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Abstract—In this paper, resource allocation for energy effi-
ciency in heterogeneous Software Defined Network (SDN) with
multiple network service providers (NSPs) is studied. The consid-
ered problem is modeled as a reverse combinatorial auction game,
which takes different quality of service (QoS) requirements into
account. The heterogeneous network selection associated with
power allocation problem is optimized by maximizing the energy
efficiency of data transmission. By exploiting the properties
of fractional programming, the resulting non-convex Winner
Determination Problem (WDP) is transformed into an equivalent
subtractive convex optimization problem. The proposed reverse
combinatorial auction game is proved to be strategy-proof with
low computing complexity. Simulation results illustrate that with
SDN controller, the proposed iterative ascending price algorithm
converges in a small number of iterations and demonstrates
the trade-off between energy efficiency and heterogeneous QoS
requirement, especially ensures high fairness among different
network service providers.

I. INTRODUCTION

Future 5G network is expected to be heterogeneous in
nature for providing gigabits data transmission for a large
number of mobile devices [1]. Software Defined Network
(SDN) is proposed as the future of 5G mobile networks by
leveraging the programmability advantages in the separation
of control-data plane [2]. Within this architecture, the network
services provider (NSP) is no longer limited to the traditional
operator that owns the infrastructure, but can also contain
the virtual operators that are able to rent the infrastructure
for providing services [3], [4]. There is no doubt that the
radio access network will become much more heterogeneous,
complex and denser, which calls for a new resource allocation
mechanism to cope with the personal QoS requirement and
system energy efficiency [5]. Meanwhile, widely deploying
more and more access points to meet the increasing data
demand inevitably increase the power consumption. Therefore,
designing an energy efficient architecture to cope with the
mixed usage of cells with diverse sizes and numbers of access
points for a heterogeneous SDN access network is attracting
more and more research attentions.

In this paper, we study how to efficiently coordinate the
limited resource for different NSPs to maximize the profits
and obtain higher fairness within SDN-based heterogeneous
architecture. Most of the existing resource allocation schemes
used in the traditional architectures are not appropriate for
the heterogeneous SDN networks [6]—[8] due to the following

reasons: 1) algorithm in the control plane lacks the availability
of user equipment (UE) information (e.g., relative distance
between the base stations and users), which requires extensive
information exchange; 2) the lack of considering NSPs, as they
are selfish and only focus on their own profit, which calls for
a contiguous design of novel resource allocation scheme.

Motivated by the aforementioned observations, we study the
SDN architecture with reverse combinatorial auction algorithm
installed to address the energy efficient resource allocation
problem by considering the competitive and fairness among
multiple NSPs. Auction theory is introduced to provide an
interdisciplinary technology for radio resource allocation (e.g.,
sub-carriers, time slots, and transmit power levels) in the
wireless systems [9]. By using various auction approaches,
such radio resources are efficiently allocated among users
and providers in the cellular system [10]. The auction based
method has been applied for the cognitive radio and mobile
ad-hoc systems [11], [12] massively, but is less discussed in
wireless cellular systems. In [12], the authors consider a two-
stage resource allocation scheme with combinatorial auction in
spectrum sharing problem, however, it does not consider more
specific information about primary and secondary spectrum
users. In [13], the authors propose one sequential single-item
auction, where each user submits a bid based on the marginal
increase in the data rate, but they did not consider multiple
network providers.

In this work, the proposed reverse combinatorial auction
based resource allocation scheme aims at maximizing energy
efficiency while taking different QoS constraints (maximum
power requirement and user demand) into account. The con-
tributions of this work can be summarized as follows. First,
we formulate the energy efficiency resource allocation problem
among different NSPs as a reverse combinatorial auction game
by considering different QoS requirement. The resulting non-
convex WDP problem in fractional form is transformed into
an equivalent subtractive optimization one by exploiting the
properties of fractional programming. After that, this problem
is solved by an iterative ascending price auction (IAPA) algo-
rithm, which is proved to be strategy-proof. Simulation results
illustrate that, with SDN controller, the proposed algorithm
shows good results in terms of convergence speed and can
offer high fairness allocation among NSPs. Moreover, it is
also proved to be robust with QoS requirement changing.



II. SYSTEM MODEL AND WINNER DETERMINATION
PROBLEM FORMULATION

A. System Model

We consider a heterogeneous SDN within one denser dis-
trict, which consists of J Network Service Providers (NSPs)
(J = {1,..,J}) and I user equipments (UEs) (Z =
{1,...,I}). The SDN controller acts as a central controller,
which takes charge of all resource management related al-
gorithms in this geographical area. Each NSP is assumed to
operate on different licensed spectrum and is further assumed
to observe only one base station (BS) with QoS requirement
of maximum total power consumption constraint, P; pqe =
[P1.mazs - Pmaz) separately (without loss of generality, we
use NSP and BS interchangeablely). UEs are assumed to be
uniformly distributed in the geographical area with individual
requirement of data rate R; ;. NSPs obtain heterogeneous
resource of both channels and power constraints.

In this paper, we consider the problem of how to allocate the
heterogeneous resource in order to achieve maximum energy
efficiency (higher system throughput and lower system power
consumption) and satisfy the QoS requirement. The energy
efficient resource allocation (EE-RA) problem is formulated
as a Reverse Combinatorial Auction (R-CA) Game. We in-
troduce a non-profit central entity in this game, which is
responsible for running the resource allocation auction game,
called resource broker. The resource broker with algorithms
for solving the auction game is installed on the SDN controller.
The NSPs who observe resource (BSs) and money constraint
(Pjmaz = [Pi,maws - Prmaz]) act as bidders and bid for
the business with UEs. The UEs which want to join the
network act as sellers or items with price requirement of (
Ri,mz’n = [Rl,miny () RI,mmD

B. Channel Efficiency

In this paper, the channel is modeled as the Rayleigh fading
channel [8]. We define SNR;; as the signal to noise ratio
(SNR) from NSP j € J to UE 7 € Z,

pjil H3|

R (1)
where pj; is the allocated power from BS j to UE i, Ny is
the additive white Gaussian noise (AWGN) at the receivers
with one-sided power spectral density. \H321| is the channel
gain, where |H7;| = d;;*|hji|*. |hji| is the complex Gaussian
channel coefficient which obeys the distribution CN(0, 1), dj;
is the relative distance from BS j to UE ¢, and « is the free
space path-loss exponent.

We calculate the channel rate according to the SNR between
BS j and UE 4. rj; is defined as the data rate received by UE
1 from BS j:

ilhil?
rj; = logy(1 + SNR;;) = logy(1 + M), )
d2 Ny

from which we can infer that, the channel rate r;; is related to
the transmission power p between transmitter j and receiver

i, so we have r(j,4,p) = r;;, and p(j,i,p) = pji, where p
stands for that it is the function of p.

We define Channel Efficiency as the ratio between channel
rate 7(j,4,p) and channel transmission power p(j,i,p):

pjih?;
ceff & 1ot _ oga(1 + )

Ji . .
Pji Pji

y r(j,4,p)
) Ceﬁ(]vl7p) =
p(j,%,p)

3)

where C?ff is the calculation form of the Channel Efficiency,

and C' eff (j,1,p) means that Channel Efficiency is a function

of power p.
C. Bidding Strategy of Reverse Combinatorial Auction

In this section, we define that, the bidding strategy composes
two parts (S;, B;) for every bidder. The first part is the bidding
bundle, which is the subset S; of the whole items . The
second part is the associated bidding price B;, which will
directly affect the final winner determination. The detailed
bidding strategy is described as follows.

1) Bidding Bundle Expression: We define set S (S C 7)
as a bundle of variables representing the business connection
between NSP and UE. It can range from ) to Z, so for every
bidder, there are 27 such bundles to be calculated and chosen.

2) Asymmetric Valuation of Bidding Bundle: In order to
execute this resource auction game more realistically, we
define the valuation of bundle S as Vs, which is also the
ratio between channel rate and channel transmission power
(see the definition in Section II-B), where Vs = C’;g =

2675;’, Vj € J. This definition also expresses the asym-
eSS i

metric property of the valuation, which means when bidder
j changes, the valuation of the same bundle S also changes.
With the same definition method in (3), we have

. _ T(j,S,p) _ ZiES T(j,i,p)

V(5 Sp) = — = —,

p(G,S:p)  2ies PUrisp)

which means that the valuation of bundle S depends on not
only the transmitter j, but also the allocated power p.

3) Bidding Price: To achieve incentive compatibility, the
auction mechanism should be designed to guarantee that, the
dominant bidding strategies of bidders are the truthful bidding
strategies. So in this paper we consider Vickrey-Clarke-Groves
auction [11]. VCG is a type of truthful auction, which means
the bidder will bid the bundle according to its real valuation,
no matter what other bidders’ bidding strategy are:

BjS:‘/;'Sv B(],S,p):V(j,S7p), VJEJ (5)

Now the bidding strategy of bidder j would be pair (S;, B;).
Note that the whole bidding strategy space of bidder j is
Cs(Z) xR*, where Cs(Z) means the combination of choosing
S from set 7.

4) Pay Price: The cost of bidder j should pay for item i is
defined as pay price and expressed as Q) ;s (also as Q(j, S, p)).
In order to extend the combinatorial resource auction to a
strategy-proof auction mechanism, we define the pay price
observing the properties of non-linearity and anonymity, where
if 38 =81 US,, then it does not mean Qs = Qjs, + Qjs,
and if 3 j # j', then it does not mean Qs = Qj's, .

vied, &



5) Bidder Utility: During the auction, each NSP obtains
a gain by offering connection with a bundle of UEs. The
difference between the valuation of bidding bundle and the
pay price is what bidder j can obtain finally. We define the
gain of bidder j as the utility, U;s:

Vis — Qjs,
UjSZ{ iS st

0, otherwise,

if bidder j wins bundle S

where Ujs is the calculated payoff of bidder j for bundle S.
If bidder 5 wins, the utility will be calculated according to
definition, and can be expressed as U(j, S, p) according to (4)
and (5); if bidder j loses, SDN controller will charge nothing
for the bidding.

D. Winner Determination Problem

The problem of identifying which set of bids to be accepted
is usually been defined as the Winner Determination Problem
(WDP). According to WDP, the objective is the social welfare
maximization, which is the overall gain of both bidders and
sellers (or items).

1) Bidding Language and Decision Variables: We refer to
the non-exclusive bundle-bids as the bidding language, which
is also can expressed as XOR language. Within this mode,
each bidder can submit an arbitrary number of pairs (S;, B;),
however, at most one of these bids can win finally. We define
x;s as the decision variable, which means for certain bundle
S, whether bidder j wins or not:

1, if bidder j wins bundle S
zjs = , ™
0, otherwise.

x ;s expresses the relationship between bundle S and bidder j
with decision space of .J x 2!, which has the same meaning in
section II-C1. With decision variable x;s, we rewrite many
functions above as follows: bundle S’s total rate can be
rewritten as r(x, p), total power consumption can be rewritten
as p(x, p). Therefore, the valuation in (4) can be rewritten as
V(ep) = 1D,

2) Social (We}fare: We propose Theorem 1 for the definition
of social welfare.

Theorem 1: The social welfare of this reverse combinato-
rial auction is the system energy efficiency v, which is the
proportion of system throughput R(z,p) and system power
consumption P(z,p).

Proof: For bidder j, the welfare is the utility of bidding
strategy U (x,p), and for seller i, the welfare is the gain that
bidder j has offered Q(x,p). We define A(X') as the sellers’
total welfare and B(X) as the bidders’ total welfare:

AX)+BX) =) > Q,p)+ Y > Ulxp)

r€X peP reX peP (8)
=>_ > Vi),
zeX peP
_ 2eex2per"(®@P) _ R(zp) _
where ZTEX ZpE'P V(1'7p) _'Zmex Epe‘P p(z,p) = P(z,p)
v, the social welfare is the ratio between system throughput
and power consumption. ]

3) Formulation of WDP: We formulate the WDP as a mixed
0-1 integer non-linear programming with the social welfare
maximization and QoS requirement satisfaction.

R(zx,
Hxl'%ax 7= ng,zi’ ©)
st. Cl:z;s=40,1}, p(4,i,p) >0, VSCZ, VjeJ,

C2: Zp(]asvp) g Pjymar; V_] S \.77

1€
C3: > mis<1LViel,

JjET
C4: Y r(j,i,p) > Rimin, Vi €T,

JjeET
C5: Y mjg<1,VjeJ.

SCT

(10)

III. ITERATIVE ASCENDING PRICE AUCTION ALGORITHM
FOR ENERGY EFFICIENT RESOURCE ALLOCATION

In this section, we propose an iterative algorithm for solving
the problem in section II-D3. We first exploit the non-linear
fractional WDP for converting the objective function into an
equivalent subtractive one [14], upon which we successfully
transform it into a convex combinatorial optimization problem.

A. Problem Transformation

Without loss of generality, we define the optimal maximum
energy efficiency parameter as v*, and F as the set of feasible
solutions of WDP problem in section II-D3:

. _ R(z",p") R(z,p)

= max .
P(z*,p*)  (ap)eF P(z,p)

(1)

*

Theorem 2: v* is achieved if and only if

max R(z, p) — v"P(z,p)

(z.p) (12)
where {z,p} is any feasible solution of problem (9) to satisfy
the constraints in (10).

Proof: The proof of Theorem 2 is presented in [14]. W

B. Iterative ascending price auction algorithm for Energy
Efficiency Maximization

In this section, we propose an iterative ascending price
auction algorithm (IAPA algorithm) for solving the trans-
formed convex combinatorial problem in (12). Based on the
famous Dinkelbach method [14], we introduce one double
loop mechanism. The outer loop is mainly dealing with the
optimal v, and the inner loop is the main iterative reverse
combinatorial auction game. The SDN controller will take
charge of the whole algorithm, both the outer loop and inner
loop. Firstly, within the outer loop, SDN controller will control
the energy efficiency parameter y by changing the maximum
iteration number K,,,, and convergence tolerance ¢, the
detailed is summarized in Algorithm 1. Secondly, within the
inner loop, SDN controller will act as the resource broker



Algorithm 1 Outer Loop for EE parameter v*

Initialize the maximization number of iterations K., the
maximum tolerance ¢, maximum energy efficiency param-
eter v = 0, iteration index k£ = 0 and BEGIN Outer loop:
repeat

Solve the inner loop problem for a given  and obtain

resource allocation policies (x/,p’)

if R(2',p") —yP(z',p’) < e then

Convergence=true

else
Convergence/:i:alse
Set v = ﬁgi,:g/; and k =k +1
end if
until Convergence=true or k = K4,

to control the whole reverse combinatorial auction game by
determining an optimal allocation scheme which leads to a
social optimality. In addition, the SDN controller will also
calculate the payments and payoffs for bidders. The detailed
is summarized in Algorithm 2.

As shown in Algorithm 1, in each outer loop iteration,
we solve the following optimization problem for a given
parameter ~y:

max Z(I,p) = R(I,p) - ’YP(Izp)a
(z.p) (13)
s.t. C'1, C2,C3,C4,C5.

While the introduced inner loop iterative reverse combina-
torial auction game is one kind of combinatorial optimization
problem with given -y, which is hard to be solved within poly-
nomial time [10]. We propose an IAPA algorithm according
to [15], which is proved to solve the reverse combinatorial
auction game efficiently. In Algorithm 2, we introduce a
strategy-proof price updating mechanism, where the price is
updated by a greedy mode, and once the bidder submits a bid
for items or bundle, the corresponding price named hammer
price is fixed, otherwise the price is increased. This TAPA
algorithm is also demonstrated to guarantee both individual
rationality and incentive compatibility (truthfulness) in II-C.

SDN controller controls the whole reverse combinatorial
auction by changing the price updating mechanism, we define
Q as the updating mechanism:
miniGI Ri,min

Qeq= ) (14)

maXjey Pj,maz
where we can see, when the iteration ¢ changes, R; i, and
Pj max Will accordingly increase and decrease. The price g;
changes in a non-monotonous way, which can also express
the properties (non-linearity and anonymity) defined in section
II-C4.

C. Strategy-proof

As the general definition, strategy-proof means reporting the
true demand in each iteration auction is the best response for

Algorithm 2 Inner Loop auction for RA (z*,p*)

Input Outer Loop given ~, Initialize BS total power as-
signment P; = 0 and BS total throughput R; = 0, iteration
index t =0, J, Z, QoS vector Pj mar and R; min
SDN controller Sets initial auction price ¢ and update
mechanism Q according to (14)
while Z! = 0 do
Bidding Strategy Generation
for all j =1...J do
for all : =1...1 d02Ri DN
Calculate p;; = (‘;%
end for
Sort pj; and Pj qq < max (pj;)
while P; < P; 1,4, do
bj; = R; —q X pj;
if bji > 0 then
Bidding Set S; < ¢ and Bidding price B; < bj;
Py = Pj + pji
end if
end while
Submit Bidding Strategy {S;, B;} for every j € J
end for
SDN controller determines winner
for alli =1...1 do
Sort b;; with descending mechanism, and find index j’
with max(b;;)
if bj/i > (RZ — 'ij/i) then
Tjrg = 1, z* + Zjri, p* Pj’is P]/ = PJ/ + Dy
1= I—.’L‘*, Pj’,maac = Pj’,maw_pj’i» R; = R;+Rz
end if
end for
Set t=t+1, and Update Q
end while

according to (2)

jil

every bidder. We demonstrate the proposed IAPA algorithm
ensuring the proposed bidding strategy in each iteration is the
best response of every bidder j.

Theorem 3: The iterative ascending price resource allocation
algorithm within inner loop is strategy-proof.

Proof: We consider two cases for bidding, where the
strategy (S,B) of bidder j has true valuation V (j,S,p).
1) During the beginning round, the utility for bidder j is
V(4,S8,p) —q > 0, if j quit this round and wait for another
chance, it will lose the bundle which can maximize its final
valuation; 2) During the following round, as the price ¢
increases, the utility for bidder j will be V (5,S,p) — ¢ < 0,
if j bids and finally wins this bundle S, it will obviously get
a negative surplus for the final energy efficiency valuation.

From the above analysis, we can conclude that the optimal
bidding strategy for bidder j is to bid with its true valuation,
otherwise, it will impair its own revenue and finally reduce
the system energy efficiency, i.e., the proposed algorithm is
strategy-proof. [ ]
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Fig. 1. Convergence speed of inner loop with different UE density and outer
loop EE parameter vy setting, for Pj maqe = 46dBm (V5 € J)

D. Complexity

Traditional WDP in fact is NP-hard problem [10], especially
with the non-convex objective and mixed integer decision
variable. We demonstrate that the proposed iterative ascending
price auction algorithm reduce the complexity of computa-
tional space significantly.

To obtain an optimal solution, an exhaustive search (4, S, p)
is needed with complexity of O(J x 2/*1) for the original
problem (9). While in the proposed IAPA algorithm, the
computing space during every iteration for submitting biding
strategy is O(J(I%+21)), where I? is the complexity of SDN
controller executed bubble sorting algorithm. For deciding the
round winner, the computing sorting mechanism’s complexity
is O(I(J? + J)). If the total number of inner loop is ¢, and
outer loop maximization iteration is K4, the computing
space of the proposed algorithm is:

O((tK pmae) J(I% + 21)) + O((tK oz ) I(J? + J))

= O((thax)IJ(I +J+3)) <0O(J x 2]4,_1)’ (15)

where we can conclude that the IAPA algorithm can reduce
the complexity significantly compared to the original one (9).

IV. PERFORMANCE EVALUATION

In this section, we provide the simulation results to illustrate
the performances of the proposed reverse IAPA algorithm.
The considered SDN heterogeneous cellular network operates
within one dense geographical area with radius of 0.5km
with 3 NSPs. SDN controller will take charge of the whole
radio resource management algorithms as well as signalling
process. The UEs are randomly distributed within this area
with mimimum data rate requirement (R ,,,;,=10bit/s/Hz). We
vary the UE density in the simulation from 5/BS to 50/BS. The
considered path loss factor is a=4, AWGN is Ny =-131dBm
and hj; obeys CN(0,1).

In Fig. 1, the convergence speed of the proposed TAPA
algorithm with different UE density and different outer loop
EE parameter v setting is illustrated. Generally speaking, the
proposed TAPA algorithm in inner loop converges fast, even
for high UE density (50/BS) and high EE objective (y=130)

Energy Efficiency (bit/Joule)

20 25 30 35 40 45 50
UE Density (Number/BS)

Fig. 2. Comparison of Energy efficiency between proposed IAPA algorithm
and PA, for UE density=50/BS, P; mas = 46dBm (Vj € J)
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Energy Efficiency (bit/Joule)

T T T T T T T T T T
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Fig. 3. Energy Efficiency versus maximum transmit power P maz (Vj € J)
and different R; ymin setting (Vi € Z), for UE density = 5/BS

scenarios. Within the zooming-in figure in the upper-right-
corner in Fig. 1, we can see that, the calculated EE objective
v*=148 in the inner loop is better than the objective setting
~v=130 of the outer loop. Besides, we can also conclude that,
for certain y, when UE density increases, the convergence
speed is impaired a little bit, but the performance of EE
will be improved. While for certain UE density, when EE
objective setting ~ increases, the performance will be heighten
obviously.

In Fig. 2, we show the system energy efficiency performance
of our proposed IAPA algorithm. For comparison purpose, the
pure allocation (PA) is also simulated as the benchmark, which
iteratively selects the unallocated UE with minimum data rate
demand and assign it to NSPs regardless of bidding price.
From which, we can figure out that EE performance is strictly
higher than PA scheme, it is because in our algorithm, bidders
with higher valuation and bidding price would receive more
attention from SDN controller according to (4).

Fig. 3 illustrates the EE performance versus heterogeneous
QoS requirement. It can be observed that when the maximum
transmit power is large enough, e.g., Pjmaz > 40dBm, the
energy efficiency approaches to a constant value, since the
SDN controller is not willing to consume more power for
serving the R; min QoS requirement. Besides, the speed for
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approaching stable EE is faster when R; i is smaller (case
of R;,min = Obit/s/Hz), but the energy efficiency performance
is strictly higher when data rate requirement is higher (case
of R; min = 15bit/s/Hz). This is due to the fact that in the
proposed algorithm, SDN controller tends to use the mini-
mum power for satisfying minimum data rate requirement, so
when R; i increases, the power allocated will be increased
accordingly even though there is still retained power left.

In Fig. 4, we illustrate the fairness among different NSPs
with a commonly used metric Jain fair index [10]. It shows
that, the fairness is not only depends on the relative distance
d;;, but also the power assigned by bidder j. For a certain
power, expansion of distance leads to the decrement of fair-
ness. While for certain distance d;;, when power assigned is
lower than O dBm, the fairness will be increased with power,
but when power assigned is higher than 0 dBm, the through-
put is increased not much with power, it is because when
throughput improves obviously (2), the EE (3) is increased
accordingly, which leads to higher energy efficiency and so
the higher fairness.

Fig. 5 illustrates the utility among different NSPs versus
different UE density. Together with the observation in Fig. 4,
we can conclude that, higher maximum power constraint leads
to higher utility, which in return proves the higher fairness
controlled by SDN controller.

V. CONCLUSIONS

In this paper, we introduce one architecture with SDN con-
troller for energy efficient resource allocation among different
NSPs by considering heterogeneous QoS requirements. In
order to take the competitive and fairness into account, the
heterogeneous EE-RA problem is formulated as a reverse com-
binatorial auction game. Since the fractional WDP is NP hard,
we propose an IAPA algorithm with transforming fractional
objective into subtractive form, which is also demonstrated
to be strategy-proof and with low computing complexity.
Simulation results illustrate that, with SDN controller, the
proposed algorithm convergences fast and can offer high
fairness allocation among NSPs. Moreover, it is also proved
to be robust with QoS requirement changing. We are going
to improve these results by implementing primal-dual auction
algorithm, simulating it more realistically with software, e.g.,
NS-3, and further applying it with real SDN controller.
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