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Email: Honggang.Zhang@supelec.fr

Abstract—The topology of base stations (BSs) in cellular
networks, serving as a basis of networking performance analysis,
is considered to be obviously distinctive with the traditional
hexagonal grid or square lattice model, thus stimulating a
fundamental rethinking. Recently, stochastic geometry based
models, especially thePoisson point process (PPP), have been
attracting an ever-increasing popularity in modeling BS deploy-
ment of cellular networks due to its merits of tractability and
capability for capturing non-uniformity. In this study, a d etailed
comparison between common stochastic models and real BS
locations is performed. Results indicate that the PPP failsto
precisely characterize either urban or rural BS deployment.
Furthermore, the topology of real data in both regions are
examined and distinguished by statistical methods according
to the point interaction trends they exhibit. By comparing the
corresponding real data with aggregative point process models as
well as repulsive point process models, we verify that the capacity-
centric BS deployment in urban areas can be modeled by typical
aggregative processes such as theMatern cluster process, while the
coverage-centric BS deployment in rural areas can be modeled by
representative repulsive processes such as theStrauss hard-core
process.

I. I NTRODUCTION

The topological structure of cellular networks has been gain-
ing tremendous complexity to fulfill exponentially increasing
demand for mobile data. Nowadays practical deployment of
cellular networks, which are organically deployed to provide
high capacity, is considered to be highly heterogeneous and
irregular [1].

Since the architecture of heterogeneous networks plays a
key role in evaluating system performance in 4G and future
cellular networks, analysis of the networking topology is
emerging as a primary task for subsequent accurate perfor-
mance characterization. By far, the most common assumption
widely used in analytical calculations for cellular networks
is that base stations (BSs) are uniformly distributed in the
covered areas. Accordingly, hexagonal grids or square lattices
are pervasively utilized to model the locations of BSs. Both
models, however, are generally intractable and structurally
different from the real BS deployment.

Therefore, much of the researchers’ focus has been shift-
ing to more accurate BSs’ spatial characterization, so as to
capture the non-uniformity of practical deployment. In that

regard, stochastic geometry has proven to be an effective
means to model BS placement [2]. It is demonstrated in [3]
that the Poisson point process (PPP), of which the points
are independently and uniformly distributed in certain area,
tracks the real configurations as accurately as the conventional
grid model. Particularly, it is applicable in deriving tractable
theoretical results for downlink performance evaluation under
some assumptions. However, as population usually distributes
unevenly and practical BSs tend to be deployed with a target
(e.g., coverage-centric or capacity-centric) being strongly asso-
ciated with human activities, the PPP exhibits some unrealistic
characteristics. Conversely, alternative spatial patterns might
yield superior modeling precision. For example, researchers
have showed the fitness of theGeyer saturation process in
modeling the spatial patterns of WiFi spots [4]. For cellular
networks, Taylor et al. proposed to use theStrauss process
and theGeyer saturation process to model macro-cellular BS
deployment [5]. The study in [6] indicated the accuracy of
Poisson cluster models in characterizing BS spatial distribu-
tions in large cities. Guo and Haenggi analyzed the fitness of
the Strauss process using the urban and rural data collected
from a public dataset in UK [7]. But their study was lacking of
in-depth consideration on the difference between point patterns
in various kinds of regions limited by the relatively small
BS dataset. Thus, although there exist several works towards
spatially modeling the BS locations by stochastic geometry
tools in different scenarios, few of them has ever shed lighton
the essential differences between the two typical geographical
categories, i.e., urban and rural areas.

Motivated by the observations above, we try to find the
most precise models for BSs in different types of geographical
areas accordingly, based on a large BS dataset collected from
a cellular network operator in China. Firstly, we select data
subsets from the urban area and the rural area separately and
demonstrate that the PPP model is pessimistic in modeling ei-
ther point pattern. Specifically, by means of summary statistics
including theG-function,K-function andL-function [8] [9],
we measure the spatial dependence of both kinds of regions
with a large number of the measured data. Furthermore, we test
the hypotheses of different spatial models by theL-function
and the coverage probability, and verify the accuracy of several
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stochastic models matching urban and rural BS deployment,
respectively.

The rest of the paper is organized as follows. In Sec-
tion II, we begin with a brief overview of representative
stochastic spatial models and present a description of the
BS dataset. Then, the methodology of fitting point processes
to the collected practical data is introduced in Section III.
The experimental results are shown in Section IV before
concluding this study in Section V.

II. PRELIMINARIES

A. Background on Point Processes

Generally, a point processx is a finite collection
of randomly distributed locations contained in a given
bounded regionS. A realization of such a point process
{x1, x2, ..., xN(x)} can be specified by the number of points
N(x) and the joint distribution of the points inx. Point
processes (e.g., pairwise interaction processes, hard-core pro-
cesses and clustered processes) can be grouped into three cate-
gories, the PPP, repulsive processes and aggregative processes.
A PPPx can be defined onS with its intensity measureλ
satisfyingλ(B) > 0 for any bounded regionB belonging to
S, while N(B) is Poisson distributed with meanλ(B). They
possess the property of “no interaction” between nodes [10].

By contrast, a pairwise interaction processx takes inter-
point interactions into consideration. Its probability density
function (PDF) on a compact region satisfies

f(x) = a ·

N(x)
∏

i=1

b(xi) ·
∏

i<j

c(xi, xj), (1)

wherea denotes a normalizing constant, whileb(·) and c(·)
are nonnegative functions, indicating first-order trends and
pairwise interactions, respectively. Usually, when the functions
b(·) and c(·) take different forms, the pairwise interaction
process could be simplified to different processes:

• Strauss process: b(·) = β andc(u, v) = γ conditional on
0 < ‖u− v‖ ≤ r, c(u, v) = 1 otherwise. Thus, we have
the density function as the form

f(x) = aβN(x)γs(x), (2)

in which s(x) denotes the number of point pairs ofx lie
within a distancer. The Strauss process is effective in
modeling repulsion effect between points, yet it proves to
be non-integrable forγ > 1 corresponding to the desired
clustering.

• Geyer saturation process: As a generalized version of
Strauss process, a saturation limitsat is added in the
exponent ofγ, thereby trimming the total contribution
from each point’s pairwise interaction to a maximumsat.
The process can describe both repulsive and aggregative
patterns.

Hard-core processes (e.g., the Poisson hard-core process and
the Strauss hard-core process), implied by the name, introduce
a hard-core distancehc > 0 into its PDF [11]. Therefore, the

inter-point distances between distinct points are always greater
thanhc.

On the other hand, cluster processes can precisely fit point
patterns with the aggregation behavior. In this study, we
primarily focus on theMatern cluster process (MCP), which
is a special case of the Poisson cluster process. Usually, The
Poisson cluster process is formed by taking a Poisson process
as parent points with daughter points scattering around. In
particular, we call it the MCP if the daughter points are
uniformly distributed within the ball of radiusr around their
parent points. An MCP can be further specified by other
parameters, including the intensity of the parent pointsκ and
the mean number of points in each clusterµ.

B. Dataset Description

Our dataset is based on the real measurement of commercial
base stations in an eastern province in China, which includes
47663 BS location records with more than 40 million sub-
scribers involved. The whole research area covers 101,800
km2 and is generally divided into two typical regions, namely
the urban area and the rural area by matching the longitude
and latitude information of each BS to that of the target area
on a Google Map.
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Fig. 1. BS kernel density estimates of representative urbanand rural areas.

On the macroscopic level, the BS density varies heavily
across densely populated areas and less populated areas, whose
difference can be easily explained by the respective capacity
requirements. This phenomenon can be better illustrated in
Fig. 1 where we randomly pick three urban areas and three
rural areas from the collected data and draw the kernel density
estimate for each of them.



To ensure the data richness, the selected areasUrban1 and
Urban2 are both selected from inland cities whileUrban3 is
from a coastal city. On the other hand, the three rural areas
Rural1, Rural2 and Rural3 are randomly selected from
three different less populated areas without overlapping.As
seen in Fig. 1, the shape of the color temperature maps is
varied with BS density. The different variation ranges between
subfigures show that the average number of BSs per square
kilometer in the urban areas is 10 to 100 times larger than that
in the rural areas, which also confirms the region imbalance
on BS spatial distribution. We will conduct more detailed
statistical tests using these regions in Section IV.

In order to identify pairwise interaction trends between
points by the corresponding metrics, we mainly focus on
the representative areas of both kinds in relatively compact
datasets and ignore the density difference by mapping the
selected point patterns onto the same scale in the following
study. Thus, we pick a square regionU with a total space of
7.73km2 from a dense urban region in the provincial capital
city and a square regionR covering a total area of1069.89km2

in typical part of the rural area. Both regions are mapped onto
unit squares as shown in Fig. 2.

U R

Fig. 2. (left): Distribution of the urban point patternU with 259 BSs.(right):
Distribution of the rural point patternR with 167 BSs.

III. M ETHODOLOGY

This paper aims at obtaining an accurate point process to
model the real BS deployment in target areas. In order to
reach such a goal, we utilizes the following fitting and analysis
methods.

A. Fitting Method

It is common to utilize the maximum pseudolikelihood
estimates as the fitting method in stochastic geometry. Whereas
for models with irregular parameters such assat in the Geyer
saturation process, we can obtain the relevant parameters by
analogy with the profile maximum pseudolikelihood estimator
[12].

B. Analysis Method

The analysis of point patterns largely depends on summary
statistics (e.g., the standard deviation). For testing ourassump-
tion of real data, we employ the nearest neighbor distance

function (theG-function), theL-function and the coverage
probability as the metrics:

1) G-function: TheG-function is the cumulative frequency
distribution of the nearest neighbor distances, which illustrates
the ways the points are spaced. It indicates clustering when
the G-function increases rapidly at a short distance, while it
implies dispersion otherwise.

2) L-function: The L-function relies on the distance be-
tween the points and provides an estimate of spatial depen-
dence over a wide range of scales. Therefore, theL-function
could judge whether a pattern exhibits clustering or dispersion.
Formally, theL-function is defined asL(r) =

√

K(r)/π.
Here,K(r) is the Ripley’sK-function and can be calculated
as

K(r) =
1

λ
E[N(x ∩ b(x, r)\{x})|x ∈ x], (3)

where λ denotes the intensity of the points [8]. If a point
pattern is the PPP,L(r) would equal tor. Moreover,L(r) > r

indicates clustering whileL(r) < r represents dispersion.
3) Coverage Probability: The coverage probability is an-

other important metric related to network performance. It
indicates the probability that a randomly chosen mobile user
connected to the nearest BS achieves signal-to-interference-
plus-noise-ratio (SINR) larger than a thresholdT [3]. Specifi-
cally, we assume all the BSs with one antenna transmits with
the equal powerP , and a typical user receives the signal
power from the nearest BS with the locationxk ∈ X and
the interference power as the total received power from all the
other BSs. Then the SINR of the typical user located at the
origin should be written as the form:

SINR =
Phk‖xk‖

−α

W +
∑

i:xi∈x\xk
Phi‖xi‖

−α , (4)

where W denotes the noise power,hi ∈ H is the fading
and shadowing coefficient, and‖x‖−α is the standard path
loss between the BS located atx and the user. Here Rayleigh
fading is exponentially distributed with mean 1 and lognormal
shadowing is of the value10X/10 (X∼N(0, σ2

LN)). The path
loss coefficient satisfiesα > 2 for testing as the outdoor
scenario without losing generality.

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Pre-judgement

First we examine theG-function and theK-function ofU
andR to determine whether they are clustered or repulsive.
The pre-judgement results will help to understand both point
patterns and find appropriate spatial models.

As seen in Fig. 3, the point patternU in dense urban area
has a strong tendency of clustering between BSs with both
calculation results larger than the theoretical ones (i.e.the
PPP). On the contrary, the point patternR reflects diffusive
regularity as the corresponding curve inG-function increases
much lower at a short distance.

We next utilize the similar metric for the datasets in Fig. 1
to show the result above is more universal. For each of the six
regions, we firstly generate a total number of 10000 square



0.00 0.02 0.04 0.06

0
.0

0
.2

0
.4

0
.6

0
.8

r

G
(r

)

U

R

PPP

0.00 0.05 0.10 0.15
0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

r

K
(r

)

U

R

PPP

Fig. 3. (left): The G-function of U , R and the theoreticalG-function of
the PPP (the solid line).(right): The Ripley’sK-function of U , R and the
theoreticalK-function of the PPP.

subregions at random locations and ensure the BS number
inside is suitable for the analysis in R software. We set the
range of BS numbers as 60 to 220. Based on theL-function,
a point pattern in the subregion is characterized as clustering
only if L(r) ≥ r can be satisfied and repulsive only ifL(r) ≤
r is satisfied for everyr belongs to a normalized interval in
our validation. We set the interval as(0, 0.15] here.

TABLE I
THE PROBABILITY OF CLUSTERING AND REPULSION FOR THE URBAN AND

RURAL AREAS

Point Number Area(km2) Clustering Repulsive

Urban1 2349 210.86 66.91% 0.03%
Urban2 1468 225.07 87.74% 0.01%
Urban3 1001 83.54 79.71% 0.04%
Rural1 318 2035.9 1.01% 54.53%
Rural2 623 4141.3 0.31% 58.41%
Rural3 288 1962.9 0.19% 16.16%

We show the clustering and repulsive probability of the six
regions in the columns of Table I. Compared with the repulsive
probability, the clustering probability reaches significant levels
for all the three urban regions. For the rural regions, the results
are somewhat the reverse of those in the urban regions, as the
tendency of repulsion is obvious except in the point pattern
of Rural3 which however, also indicates low probability of
clustering.

These results above can be readily acknowledged, as net-
work coverage optimization and interference minimization
contribute to spatial regularity of BS deployment in rural
regions. Whereas in densely populated regions, the com-
paratively higher amount of network traffic in urban areas
contribute to intensive and clustering BS deployment.

B. Fitted Models

Inspired by the first-stage results above, we further examine
the fitness of aggregative processes to the clustered point
patternU . The MCP and theGeyer saturation process are
included in the fitting process. On the other hand, repulsive
processes including theStrauss hard-core process (SH), the

TABLE II
PARAMETERS FOR BEST MODEL FITTING FORU AND R

Data type Processes Parameters

Urban
PPP λ = 47.50
Geyer r = 0.03, sat = 4, β = 182.93, γ = 1.25
MCP κ = 162.48, r = 0.067, µ = 1.61

Rural

PPP λ = 35.75
PHCP hc = 0.015, β = 173.34
SH hc = 0.015, β = 237.24, r = 0.03
Geyer r = 0.073, sat = 1, β = 26.08, γ = 6.01

Geyer saturation process and thePoisson hard-core process
(PHCP) are utilized to fit the more regular point patternR.
As a benchmark, the PPP is employed in both validations,
which could further verify our hypotheses. Table II lists
the corresponding fitting results, in terms of the maximum
pseudolikelihood estimates and the profile maximum pseudo-
likelihood estimates.

We use the R packagespatstat [9] to fit parametric models
to the real data, and then generate simulated realizations using
Markov Chain Monte Carlo tests.

C. Model Validation

After the parameter estimation, the fitting accuracy of these
models above are assessed based on theL-function and the
coverage probability separately. For each of the fitted models,
we generate 5991 simulated curves and throw out 30 highest
and 30 lowest values to form the pointwise envelope, which
leads to a 90% confidence level. Then we judge whether the
L-function and the coverage probability of the realistic point
patterns lie within these confidence intervals.

The coverage probability curve is drawn under a wide
range of SINR thresholds. Notably, in order to eliminate the
edge effect induced by user locations, 1000 randomly selected
mobile users are assumed to be located in the central part of
the unit window covering23width× 2

3height of the total area.
The coverage probability is then computed by comparing the
corresponding average SINR values to the selected threshold.

1) Urban Point Pattern: Fig. 4 presents the fitting en-
velopes with the 90% confidence level of the PPP, theGeyer
saturation process and the MCP with respect to the urban
point patternU . The L-function curves are shown in Fig.
4 (a), (c) and (e) and the coverage probability curves are
plotted in the other subfigures, respectively. Obviously, we
can reject the hypothesis thatU is a PPP, as the observed
function values on both metrics fall outside the envelope from
Fig. 4 (a) and (b). According to Fig. 4 (d), we can not reject
the hypothesis thatU is a Geyer Saturation process by the
coverage probability. However, in Fig. 4 (c), the curve ofU

lies outside the envelope whenr > 0.1. Therefore, we can
also reject the null hypothesis of theGeyer model. As seen in

1The significance levelα can be calculated asα = 2 ∗ nrank/(1 +
nsim), by the number of simulationsnsim and the rank of the envelope
value nrank. Therefore, if we takensim = 599, nrank = 30, α would
equal0.1.
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Fig. 4. (a), (c) and (e): the L-function of the point patternU and the
corresponding envelopes of fitted models;(b), (d) and (f): the coverage
probability function of the point patternU and the corresponding envelopes
of fitted models.

Fig. 4 (e) and (f), the MCP fits precisely to the point pattern
U based on both statistics.

Remark: The MCP is the model that captures the properties
of the urban point pattern best.

2) Rural Point Pattern: Fig. 5 shows the realisticL-
function and the coverage probability of the rural point pattern
R, as well as the corresponding simulated envelopes, including
the PPP, the PHCP, the SH and theGeyer saturation process.
We can reject the null hypothesis of the PPP using either the
L-function or the coverage probability, as seen in Fig. 5 (a)
and (b), respectively. Though the PHCP and theGeyer satu-
ration process satisfy the verifications based on the coverage
probability, as depicted in Fig. 5 (d) and (h), we can reject
these two hypotheses by Fig. 5 (c) and (g). However, we can
not reject the hypothesis thatR is the SH on both metrics
according to Fig. 5 (e) and (f).

Remark: The SH fits best to the original rural pattern.

V. CONCLUSION

In this paper, we investigated the problem of spatially
modeling BS deployments based on the real data from prac-
tical deployment, and rejected the hypothesis that BS in
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Fig. 5. (a), (c), (e) and (g): the L-function of the point patternR and the
corresponding envelopes of fitted models;(b), (d) (f) and (h): the coverage
probability function of the point patternR and the corresponding envelopes
of fitted models.

either urban or rural area is PPP distributed. Afterwards,
the Ripley’sK-function and theG-function were utilized to
reveal the discrepancy between the urban and the rural BS
deployment. Furthermore, we found the urban BS deployment
expresses clustering characteristics and could be well fitted
by aggregative processes such as theMatern cluster process,
while the rural BS deployment implies dispersion phenomenon
and follows aStrauss hard-core process. These results indicate
the diversity of BS deployment, and thus provide effective
performance analysis approach, as well as quantized reference
for cellular network planning.
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