Haenggi analyzed the fitness of
the Strauss process using the urban and rural data collected
The topological structure of cellular networks has been-gaifrom a public dataset in UK[7]. But their study was lacking of
ing tremendous complexity to fulfill exponentially incré&s in-depth consideration on the difference between poirtepad
demand for mobile data. Nowadays practical deployment @f various kinds of regions limited by the relatively small
cellular networks, which are organically deployed to pdevi BS dataset. Thus, although there exist several works t@wvard
high capacity, is considered to be highly heterogeneous agphtially modeling the BS locations by stochastic geometry
irregular [1]. tools in different scenarios, few of them has ever shed light
Since the architecture of heterogeneous networks playsha essential differences between the two typical geogecaph
key role in evaluating system performance in 4G and futusaitegories, i.e., urban and rural areas.
cellular networks, analysis of the networking topology is Motivated by the observations above, we try to find the
emerging as a primary task for subsequent accurate perfomst precise models for BSs in different types of geograghic
mance characterization. By far, the most common assumptaeas accordingly, based on a large BS dataset collectad fro
widely used in analytical calculations for cellular netk®r a cellular network operator in China. Firstly, we selectadat
is that base stations (BSs) are uniformly distributed in thgbsets from the urban area and the rural area separately and
covered areas. Accordingly, hexagonal grids or squariedatt demonstrate that the PPP model is pessimistic in modeling ei
are pervasively utilized to model the locations of BSs. Botiner point pattern. Specifically, by means of summary gtesis
models, however, are generally intractable and strudjuraincluding theG-function, K-function andL-function [&] [9],
different from the real BS deployment. we measure the spatial dependence of both kinds of regions
Therefore, much of the researchers’ focus has been shiftith a large number of the measured data. Furthermore, we tes
ing to more accurate BSs’ spatial characterization, so asthe hypotheses of different spatial models by fhdunction
capture the non-uniformity of practical deployment. Intthaand the coverage probability, and verify the accuracy ofsav
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stochastic models matching urban and rural BS deploymeinter-point distances between distinct points are alwagatgr
respectively. than h,.

The rest of the paper is organized as follows. In Sec- On the other hand, cluster processes can precisely fit point
tion 1, we begin with a brief overview of representativgpatterns with the aggregation behavior. In this study, we
stochastic spatial models and present a description of twémarily focus on theMatern cluster process (MCP), which
BS dataset. Then, the methodology of fitting point processiesa special case of the Poisson cluster process. Usually, Th
to the collected practical data is introduced in Section IIPoisson cluster process is formed by taking a Poisson moces
The experimental results are shown in Section IV befoes parent points with daughter points scattering around. In
concluding this study in Section V. particular, we call it the MCP if the daughter points are
uniformly distributed within the ball of radius around their
parent points. An MCP can be further specified by other
A. Background on Point Processes parameters, including the intensity of the parent pointnd
the mean number of points in each cluster

Il. PRELIMINARIES

Generally, a point procesx is a finite collection
of randomly distributed locations contained in a give -
bounded regionS. A realization of such a point process%' Dataset Description
{z1,22,...,2N(x)} can be specified by the number of points Our dataset is based on the real measurement of commercial
N(x) and the joint distribution of the points ix. Point base stations in an eastern province in China, which inslude
processes (e.g., pairwise interaction processes, haedpro- 47663 BS location records with more than 40 million sub-
cesses and clustered processes) can be grouped into tteee saribers involved. The whole research area covers 101,800
gories, the PPP, repulsive processes and aggregativespasce km? and is generally divided into two typical regions, namely
A PPPx can be defined o with its intensity measure. the urban area and the rural area by matching the longitude
satisfying \(B) > 0 for any bounded regio®? belonging to and latitude information of each BS to that of the target area
S, while N(B) is Poisson distributed with meax(B). They on a Google Map.
possess the property of “no interaction” between nodeis [10]

By contrast, a pairwise interaction processtakes inter-
point interactions into consideration. Its probabilityndiy
function (PDF) on a compact region satisfies

density(Urban1) density(Urban2)

15

10 15 20 25 30
10

N(x)
fx)=a- H b(x;) - Hc(mi,xj), Q) R
i=1 i<j
wherea denotes a normalizing constant, whil¢) and ¢(-) density(Urban3) density(Rural1)

0.3

are nonnegative functions, indicating first-order trends a
pairwise interactions, respectively. Usually, when thections
b(-) and ¢(-) take different forms, the pairwise interactio
process could be simplified to different processes:
« Strauss process: b(-) = 8 andc¢(u, v) = + conditional on
0 < |lu—v| <r, c(u,v) =1 otherwise. Thus, we have
the density function as the form

f(x) = a6, )

in which s(x) denotes the number of point pairsofie
within a distancer. The Strauss process is effective in
modeling repulsion effect between points, yet it proves to
be non-integrable foy > 1 corresponding to the desired
clustering.
« Geyer saturation process. As a generalized version Of rig. 1. BS kernel density estimates of representative uebahrural areas.
Strauss process, a saturation limitsat is added in the
exponent ofy, thereby trimming the total contribution On the macroscopic level, the BS density varies heavily
from each point's pairwise interaction to a maximuat.  across densely populated areas and less populated aress wh
The process can describe both repulsive and aggregatiyference can be easily explained by the respective cgpaci
patterns. requirements. This phenomenon can be better illustrated in
Hard-core processes (e.g., the Poisson hard-core prawgsskg. 1 where we randomly pick three urban areas and three
the Strauss hard-core process), implied by the name, inteod rural areas from the collected data and draw the kernel gensi
a hard-core distanck. > 0 into its PDF [11]. Therefore, the estimate for each of them.
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To ensure the data richness, the selected dredsnl and function (the G-function), the L-function and the coverage
Urban2 are both selected from inland cities while*ban3 is  probability as the metrics:
from a coastal city. On the other hand, the three rural areasl) G-function: The G-function is the cumulative frequency
Rurall, Rural2 and Rural3 are randomly selected fromdistribution of the nearest neighbor distances, whiclsitiates
three different less populated areas without overlapphgy. the ways the points are spaced. It indicates clustering when
seen in Fig. 1, the shape of the color temperature mapsthe G-function increases rapidly at a short distance, while it
varied with BS density. The different variation ranges bestw implies dispersion otherwise.
subfigures show that the average number of BSs per squar@) L-function: The L-function relies on the distance be-
kilometer in the urban areas is 10 to 100 times larger thain thieeen the points and provides an estimate of spatial depen-
in the rural areas, which also confirms the region imbalandence over a wide range of scales. Therefore,ltHfanction
on BS spatial distribution. We will conduct more detailedould judge whether a pattern exhibits clustering or disiper
statistical tests using these regions in Section IV. Formally, the L-function is defined ad.(r) = /K(r)/m.

In order to identify pairwise interaction trends betweehlere, K (r) is the Ripley’sK-function and can be calculated
points by the corresponding metrics, we mainly focus oms 1
the representative areas of both kinds in relatively compac K(r) = <E[NxNb(z,r)\{z})|z € x], 3)
datasets and ignore the density difference by mapping the A _ _ _ )
selected point patterns onto the same scale in the followikgjere A denotes the intensity of the points| [8]. If a point
study. Thus, we pick a square regidhwith a total space of Patternis the PPR,(r) would equal tor. Moreover,L(r) > r
7.73km? from a dense urban region in the provincial capitdndicates clustering whild.(r) < represents dispersion.
city and a square regioR covering a total area df069.89km? 3) Coverage Probability: The coverage probability is an-

in typical part of the rural area. Both regions are mapped orfither important metric related to network performance. It
unit squares as shown in Fig. 2. indicates the probability that a randomly chosen mobile use

connected to the nearest BS achieves signal-to-inteideren
plus-noise-ratio (SINR) larger than a thresh@ld3]. Specifi-
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where W denotes the noise powek;, € H is the fading
Fig. 2. (left): Distribution of the urban point patterii with 259 BSs(right): and shadowmg coefficient, adﬁr” “ is the standard pE.lth
Distribution of the rural point patter® with 167 BSs. loss between the BS locatedatand the user. Here Rayleigh
fading is exponentially distributed with mean 1 and lognarm
shadowing is of the valug0*/1° (X~N(0,0% y)). The path
lIl. METHODOLOGY loss coefficient satisfieaw > 2 for testing as the outdoor
This paper aims at obtaining an accurate point processseenario without losing generality.
model the real BS deployment in target areas. In order to
reach such a goal, we utilizes the following fitting and asely
methods.

IV. EXPERIMENTAL RESULTS AND ANALYSES
A. Pre-judgement

o First we examine thé&-function and theK -function of U
A. Fitting Method and R to determine whether they are clustered or repulsive.
It is common to utilize the maximum pseudolikelihoodrhe pre-judgement results will help to understand both tpoin
estimates as the fitting method in stochastic geometry. @éser patterns and find appropriate spatial models.
for models with irregular parameters suchsas in the Geyer As seen in Fig. 3, the point pattefn in dense urban area
saturation process, we can obtain the relevant parameters blyas a strong tendency of clustering between BSs with both
analogy with the profile maximum pseudolikelihood estimataalculation results larger than the theoretical ones the.

[12]. PPP). On the contrary, the point pattelnhreflects diffusive
_ regularity as the corresponding curve@hfunction increases
B. Analysis Method much lower at a short distance.

The analysis of point patterns largely depends on summaryWe next utilize the similar metric for the datasets in Fig. 1
statistics (e.g., the standard deviation). For testingagsump- to show the result above is more universal. For each of the six
tion of real data, we employ the nearest neighbor distanagions, we firstly generate a total number of 10000 square



TABLE I
PARAMETERS FOR BEST MODEL FITTING FORU AND R

Z g Data type  Processes Parameters

« _]

°[—F PPP A =47.50

© Urban Geyer r =0.03, sat =4, § =182.93, y =1.25
] . MCP Kk =162.48, r = 0.067, = 1.61
S < < PPP A= 35.75

Rural PHCP he =0.015, B =173.34
g SH he = 0.015, 8 = 237.24, r = 0.03

Geyer r = 0.073, sat = 1, B = 26.08, v = 6.01
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r r Geyer saturation process and thePoisson hard-core process
Fio. 3 (ef: The G-function of U R and the theoreticale-function of (PHCP) are utilized to fit the more regular point pattétn
tr:g.PﬁP((the)-solig IineuX.r:;:g:%]: (1)'he ’Riplzg’sKiuncet(i)c)rr? Ic():faU, L}j%n;x:intf?e As_a benchmark, the PPP IS employed in both Va“dat_lons’
theoretical K -function of the PPP. which could further verify our hypotheses. Table Il lists
the corresponding fitting results, in terms of the maximum

) ) seudolikelihood estimates and the profile maximum pseudo-
§upreg!ons .at random Iocatlon§ a_nd ensure the BS numpeLinood estimates.
inside is suitable for the analysis in R software. We set the\\x se the R packaggpatstat [9] to fit parametric models

range of BS numbers as 60 to 220. Based onltHanction, , the real data, and then generate simulated realizatiing u
a point pattern in the subregion is characterized as cIugterMarkov Chain Monte Carlo tests.

only if L(r) > r can be satisfied and repulsive onlyZifr) <
r is satisfied for every belongs to a normalized interval inc. pModel Validation
our validation. We set the interval 48, 0.15] here.

0.0

After the parameter estimation, the fitting accuracy of ¢hes
TABLE | models above are assessed based onltfienction and the
THE PROBABILITY OF CLUSTERING AND REPULSION FOR THE URBAN AND Coverage probability Separately. For each of the fitted mde
RURAL AREAS . .
we generate 5&simulated curves and throw out 30 highest
and 30 lowest values to form the pointwise envelope, which
leads to a 90% confidence level. Then we judge whether the

Point Number  Aredfm?2) Clustering Repulsive
Urbanl 2349 210.86 66.91% 0.03%

Urban2 1468 295 07 87.74% 0.01% L-function and the coverage probability of the realisticrpoi
Urban3 1001 83.54 79.71% 0.04% patterns lie within these confidence intervals.

Rurall 318 2035.9 1.01% 54.53% The coverage probability curve is drawn under a wide
Rural2 623 4141.3 0.31% 58.41% . L

Rural3 288 1962.9 0.19% 16.16% range of SINR thresholds. Notably, in order to eliminate the

edge effect induced by user locations, 1000 randomly sdect
obile users are assumed to be located in the central part of
e unit window coveringgwidthx Zheight of the total area.

he coverage probability is then computed by comparing the

for all the three urban regions. For the rural regions, tiselte corresponding average SINR values to the selected theishol

are somewhat the reverse of those in the urban regions, as thp) Uran Point P%ttern: Fig. 4 presents the fitting en-
tendency of repulsion is obvious except in the point patte}’r?mpe_s with the 90% confidence level of the PPP, Geger

of Rural3 which however, also indicates low probability ofSAiUration process and the MCP with respect to the urban
clustering. point patternU. The L-function curves are sr_lpwn in Fig.

These results above can be readily acknowledged, as fbt®): (€) and (e) and the coverage probability curves are

work coverage optimization and interference minimizatioR/Ott€d in the other subfigures, respectively. Obviouslg w
contribute to spatial regularity of BS deployment in rurafa" reject the hypothesis thét is a PPP, as the observed
regions. Whereas in densely populated regions, the COT’HDC“O” values on both metrics fall outside the envelopenfr

paratively higher amount of network traffic in urban areds'd- 4 () anq (b). Acpording to Fig. 4 (d)' we can not reject
contribute to intensive and clustering BS deployment. the hypothesis thaU Is a Geyer .SatL.lrat|on process by the
coverage probability. However, in Fig. 4 (c), the curvelof

B. Fitted Models lies outside the envelope when> 0.1. Therefore, we can

Inspired by the first-stage results above, we further exami@lso reject the null hypothesis of ti@eyer model. As seen in
the fitness of aggregative processes to the clustered point
patternU. The MCP and theGeyer saturation process are 1'The significance levek: can be calqulated as = 2 % nrank/(1 +
. . L .nsim), by the number of simulationasim and the rank of the envelope
included in the fitting process. On the other hand, repulsiVg e . ank. Therefore, if we takensim = 599, nrank — 30, a would

processes including th&rauss hard-core process (SH), the equalo.1.

We show the clustering and repulsive probability of the si%
regions in the columns of Table I. Compared with the repelsi
probability, the clustering probability reaches significkevels
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of the urban point pattern best.

2) Rural Point Pattern: Fig. 5 shows the realistic-
function and the coverage probability of the rural pointgat
R, as well as the corresponding simulated envelopes, inmdisé%-rei- O(rfgirn(c)ér(]?eﬁ‘)”degg)(;f”f‘ii eLd‘ft‘n”oCéié’qg) OEJ)h?f)Pgri]’:jt &?thge’ﬂcicgrg‘i
the PPP, the PHCP, the SH and @Wer saturation process. robatg)ility fu?lction ofpthe point patteri an’d the correspo.nding envelgpes
We can reject the null hypothesis of the PPP using either tbfditted models.

L-function or the coverage probability, as seen in Fig. 5 (a)

and (b), respectively. Though the PHCP and @eyer satu-

ration process satisfy the verifications based on the coveragsither urban or rural area is PPP distributed. Afterwards,
probability, as depicted in Fig. 5 (d) and (h), we can rejetihe Ripley’'s K-function and theG-function were utilized to
these two hypotheses by Fig. 5 (c) and (g). However, we cegveal the discrepancy between the urban and the rural BS
not reject the hypothesis that is the SH on both metrics deployment. Furthermore, we found the urban BS deployment
according to Fig. 5 (e) and (f). expresses clustering characteristics and could be weddfitt

Remark: The SH fits best to the original rural pattern. by aggregative processes such as Matern cluster process,
while the rural BS deploymentimplies dispersion phenomeno
and follows aStrauss hard-core process. These results indicate

In this paper, we investigated the problem of spatiallthe diversity of BS deployment, and thus provide effective
modeling BS deployments based on the real data from praerformance analysis approach, as well as quantized nefere
tical deployment, and rejected the hypothesis that BS far cellular network planning.

V. CONCLUSION
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