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Abstract—By employing the lens antenna array, beamspace occupying only a small nhumber of beams. As a result, the
M|MQ can Utl|l;e _beam selection t_O reduce the numb_er of mmWave beamspace channel is Spe [3]' and we can select
required RF chains in mmWave massive MIMO systems without 5 gma| number of dominant beams to significantly reduce the

obvious performance loss. However, to achieve the capacity . . .
approaching performance, beam selection requires the accate dimension of MIMO system and the number of required RF

information of beamspace channel of large size, which is cha Chains without obvious performance lo5s [4].

lenging, especially when the number of RF chains is limitedTo Nevertheless, beam selection requires the base statign (BS
solve this problem, in this paper we propose a reliable suppd to acquire the information of beamspace channel of large
detection (SD)-based channel estimation scheme. Specifigawe size, which is challenging, especially when the number of

propose to decompose the total beamspace channel estimatio L .
problem into a series of sub-problems, each of which only RF chains is limited. To solve this problem, some advanced

considers one sparse channel component. For each channeSchemes based on compressive sensing (CS) have been pro-
component, we first reliably detect its support by utilizingthe posed very recenthy [5]5[7]. The key idea of these schemes
structural characteristics of mmWave beamspace channel.fen, s to utilize the sparsity of mmWave channels in the angle
the influence of this channel component is removed from the tal domain to efficiently estimate the mmWave massive MIMO

beamspace channel estimation problem. After the supportsfall h lof | . H th h desi df
channel components have been detected, the nonzero elengeaf channel o large size. However, (nese schemes are designe

the sparse beamspace channel can be estimated with low pilothybrid precoding systemsl[8], where the phase shifter nétwo
overhead. Simulation results show that the proposed SD-bed can generate beams with sufficiently high angle resolution
channel estimation outperforms conventional schemes and\@ys  to improve the channel estimation accuracy. By contrast, in
safisfying accuracy, even in the low SNR region. beamspace MIMO systems, although the phase shifter network
can be replaced by lens antenna array to further reduce the
hardware cost and energy consumption, the generated beams

The integration of millimeter-wave (mmWave) and massivare predefined with a fixed yet limited angle resolution. If
multiple-input multiple-output (MIMO) has been considérewe directly apply the existing channel estimation schemes
as a key technique for future 5G wireless communicatiohs [1p beamspace MIMO systems with lens antenna array, the
since it can achieve significant increase in data rates diis toperformance will be not very satisfying[3]. To the best of
wider bandwidth and higher spectral efficiency. our knowledge, the channel estimation problem for beanespac

However, realizing mmWave massive MIMO in practice isMIMO systems has not been well addressed in the literature.
not a trivial task. One key challenging problem is that eath a In this paper, by fully utilizing the structural characstits
tenna in MIMO systems usually requires one dedicated radim-mmWave beamspace channel, we propose a reliable support
frequency (RF) chain (including digital-to-analog corteer detection (SD)-based channel estimation scheme. The basic
up converter, etc.). This results in unaffordable hardwaigea is to decompose the total beamspace channel estimation
complexity and energy consumption in mmWave massiygoblem into a series of sub-problems, each of which only
MIMO systems, as the number of antennas becomes hiligedapsiders one sparse channel component (a vector comainin
and the energy consumption of RF chain is high at mmWatlee information of a specific propagation direction). Foctea
frequencies[[2]. To reduce the number of required RF chairthiannel component, we first detect its support (i.e., thexnd
the concept of beamspace MIMO has been recently proposed of nonzero elements in a sparse vector) according to
in the pioneering work[]3]. By employing the lens antennthe estimated position of the strongest element. Then, the
array instead of the conventional electromagnetic antemna influence of this channel component is removed from the total
ray, beamspace MIMO can transform the conventional spati@amspace channel estimation problem, and the suppom of th
channel into beamspace channel by concentrating the sigmadxt channel component is detected in a similar methodrAfte
from different directions (beams) on different antenrias [3he supports of all channel components have been detected,
Since the scattering in mmWave communications is not ricthe nonzero elements of the sparse beamspace channel can
the number of effective prorogation paths is quite limit@fl [ be estimated with low pilot overhead. Simulation resultsvsh
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that the proposed SD-based channel estimation outperforms
conventional schemes, especially in the low signal-te&oi
ratio (SNR) region, which is more attractive for mmWave
massive MIMO systems where low SNR is the typical case
before beamformingd[5].

Notation Lower-case and upper-case boldface letters denote
vectors and matrices, respectively)”, (-)~!, andtr(-) de-
note the conjugate transpose, inversion, and trace of axatr
respectively;||-||  denotes the Frobenius norm of a matrix;
|| denotes the amplitude of a scaldfard () denotes the ()
cardinality of a set; Finallylx is the K x K identity matrix.
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Il. SYSTEM MODEL

In this paper, we consider a typical mmWave massiy Dimension- i
MIMO system working in time division duplexing (TDD) | bigii
model, where the BS employ$ antennas and/grr RF chains | p
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to simultaneously servé single-antenna user5s][3],1[4]. As E
shown in Fig. 1 (a), for conventional MIMO systems in the H sk
spatial domain, theé< x 1 received signal vectoy®- for all
K users in the downlink can be presented by (b)
yDL =H"YPs +n, (1) Fig. 1. System architectures: (a) conventional MIMO; (Bspace MIMO.

where H” ¢ CX*N is the downlink channel matrix, B. Beamspace MIMO

H = [hy, hy, -+, hg] is the uplink channel matrix according  The conventional channe[l(2) in the spatial domain can
to the channel I’eCIprOCItﬂ7hk of sizeN x 1is the channel be transformed to the beamspace channel by emp'oying a
vector between the BS and thgh user,s of size K x 1 carefully designed lens antenna array [3] as shown in Fig.
is theleS|gnaI vector for alls” users with normalized power 1 (b). Specifically, such lens antenna array plays the role of
E (ss") =1Ix, P of size N x K is the precoding matrix sat- 5 spatial discrete fourier transform (DFT) matfix, which
isfying the total transmit power constrajnas tr (PP™) < p.  contains the array steering vectors/sforthogonal directions
F|na|.|y, n ~ CN (0, UDL:[_K) IS theK x 1 noise VeCtOI’, Where (beams) Covering the entire angle Spacd]is [3]
o3 is the downlink noise power. _ _ g
U:[3(7/11)73(1/)2)7"',3(1/)N)} ; (4)
A. MmWave channel model here L N1y Lo N Th b
. . ) where ¢, = & (n— &) for n=1,2,---,N. Then, by
In this paper, we adopt the widely used Sale_h Valenzu.ea{’%‘sumingNRF = K without loss of generality, the system
channel model to embody the low rank and spatial correlatl%b

characteristics of mmWave communications(ds [3]-[7] del of beamspace MIMO can be~represented >
y°L = HYU"BP,s + n = H’BP,s +n, )

L L
N () () N
=1/ =4/ — ; SDL ; ; ; .
hy, =4/ 11 ;:0 By, a( k ) \/ 11 ;:0 ¢, (2) where y°- is the received downlink signal vector in the

beamspacdl” = HZ U = (UH)" is defined as the down-
link beamspace channel matrix whadecolumns correspond
N0 _ _ 5 [ON orthogonal beamsB of size N x K is the selecting

of the kth user with3, ™ presenting the complex gain and”’  matrix whose entries belong @, 1}. For example, if thexth
denoting the spatial direction; = ﬁ,(j)a w,(j) for1 <i <L beam is selected by theh user, the element d8 at thenth

is theith non-line-of-sight (NLoS) component of tigh user, row and thekth column is 1. Finally,P, of size K x K is
and L is the total number of NLoS components which cafhe dimension-reduced digital precoding matrix. It is ort
be usually obtained by channel measuremient49})) is the pointing out that the beamspace chanHel (or equivalently

N x 1 array steering vector. For the typical uniform lineaH) has a sparse structure [3]] [4] due to the limited number

wherecy = B,(Co)a (w,io)) is the line-of-sight (LoS) component

array (ULA) with N antennas, we have of dominant scatters in the mmWave prorogation environ-
1 _ ments [1]. Therefore, we can select only a small number of
a(y)=—= [e*ﬂwm]mez(m, (3) appropriate beams according to the sparse beamspace thanne
VN to significantly reduce the effective channel dimensiorhauitt
where Z(N) ={l— (N —1)/2,1=0,1,---,N—1} is a obvious performance loss. Consequently, only a small-size

symmetric set of indices centered around zero. The spaigdital precoderP, is required, leading to a small number of
direction is defined ag £ %sin@ [3], whered is the physical required RF chains. Unfortunately, acquiring the beamspac
direction,\ is the signal wavelength, anrtis the antenna spac-channel of large size in practice is challenging, espsaciall
ing which usually satisfied = \/2 at mmWave frequencies. when the number of RF chains is limited.
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IIl. BEAMSPACE CHANNEL ESTIMATION

In this section, based on the beamspace MIMO architecture,
we first introduce a pilot transmission strategy. After theat
adaptive selecting network is designed to obtain the measu Pﬁe duc;;"
ments of the beamspace channel. Finally, a SD-based charj  Digital
estimation is proposed to estimate the beamspace charthel | p

limited number of RF chains and low pilot overhead. ;

A. Pilot transmission

To estimate the beamspace channel, in the uplink of TDD
systems, all users need to transmit the known pilot seq@eneig. 2. Proposed adaptive selecting network in beamspadéviystems.
to the BS over@ instants (each user transmits one pilot -
symbol in each instant) for channel estimation, and we actorz; for h; as

sume that the beamspace channel remains unchanged within off
. N ) Wi ny
such channel coherence time (i.€), instants) [[10]. In this ” W neft
paper, we consider the pilot transmission strategy, wiigrez, — | " | = o e | P | A Wiy 40y,
instants are divided intd/ blocks and each block consists : : :
of K instants, i.e.()Q = M K. For themth block, we define ZM K Wy nSt

v, of size K x K as the pilot matrix, which contain& _ . <
mutually orthogonal pilot sequences transmitted yusers Where z,, ., hy, andnf, are thekth column of Z,,, H,
over K instants [[1D]. Obviously, we hav®,, ¥/ =T, and and N¢f in (@), respectivelyz,, W, and i, are of size
WY, =T, Qx1, @x N, and Q x 1, respectively. Our target is to
Then, according to Fig. 1 (b) and the channel reciproCity [Tgliably reconstruch, based orz, with the pilot overhead
in TDD systems, the received uplink signal maﬂ?ﬁ%L ofsize @ as low as possible. However, if we directly utilize the
N x K at the BS in thenth block can be presented as traditional selecting network in beamspace MIMO systems as
shown in Fig. 1 (b) to desigiW (or equivalentlyW,, for
YV —=UHV®,,+N,,=HY,,+N,,, m=1,2,--- , M, (6) m=1,2,---, M), each row of W will have one and only
one nonzero elemerit[11]. Consequently, to guaranteettbat t
whereN,, is the N x K noise matrix in thenth block, whose measurement vecta#, contains the complete information of
entries are independent and identically distributedi().icom- the beamspace chanrigl, the pilot overhead) should be at
plex Gaussian random variables with mean zero and varianeast larger thanV, which is unaffordable since the number

o3y (the uplink noise power). of antennasV is usually huge in mmWave massive MIMO
systems as mentioned above.
B. Measurements of the beamspace channel To this end, we propose an adaptive selecting network for

) ] ) mmWave massive MIMO systems with lens antenna array as
We consider thenth block without loss of generality. Dur- shown in Fig. 2, where the selecting network in Fig. 1 (b) is

ing the pilot transmission, the BS should employ a combingtyaced by a phase shifter network. During the data trans-
Wm_OfﬁU'fe K x N to combine the received uplink signalyission, the proposed adaptive selecting network can be con
matrix Y., @). Then, we can obtai,,, of size K' x K in  {igred to realize the traditional function of beam selefio

the baseband sampled Bjkr = K RF chains as Furthermore, during the beamspace channel estimatios, thi
adaptive selecting network can be also adaptively used as an
analog combineMW,, [8] to combine the uplink signals. With

the help of the proposed adaptive selecting network, we can
guarantee that, (@) has the complete information hf,, even

if @ < N. Moreover, due to the limited number of dominant
scatters in the mmWave prorogation environments J4],is

R, =W, Y% —w,HY¥,, + W,,N,,. 7)

After that, by multiplying the known pilot matrix¢ 2l on the
right side of (), theK x K measurement matrig,, of the
beamspace channkEl can be obtained by

Z, = R, WH — W, I+ Neff ®) a sparse vector. Thereforg] (9) can be formulated as a typica
sparse signal recovery problem[12].
whereNe = W,,N,, &/ is the effective noise matrix. Our next target is to design the analog combinaf.

aldgder the framework of CS, to achieve the satisfying recpver

Note that here we focus on estimating the beams = .
- péalccuracyw should be designed to make the mutual coherence

channelh;, of the kth user without loss of generality, and th
similar method can be directly applied to other users toinbta __ _ _ .,

h lete beamspace chanﬁelThen afterM blocks for Specifically, we can turn off some phase shifters to realizesélect” and
the cqmp ete o p =D set some phase shifters to shift the phase 0 degree to résdieet” for beam
the pilot transmission, we can obtain ghx 1 measurement selection.



Vil e Best case

A — H = ; . :
= I?%X‘Wi Ww;| as small as possible, where; is the ith . Worst case

column of W. There are already some matrices that have beenN“ (L
proved to enjoy small, such as the i.i.d. Gaussian random 2
matrix and Bernoulli random matrix_[12]. In our paper, we

~— |

I

|
select the Bernoulli random matrix as the combiVe, i.e., “ (31) o :
each element oW is randomly selected fromL {—1,+1} 2w oA
with equal probability. This is due to the facts that: i) all AVAVAVAIL IE FEEE IR
elements ofW share the same normalized amplitude, which VN LN 12N

can be realized by phase shifters; ii) the resolution of phas Fig. 3. The normalized amplitude distribution of the eleisen ¢;.
shifter can be only 1 bit, since we only need to shift the phas
0 degree andr degree. This means that the cost and energﬁ?sed onl{I2), we can conclude that

consumption of the phase shifter network can be signifigantl 1 (i) g(d)
reduced[[18]. 0< lim lefe;|< lim — k Tk =0, (13)
—00 N—oo N sin (djl(;) _ wl(cj))
C. SD-based channel estimation
After W has been designed by the proposed adaptive d4lich verifies the conclusioi_(10). u

lecting network,[[B) can be solved by classical CS algorthm Lemma 1 implies that we can decompose the total

such as orthogonal matching pursuit (OMP) and compress amspace channel estimation problem into a series of in-

sampling matching pursuit (CoSaMR) [14]. However, whe epeln.dent sub-problems, each of \{vhich only considers one
the uplink SNR is low, which is the typical case in mmWavépeC'f'C channel component approximately orthogonal to the

massive MIMO systems due to the lack of beamformin@thers' Specifically, we can first estimate the strongesiroéla

gain and the low transmit power of usefs [3]; will be omponent. After that, we can remove the influence of this
overwhelmed by noise. As a result, the supporﬁ@fdetected component from the tptal estimation problem, and then the
by classical CS algorithms is usually inaccurate, leadimg ?ha_nnel component with the §econd strongest power can be
the deteriorated performance. In this paper, by utilizihg testlmated. Such procedure will be repeated unul(ﬁl& 1)
structural characteristics of mmWave beamspace chanmael,?’/!?a_rmeI components ha_Lve been estimated. N_ext, in the fol-
propose a SD-based channel estimation, which can detect f{¥nd Lemma 2, we will prove another special structural
support more accurately and achieve better performane tifgaracteristic of mmWave beamspace channel to show how to
classical CS algorithms, especially in the low SNR region. estimate each channel component in the beamspace.

In the following Lemma 1, we will first prove a special Lemma 2. Consider theith channel componeng; in the
property of mmWave beamspace channel, which is one of theamspace, and assuni€ is an even integer without loss
two bases of the proposed SD-based channel estimation. of generality. The ratio between the pow@y of V' strongest

Lemma 1 Represent the beamspace chanrie, as elements of; and the total powerPr of ¢; can be lower-
by = /N/ (L + 1) Y1, &, whereg, — U, is theith chan- Pounded by

nel component df; in the beamspace. Then, any two channel V/2
- ~ : Py 2 1
component§; andc; are asymptotically orthogonal when the B > N2 E YT (14)
. . . 11— s
number of antennagv in mmWave massive MIMO systems T i=1 Sl (—2N )

with lens antenna array tends to infinity, i.e., . .
Moreover, once the positiom of the strongest element &f is

lim [&¢;|=0, Vi,j=0,1,---,L, i#j (10) determined, the othel" — 1 strongest elements will uniformly
N locate around it with the interval /N.
Proof: Based on[(R)E}4), we have Proof: Based on[{R)E4), theéth channel componerd; in
. . . , the beamspace can be presented as
ele; = a0 e (v ) Ut va (vf) D) P P

= B80T (v — ), el R (R S INER o (Y ,?’)}H. (15)

A s N @ W) Fig. 3 shows the normalized amplitude distribution of the
where T (z) = {777 Note thaty,” and ¥, belong to elements irE;, where the set of red dash lines (or blue dot dash
[—0.5, 05] accordlng to the definitions IrD(3) Therefore, aﬁnes) presents the set of 5patia| directigns= % (TL — %)

long as(uj,(f) — w,(cj)) # 0 or 1, which can be guaranteed byfor n =1,2,--- , N in (@) pre-defined by lens antenna array.

i # j, we have From Fig. 3, we can observe that when the practical spatial
directionuj,(j) exactly equals one pre-defined spatial direction,

‘T ( () w(j))‘ 1 1 (12) there is only one strongest element containing all the power

k k of ¢;, which is the best case. In contrast, the worst case will

<
— N | (i) _ () .
ST (% Vi ) happen when the distance betwe;efi) and one pre-defined



Algorithm 1
gortim Input:

 U— — - — Classical CS algorithms Measurement vectog;, in @);

Combining matrix:-W in ();

Total number of channel componenfs:+ 1;

~— Retained number of elements for each compongnt:

Initialization : ¢¢ = Oy for 0 <i < L, cho) = Zg.

- for 0 <i< L

- ) 1. Detect the position _of the strongest elemené_iiras
Elements of h, ! p; = arg max ‘v‘vnil(j)‘, w,, IS thenth row of W;

(sorted in descending order of amplitude) 1<n<N

Fig. 4. An illustration of the probability comparison. - Detectsupp (CZ) according tO[(II7)'
. LS estimation of the nonzero elementscofas

spatial direction is equal tb/2N. In this case, the poweP;- £, = (W,WH)"~ "W, zEj’, Wi = W) cqupp();

Probability
/

w N

of V strongest elements @ is 4. Form the estimated; ascf (supp (¢;)) = fi;
\? 5. Remove the influence & as‘(”l) = Z,(j) - WihHge
2(5,;) vz 1 6.1 =1+ 1;
Py =—— — (16) | end for
N — sin? (M) _
=1 2N 7.8r= |J supp(c);
. . B 0<i<L
Besides, according EEILS), thg)toQtal powgr of & can | g fr = (V_VTV_VT)_IV_VTZk- Wi =W(,)es,s
be calculated asPr = &g, = (3, ) - Therefore, we can | 9 h¢ = 0y, h¢ (St) = fr;

conclude thatPy / Pr is lower-bounded by (14). Moreover, as Output: Estimated beamspace channel for u:’s:ehe
shown in Fig. 3, once the positiot} of the strongest element —Algorithm 1. Proposed SD-based channel estimation.
of ¢; is determined, the othér — 1 strongest elements will
uniformly locate around it with the interval/N. B the nonzero elements af; are estimated by LS algorithm
FromLemma 2, we can derive two important conclusionsin step 3, and the influence of this channel component is
The first one is that; can be considered as a sparse vectqemoved in steps 4 and 5. Such procedure will be repeated
since the most power df; is focused on a small number of(; = ; + 1 in step 6) until the last channel component is
dominant elements. For example, whh= 256 andV =8, considered. Note that for the proposed SD-based chaniel est
the lower-bound oy, / Pr is about 95%. This means that wemation, we do not directly estimate the beamspace channel as
can retain only a small number (e.§.,= 8) of elements of; B
with strong power and regard other elements as zero with&ldt - L+1
obvious performance loss. The second one is that the suppwith small power are regarded as zero, which will lead to
of sparse vecto€; can be uniquely determined by’ aé error propagation in the influence removal, especially when
v V9 is large. As a resultzk will be more and more inaccurate
supp (&;) = mod y {n;ﬂ - i+ T}’ (17) to estimate the nonzero elements in step 3. To this end, we
only utilize 2,(;) to estimate the positiop; in step 1, which
where Cardsupp(¢;)) =V, and mody () is the modulo can still guarantee a high recovery probability everz,(jf is
operation with respect t&/, which guarantees that all indicesinaccurate [[14]. Then, after the iterative procedure, we ca
in supp (&;) belong to{1,2,--- , N}. After the support of; obtain the total suppo+ of hy, in step 7. UsingSt andzy,
has been detected, we can extr&ctcolumns fromW (@) we can alleviate the impact of error propagation and eséimat
according tosupp (¢;), and use the classical LS algorithm tche beamspace channel more accurately in steps 8 and 9.
estimate the nonzero elementscf The key difference betweellgorithm 1 and classical CS
Based on the discussion so far, the pseudo-code of #dgorithms[14] is the step of support detection. In clessES
proposed SD-based channel estimation can be summarizedlgorithms, all the positions of nonzero elements are edéch
Algorithm 1B, which can be explained as follows. During thén an iterative procedure, which may be inaccurate, esfhecia
ith iteration, we first detect the positign of the strongest for the element whose power is not strong enough. By contrast
element ofc; in step 1. Then in step 2, utilizing the structurain our algorithm, we only estimate the position of the stresig
characteristics of beamspace channel as analyzed above elgenent. Then, by utilizing the structural charactersstaf
can directly obtainsupp (¢;) according to [(1I7). After that, mmWave beamspace channel, we can directly obtain the
accurate support with higher probability as illustrated-ig.
2Correspondingly, whenV is odd, the support ofé; should be 4. Moreover, we can also observe that the most compli-
supp (&) = mod y (nf — Y5, nf + Y5t cated part of the proposed SD-based channel estimation is
3Note that the proposed SD-based channel_estimation cars_tbge@etended the LS algorithm, ie., step 3 and step 8. Therefore, the
to the scenarios where users employ multiple antennas. isnctise, the . . . . .
computational complexity of SD-based channel estimatson i

beamspace channel is a block sparse matrix instead of aespector [3], ‘
and we can usdélgorithm 1 for every column of this 2D sparse matrix. ~ O (LVQM) +0 (Card2 (Sr) ]Vf) (Card(St) < VL), which

Z ¢;. This is because that most of the elements
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Fig. 5. NMSE performance comparison.

Fig. 6. Sum-rate performance comparison.

is comparable with that of LS algorithm, sindeand V'

, ar€  away from the fully digital ZF precoder with 256 RF chains
usually small as discussed above.

and perfect channel state information (CSlI).
V. CONCLUSIONS

This paper investigates the beamspace channel estimation

In this section, we consider a typical mmWave massiysroblem for mmWave massive MIMO systems with lens an-
MIMO system, where the BS equips a lens antenna arr@ghna array. Specifically, we first propose an adaptive setec
with N = 256 antennas andVrr= 16 RF chains to simul- network with low cost to obtain the efficient measurements of
taneously servel = 16 users. For theith user, the spatial beamspace channel. Then, we propose a SD-based channel
channel is generated as follows [3]] [4%: 1) one LoS compestimation, where the key idea is to utilize the structural
nent andZ = 2 NLoS components; 293,&0 ~CN (0,1), and characteristics of mmWave beamspace channel to reliably

)~ eN(0,1072) for i = 1,2; 3) »” andy.” follow the ~detect the channel support. Analysis shows that the compu-
i.i.d. uniform distribution within[—0.5,0.5]. tational complexity of the proposed scheme is comparable

Fig. 5 shows the normalized mean square error (NMSH)jth the classical LS algorithm. Simulation results verfyat
performance comparison between the proposed SD-ba#e@ proposed SD-based channel estimation can achieve much
channel estimation and the conventional OMP-based chanBefter NMSE performance than the conventional OMP-based
estimation (i.e., using OMP to solv€](9)), where the totghannel estimation, especially in the low SNR region.
number of instantg) for pilot transmission i) = 96 (i.e.,
M = 6 blocks). For SD-based channel estimation, we retain )
V = 8 strongest elements as analyzed above for each chantil Sy, CiL. | 2 X and €. Rewel, ‘Large-scale anarmystems
component, while for OMP, we assume that the sparsity level wave 5G,"IEEE Commun. Magvol. 53, no. 1, pp. 186-194, Jan. 2015.
ofthe beamspace channel s equaltoL+1) — 24 From Fig, 2 & Aassen. . o, I Some e, e . e
5, we can observe that SD-based channel estimation enjoys gommung_ Mag.vol. 52, go_ 12, pp. 122-131, 2014, yes,
much better NMSE performance than OMP-based channg J. Brady, N. Behdad, and A. Sayeed, “Beamspace MIMO fdlime-
estimation, especially when the uplink SNR is low (e.g., terwave communications: System architecture, modelinglyais, and

. . . - measurementsfEEE Trans. Ant. and Propagvol. 61, no. 7, pp. 3814-
less than 15 dB). Since low SNR is the typical case in 3827, Jul. 2013.

mmWave communications before beamforming [5], we camu] A. Sayeed and J. Brady, “Beamspace MIMO for high-dimenal
conclude that the proposed SD-based channel estimation is multiuser communication at millimeter-wave frequencies Proc. IEEE

. : GLOBECOM Dec. 2013, pp. 3679-3684.

more attractive for mngve masswt_a MIMO systems. 5] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Chainn
Next, we evaluate the impact of different beamspace chan- estimation and hybrid precoding for millimeter wave callubystems,”

nel estimation schemes on beam selection. We adopt the 'EEE J. Sel. Top. Signal Processol. 8, no. 5, pp. 831-846, Oct. 2014.

. . 6? A. Alkhateeb, G. Leus, and R. W. Heath, “Compressed senbiased
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