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Abstract—This paper analyzes Type I hybrid automatic repeat
request (HARQ) over time-correlated Rayleigh fading channels.
Due to the presence of channel time correlation, the analysis is
more challenging than the prior analysis in the literature. Outage
probability is first derived as a weighted sum of joint CDF of
multiple independent Gamma random variables based on an
infinite series representation. A truncation method is proposed
for efficient computation of the outage probability and it is
proved that the truncation error decreases exponentially with the
truncation order. Asymptotic outage probability is then derived in
a simple form, with which the impacts of packet transmission rate,
transmit power and channel time correlation could be decoupled
and analyzed clearly. Based on the asymptotic outage probability,
diversity order of HARQ is also analyzed. It is found that full
diversity can be achieved even under time correlated fading
channels and the time correlation of the channels has negative
effect on the outage probability under high signal-to-noise ratio
(SNR). Finally, our analytical results are validated by Monte-
Carlo simulations.

Keywords—Hybrid automatic repeat request, time correlation,
Rayleigh fading, asymptotic analysis.

I. INTRODUCTION

Hybrid automatic repeat request (HARQ) is a reliable and
powerful technique to combat the detrimental effect of fading
and noisy channels by using the combination of forward error
correction code (FEC) and automatic repeat request (ARQ).
There are two kinds of HARQ schemes, i.e., Type I HARQ
and HARQ with soft combining [1]. For Type I HARQ, the
erroneously received packets are discarded when retransmis-
sions are requested, while for the other kind of HARQ, those
erroneously received packets are stored in a buffer memory
for joint decoding with subsequent received packets from
retransmissions. Based on the decoding approaches adopted,
HARQ with soft combining is further classified into two types,
i.e., HARQ with chase combining (HARQ-CC) and HARQ
with incremental redundancy (HARQ-IR). Although Type I
HARQ performs worse than HARQ with soft combining, it
has lower decoding complexity and requires less memory. It
still has quite a lot of applications in practice. We thus put our
focus on the analysis of Type I HARQ.

Most of the prior analyses in the literature consider either
quasi-static fading channels (fully correlated fading channels)
[2] or independent fading channels [3]–[5]. To be specific, in
[2], packets in all HARQ rounds are assumed to experience
an identical channel realization, and the average throughput of
Type I HARQ is optimized through power allocation among
retransmissions. Unlike [2], independent Rayleigh fading chan-
nels are considered in [3], and the throughput of Type I HARQ
is analyzed. Considering the same independent fading channels

as [3], a systematic approach with adaptive modulation and
coding is proposed to maximize the throughput for Type I
HARQ in [4]. Moreover, MIMO systems with Type-I HARQ
are investigated over independent fading channels in [5]. An
optimal power allocation solution is derived in closed-form to
minimize the asymptotic outage probability given an average
power constraint.

Except the above two types of fading channels, another
general channel model is time correlated fading channel,
which usually occurs when the transceiver has low-to-medium
mobility [6], [7]. In [6], [7], the time correlation among fading
channels is considered in the analysis of HARQ-CC. The most
fundamental metric, outage probability, is analyzed by using
approximations. However, it is hard to extract meaningful
insight of time correlation and other parameters from the
complicated expression of the outage probability.

Considering the wide occurrence of time correlated fading
channels, we analyze Type I HARQ over time-correlated
Rayleigh fading channels in this paper. The fading channels
are modeled as a multivariate Rayleigh distribution with expo-
nential correlation. The outage probability is first derived as a
weighted sum of joint CDF of multiple independent Gamma
random variables (RVs) based on an infinite series represen-
tation. For efficient computation of the outage probability, a
truncation method is proposed and it is proved that the trun-
cation error decreases exponentially with the truncation order.
To extract meaningful insight, asymptotic outage probability
is then derived in a simple form, with which the impacts
of packet transmission rate, transmit power and channel time
correlation could be decoupled and analyzed clearly. The result
of asymptotic outage probability also enables the analysis of
diversity order. It is found that full diversity can be achieved
even under time correlated fading channels and the time
correlation of the channels has negative effect on the outage
probability under high signal-to-noise ratio (SNR). Finally, our
analytical results are validated by Monte-Carlo simulations.
Our analysis could thus serve a solid foundation for system
design and optimization.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. Outage analysis
is conducted and the asymptotic result is derived in Section
III. Numerical results are then presented for validations and
discussions in Section IV. Finally, Section V concludes this
paper.

II. SYSTEM MODEL

This paper considers a point-to-point Type I HARQ system
operating over time-correlated Rayleigh fading channels. Each
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message comprises b bits of information. For reliable transmis-
sion, the b bits information is encoded by a channel encoder
at a rate of R. Following Type I HARQ protocol, the same
encoded packet is repetitively transmitted to the destination
in multiple HARQ rounds until an acknowledgement (ACK)
of successful reception is received from the destination or
the maximum number of transmissions is reached. At the
destination, signal detection is performed based on the received
signal on current HARQ round. If the detection is failed, the
destination would discard the received signal and feed back a
negative acknowledge (NACK) to request a retransmission to
the source.

Denote the encoded message with unit mean power as x.
At the kth HARQ round, the encoded message is transmitted
with a power of Pk through a noisy time-correlated Rayleigh
fading channel. The received signal at the destination in the
kth HARQ round is then written as

yk =
√

Pkhkx+ nk, 1 ≤ k ≤ K, (1)

where K denotes the maximum number of transmissions,
nk refers to complex Gaussian white noise with zero mean
and unit variance, i.e., nk ∼ CN (0, 1), and hk denotes
Rayleigh fading channel coefficient. In this paper, time-
correlated Rayleigh fading channel is considered and the
channel coefficient hk is generally modeled as a multivariate
Rayleigh distribution with exponential correlation, such that

hk = ρk+δ−1σkh0+
√

1− ρ2(k+δ−1)σkwk, 1 ≤ k ≤ K, δ > 0,
(2)

where ρ and δ denote the time correlation and the channel
feedback delay, respectively, and h0, w1, · · · , wK follow in-
dependent and identical complex Gaussian distributions with
zero mean and unit variance, i.e., h0, w1, · · ·wK ∼ CN (0, 1)
and the average channel power gain |hk|2 is E(|hk|2) = σk

2.
As derived in [8], the joint PDF of the channel amplitudes
|h1|, · · · , |hK | is given by

f|h1|,··· ,|hK | (x1, · · · , xK) =

∞∫

0

e−t

K∏

k=1

xk

σk
2
(

1−ρ2(k+δ−1)

2

)×

e
−

xk
2+σk

2ρ2(k+δ−1)t

σk
2(1−ρ2(k+δ−1)) I0




xk

√

tσk
2ρ2(k+δ−1)

σk
2
(

1−ρ2(k+δ−1)

2

)



 dt, 0 ≤ ρ < 1.

(3)

At the destination, the received signal-to-noise ratio (SNR)
in the kth HARQ round is therefore given as

γk = Pk|hk|
2
. (4)

Due to the time correlation among the channel coefficients
hk, the received SNRs are correlated among multiple HARQ
rounds, which then complicates the analysis as shown in the
following section.

III. OUTAGE ANALYSIS

With Type I HARQ, outage may still occur when the
transmissions in all HARQ rounds fail. The outage probability
can then be written from information theoretical perspective
as [2], [3]

Pout (K) = Pr (I1 < R, · · · , IK < R) (5)

where Ik represents the mutual information in the kth HARQ
round and is given as Ik = log2 (1 + γk). Substituting the
definition of Ik into (5), the outage probability can be further
written as

Pout (K) = Pr
(
γ1 < 2R − 1, · · · , γK < 2R − 1

)

= Fγ1,··· ,γK

(
2R − 1, · · · , 2R − 1

)
(6)

where Fγ1,··· ,γK
(·) denotes the joint CDF of SNRs

γ1, · · · , γK . Clearly, the joint CDF Fγ1,··· ,γK
(·) should be

derived to obtain Pout (K).

A. Series representation of Pout (K)

To derive Fγ1,··· ,γK
(·), the joint PDF fγ1,··· ,γK

(·) with
respect to γ1, · · · , γK is first derived in the following lemma.

Lemma 1. Given γk = Pk|hk|
2
, the joint PDF of SNRs

γ1, · · · , γK is given by

fγ1,··· ,γK
(r1, · · · , rK) =

∞∫

0

e−t

K∏

k=1

1

Pkσk
2
(
1− ρ2(k+δ−1)

)×

e
−

rk+Pkσk
2ρ2(k+δ−1)t

Pkσk
2(1−ρ2(k+δ−1))

0F1

(

; 1;
ρ2(k+δ−1)trk

Pkσk
2
(
1− ρ2(k+δ−1)

)2

)

dt

(7)

where 0F1(·) denotes the confluent hypergeometric limit func-
tion.

Proof: By substituting the identity Im−1 (x) =
( x

2 )
m−1

Γ(m) 0F1

(

;m;
(
x
2

)2
)

[9, Eq. 10.39.9] into (3), and then

applying Jacobian transformation as γk = Pk|hk|
2
, the lemma

holds after some algebraic manipulations.

By using Lemma 1, the joint CDF of SNRs γ1, · · · , γK
can then be derived in the following theorem.

Theorem 1. The CDF of Fγ1,··· ,γK
(z1, · · · , zK) can be writ-

ten as a weighted sum of joint CDF of K independent Gamma
RVs An with parameters (nk + 1, Pkσk

2
(
1− ρ2(k+δ−1)

)
).

More precisely,

Fγ1,··· ,γK
(z1, · · · , zK) =

∞∑

n1,··· ,nK=0

WnFAn
(z1, · · · , zK)

(8)
where n = [n1, · · · , nK ], the coefficient Wn is given as

Wn =
1

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

(
K∑

k=1

nk

)

!

K∏

k=1

nk!

K∏

k=1








ρ2(k+δ−1)

1−ρ2(k+δ−1)

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)








nk

(9)

with
∞∑

n1,··· ,nK=0
Wn=1, and FAn

(z1, · · · , zK) is explicitly

expressed as

FAn
(z1, · · · , zK) =

K∏

k=1

Υ

(

nk + 1, zk
Pkσk

2(1−ρ2(k+δ−1))

)

nk!

(10)



where Υ(·) is incomplete Gamma function.

Proof: Please see Appendix A.

Clearly from Theorem 1, the joint distribution of correlated
RVs γ1, · · · , γK can be expressed as a mixture of K indepen-
dent Gamma RVs. Hereby, by putting (8) into (6), the outage
probability Pout (K) is given by

Pout (K) =

∞∑

n1,··· ,nK=0

WnFAn

(
2R − 1, · · · , 2R − 1

)
(11)

B. Computation of Pout (K)

As shown in (11), the outage probability is expressed as
the sum of infinite series. It is hard to compute in practice.
Here we propose an efficient truncation method to compute
the outage probability with high accuracy. After truncation,
the outage probability can be written as

P̃out (K) =

N∑

t=0

∑

n1+···+nK=t

WnFAn

(
2R − 1, · · · , 2R − 1

)

(12)
where N is the truncation order. It follows the truncation error
as

ε = Pout (K)− P̃out (K)

=

∞∑

t=N+1

∑

n1+···+nK=t

WnFAn

(
2R − 1, · · · , 2R − 1

)
. (13)

It is upper bounded by

ε ≤ sup
K
∑

k=1

nk>N

(
FAn

(
2R − 1, · · · , 2R − 1

))
∞∑

t=N+1

∑

n1+···+nK=t

Wn

(14)
Since FAn

(
2R − 1, · · · , 2R − 1

)
≤ 1, putting (9) into (14)

gives

ε ≤
1

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

×

∞∑

t=N+1

∑

n1+···+nK=t

t!
K∏

k=1

nk!

K∏

k=1








ρ2(k+δ−1)

1−ρ2(k+δ−1)

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)








nk

=
1

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

∞∑

t=N+1








K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)








t

=








K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)








N+1

(15)

where the first equality holds by using multinomial expansion.
From (15), it is found that the upper bound of the truncation
error decreases exponentially as N increases, which demon-
strates the effectiveness of the truncation method.

C. Asymptotic analysis

With the complicated expressions in (11) and (12), little
insight on the outage probability could be found. To better
investigate the system behavior, asymptotic analysis under high
SNR regime is thus of great importance to extract meaningful
insight. To facilitate the analysis, we define Pk = pkPT . Under
high SNR regime PT → ∞, asymptotic outage probability,
diversity order and the impact of time correlation will be
studied in the following.

1) Asymptotic Outage Probability: With (11), the outage
probability can be written as

Pout (K) = W0FA0

(
2R − 1, · · · , 2R − 1

)

×



1 +
1

W0

∑

n 6=0

Wn

FAn

(
2R − 1, · · · , 2R − 1

)

FA0
(2R − 1, · · · , 2R − 1)



 (16)

From the definition of FAn
(z1, · · · , zK) in (10), we can find

a special property of FAn
(z1, · · · , zK) as follows.

Lemma 2. The coefficient FAn
(z1, · · · , zK) can be written

as

FAn
(z1, · · · , zK) = PT

−
K
∑

k=1

(nk+1)
×

K∏

k=1

(

zk
pkσk

2(1−ρ2(k+δ−1))

)nk+1

nk! (nk + 1)
+ o



PT

−
K
∑

k=1

(nk+1)





(17)

and it satisfies

FAn

(
2R − 1, · · · , 2R − 1

)

FA0
(2R − 1, · · · , 2R − 1)

= o(PT
−0.5), n 6= 0, (18)

where o(·) denotes higher-order infinitesimal.

Proof: Please see Appendix B.

By using the result in Lemma 2, the outage probability(16)
under high SNR can be approximated as

Pout (K) = W0FA0

(
2R − 1, · · · , 2R − 1

) (
1 + o(PT

−0.5)
)

≈ W0FA0

(
2R − 1, · · · , 2R − 1

)
(19)

Clearly from (19), under high SNR regime, the joint CDF of
correlated RVs γ1, · · · , γK can be approximated as a weighted
joint CDF of independent Gamma RVs with parameters
(1, Pkσk

2
(
1− ρ2(k+δ−1)

)
). With this result, optimal system

design for Type I HARQ can be simplified and meaningful
insight can be extracted.

By plugging (17) into (19), it follows that

Pout (K) =
W0

(
2R − 1

)K

PT
K

K∏

k=1

1

pkσk
2
(
1− ρ2(k+δ−1)

)

+ o
(
PT

−K
)

(20)

By using (9), the asymptotic outage probability can be finally
written as

Pout (K) ≈
(
2R − 1

)K

︸ ︷︷ ︸

A

K∏

k=1

1

Pkσk
2

︸ ︷︷ ︸

B

1

ℓ (ρ,K)
︸ ︷︷ ︸

C

(21)



where ℓ (ρ,K) =

(

1 +
K∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

)
K∏

k=1

(
1− ρ2(k+δ−1)

)
.

With (21), the effects of coding rate, transmit powers and
time correlation can now be clearly seen from the individual
terms A, B and C, respectively.

2) Diversity Order: The diversity order d is defined as [10],
[11]

d = − lim
PT→∞

ln (Pout (K))

ln (PT )
(22)

By using (20), it follows that

d = − lim
PT→∞

ln(
W0(2R−1)

K

PT
K

K∏

k=1

1

pkσk
2(1−ρ2(k+δ−1))

+ o
(
PT

−K
)
)

ln (PT )

= − lim
PT→∞

ln
(
PT

−K
)

ln (PT )
− lim

PT→∞

ln

(

1 +
o(PT

−K)
PT

−K

)

ln (PT )

= K − lim
PT→∞

o
(
PT

−K
)

PT
−K ln (PT )

= K, ρ 6= 1, (23)

The third equality holds by using the equivalent infinitesimals

as ln

(

1 +
o(PT

−K)
PT

−K

)

∼
o(PT

−K)
PT

−K . It is thus proved that the

diversity order of Type I HARQ is equal to the number of
transmissions K , i.e., full diversity can be achieved even under
time-correlated fading channels when ρ 6= 1. It is worth noting
that the conclusion of full diversity does not hold in the case
of fully correlated fading channels, i.e., ρ = 1. Under fully
correlated fading channels (ρ = 1), no time diversity can be
achieved from retransmissions and the diversity order reduces
to 1.

3) Impact of Time Correlation: From (21), the impact of
time correlation on outage probability under high SNR regime
can be further analyzed from ℓ (ρ,K). The result is shown in
the following lemma.

Lemma 3. ℓ (ρ,K) is a decreasing function with respect
to the time correlation coefficient ρ. Specifically, ℓ (ρ,K) ≤
ℓ (0,K) = 1.

Proof: Please see Appendix C.

Lemma 3 reveals that the the presence of time correlation
will degrade the system performance under high SNR regime,
that is, it causes the increase of outage probability.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are shown to test the
accuracy of our outage analysis. In the following, we take
systems with σ1 = · · · = σK = 1 and R = 2 bps/Hz as
examples.

In Fig. 1, the outage probability is plotted against transmit
power PT with ρ = 0.5 and N = 5. There is a perfect
match between Monte Carlo simulation results and analytical
results, which demonstrates the correctness of our analysis.
Under high SNR regime, four curves coincide well with each
other. In addition, it can be readily found that the diversity
order is equal to the number of transmissions. For example,
for K = 4, as the transmit power PT increases from 20dB
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to 30dB, the outage probability reduces from 10−6 to 10−10.
Thus the diversity order is 4. Furthermore, it can be observed
that the increase of the number of transmissions K will cause
a significant reduction of outage probability.

To show the effect of truncation order N , the approximated

outage probability after truncation P̃out(K) is plotted versus
N with K = 4 in Fig. 2. It is readily found that truncation
order of N = 5 is enough to well approximate Pout(K)
with negligible error. In addition, low truncation order N is
sufficient to achieve a good approximation of Pout(K) under
high SNR regime or low ρ. For example, the truncation order
of N = 2 can achieve a good approximation when ρ = 0.5 or
PT = 10dB.

Fig. 3 shows the impact of time correlation on Type I
HARQ. It is readily observed that ℓ(ρ,K) decreases with
ρ, which reveals that time correlation has negative effect on
outage probability under high SNR regime.
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V. CONCLUSIONS

Type I HARQ over time correlated Rayleigh fading chan-
nels has been particularly analyzed in this paper. Its outage
probability has been derived as a weighted sum of joint CDF of
independent Gamma RV, which enables an efficient calculation
of the outage probability based on truncation. Then asymptotic
analysis has also been conducted to extract meaningful insight
of various parameters. It has revealed that full diversity can
be achieved and time correlation has detrimental impact on
system performance.

APPENDIX A
PROOF OF THEOREM 1

The joint CDF Fγ1,··· ,γK
(z1, · · · , zK) can be written as

Fγ1,··· ,γK
(z1, · · · , zK)

=

z1∫

0

· · ·

zK∫

0

fγ1,··· ,γK
(r1, · · · , rK) dr1 · · · drk (24)

It follows from Lemma 1 that

Fγ1,··· ,γK
(z1, · · · , zK) =

∞∫

0

e−t

K∏

k=1

zk∫

0

1

Pkσk
2
(
1− ρ2(k+δ−1)

)

×e
−

rk+Pkσk
2ρ2(k+δ−1)t

Pkσk
2(1−ρ2(k+δ−1))

0F1

(

; 1;
ρ2(k+δ−1)trk

Pkσk
2
(
1− ρ2(k+δ−1)

)2

)

drkdt

(25)

By using the series representation of hypergeometric function
[12, Eq. 1.116], (25) can be derived as

Fγ1,··· ,γK
(z1, · · · , zK) =

K∏

k=1

1

Pkσk
2
(
1− ρ2(k+δ−1)

)

∞∫

0

e
−

(

1+
K
∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

)

t

×

K∏

k=1

zk∫

0

e
−

rk

Pkσk
2(1−ρ2(k+δ−1))

∞∑

nk=0

(

ρ2(k+δ−1)trk

Pkσk
2(1−ρ2(k+δ−1))2

)nk

(nk!)
2 drkdt

(26)

By exchanging the order of summation and multiplication, it
yields

Fγ1,··· ,γK
(z1, · · · , zK) =

K∏

k=1

1

Pkσk
2
(
1− ρ2(k+δ−1)

)

×
∞∑

n1,··· ,nK=0

K∏

k=1

(

ρ2(k+δ−1)

Pkσk
2(1−ρ2(k+δ−1))

2

)nk

(nk!)
2

×

∞∫

0

t

K
∑

k=1

nk

e
−

(

1+
K
∑

k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

)

t

dt

×
K∏

k=1

zk∫

0

rk
nke

−
rk

Pkσk
2(1−ρ2(k+δ−1)) drk (27)

By using [13, Eqs. 3.381.1, and 3.381.4] and conducting
some algebraic manipulations, Theorem 1 directly follows.
Moreover, by taking limits of (8) as z1, · · · , zK → ∞,
and using lim

z1,··· ,zK→∞
Fγ1,··· ,γk

(z1, · · · , zK) =

lim
z1,··· ,zK→∞

FAn
(z1, · · · , zK) = 1,

∞∑

n1,··· ,nK=0
Wn=1

holds without dispute.
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By using [13, Eq. 8.354.1], (10) can be further written as

FAn
(z1, · · · , zK) =

K∏

k=1

1

nk!
×

∞∑

mk=0

(−1)
mk

(

zk
pkPTσk

2(1−ρ2(k+δ−1))

)nk+mk+1

mk! (nk +mk + 1)
(28)

Under high SNR regime, it follows from (28) that

FAn
(z1, · · · , zK) = PT

−
K
∑

k=1

(nk+1)
K∏

k=1

(

zk
pkσk

2(1−ρ2(k+δ−1))

)nk+1

nk! (nk + 1)

+ o



PT

−
K
∑

k=1

(nk+1)



 (29)



where the notation o(x) defines high order infinitesimal of x,
i.e., the ratio o(x)/x approaches to zero as x → 0. Thus we
have

FAn

(
2R − 1, · · · , 2R − 1

)

FA0
(2R − 1, · · · , 2R − 1)

= PT

−
K
∑

k=1

nk

×

K∏

k=1

(

zk
pkσk

2(1−ρ2(k+δ−1))

)nk

nk! (nk + 1)
+ o



PT

−
K
∑

k=1

nk



 (30)

When n 6= 0,
K∑

k=1

nk ≥ 1 and it follows that

FAn

(
2R − 1, · · · , 2R − 1

)

FA0
(2R − 1, · · · , 2R − 1)

= o(PT
−κ), n 6= 0, κ <

K∑

k=1

nk.

(31)

Thus the lemma holds in the case of κ = 0.5.
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To prove the monotonically increasing of ℓ (ρ,K) with
respect to ρ, we assume ∆ρ > 0. Then it follows from the
definition that

ℓ (ρ+∆ρ,K) =



1 +

K∑

k=2

(ρ+∆ρ)2(k+δ−1)
(

1− (ρ+∆ρ)2δ
)

1− (ρ+∆ρ)
2(k+δ−1)





×
K∏

k=2

(

1− (ρ+∆ρ)
2(k+δ−1)

)

(32)

Since ∆ρ > 0, the following inequality holds

ℓ (ρ+∆ρ,K) <

(

1 +
K∑

k=2

(ρ+∆ρ)
2(k+δ−1) (

1− ρ2δ
)

1− (ρ+∆ρ)
2(k+δ−1)

)

K∏

k=2

(

1− (ρ+∆ρ)
2(k+δ−1)

)

(33)

Finally, (33) can be rewritten as

ℓ (ρ+∆ρ,K) <

(

1 +
ρ2δ

1− ρ2δ
+

K∑

k=2

(ρ+∆ρ)
2(k+δ−1)

1− (ρ+∆ρ)2(k+δ−1)

)

×
(
1− ρ2δ

)
K∏

k=2

(

1− (ρ+∆ρ)
2(k+δ−1)

)

(34)

Following the same procedure as (32) - (34), we can prove
that

ℓ (ρ+∆ρ,K) < ℓ (ρ,K) (35)
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