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Abstract—This paper considers the waveform design
for dual-functional multi-input-multi-output (MIMO) radar-
communication systems. Two optimization-based novel waveform
designs are proposed. The aim of the first waveform design is to
minimize the downlink multi-user interference (MUI) energy by
exploiting the remaining degrees of freedom (DoFs) while always
guaranteeing the radar performance to be optimal. The second
waveform design is a trade-off optimization between radar and
communication performances by allowing a tolerable mismatch
between the designed and the desired radar beampatterns.
Albeit non-convexity of both problems, efficient algorithms are
devised to obtain globally optimal solutions, which can be used
for simultaneous target detection and downlink communications.
Numerical results show that the communication performance
could be significantly improved by tolerating a slight radar
performance loss and therefore a favorable balance between
communication and radar performances is achievable.

I. INTRODUCTION

Frequency spectrum is one of the most valuable resources

for wireless communication. Realizing the scarcity of the spec-

trum, network providers and policy regulators are exploring

the feasibility to share with LTE and Wi-Fi systems in the

near future the spectrum that is currently occupied by other

applications [1]–[4], such as airborne radars and navigation

systems close to the 3.4 GHz band [5] and shipborne and

Vessel Traffic Service (VTS) radar at 5.6 GHz [6]. As an

emerging research topic, the communication-radar spectrum

sharing (CRSS) not only presents the advantage for enabling

the efficient usage of the spectrum, but also provides a new

way for designing novel systems that can benefit from the

cooperation of radar and communication.

A naive way to achieve the spectral coexistence between

communication and radar systems is opportunistic spectrum

sharing [7]. Nevertheless, it does not allow both systems

to work simultaneously. In view of this, many works [8]–

[13] considered the null-space projection (NSP) scheme to

different spectral coexistence scenarios between radar and

communication systems, in which a radar beamformer is

designed to project the signals onto the null-space of the inter-

ference channel between the radar and base station (BS)/user

equipment (UE), such that the interference from the radar

to the communication link is zero. However, this leads to

performance loss for the radar, since the beamforming is

no longer optimal for target detection and estimation. More

recent contributions [14]–[18] have exploited optimization

techniques to achieve trade-offs between the performances of

radar and communication by relaxing the zero-forcing con-

straint of precoder to impose controllable interference levels

on the communication systems [9], offering a more realistic

coexistence.

A critical drawback of above coexistence approaches is that

radar and communication devices are typically required to

exchange side information for achieving a beneficial cooper-

ation, such as channel state information, radar probing wave-

forms and communication modulation formats. This results in

considerable extra complexity to the system, and is therefore

difficult to implement in practical scenarios. The novel dual-

functional radar-communication (RadCom) system has been

regarded as a favorable CRSS approach to avoid this shortfall.

As an enabling solution, dual-functional waveform design

can support target detection and information transmission at

the same time. Such possibilities have been explored for

single-antenna systems [19]–[22], where several integrated

waveforms have been proposed to combine the radar and com-

munication signals. Further, [23], [24] considered waveform

shuffling across the antennas or Phase Shift Keying (PSK) by

different beamformer weighting factors as the communication

modulation schemes. A common feature of these methods

is that one communication symbol is represented by one or

several radar pulses, which leads to a low data rate in the

order of the radar pulse repetition frequency (PRF).

The contributions of this work are two optimization-based

novel waveform designs for dual-functional MIMO RadCom

systems. First, we consider the waveform design by minimiz-

ing the downlink MUI under certain radar-specific constraints

that guarantee the radar performance to be optimal. Next,

we consider the optimization of trade-off between radar and

communication performances under a power budget constraint.

Although non-convex, both problems are efficiently solved.

It is worth highlighting that the proposed methods yield

provably globally optimal waveforms, which can be used for

simultaneous target detection and downlink communications.

Simulation results show that the trade-off optimization can

achieve a good balance between communication and radar

performances.

Notation: Lowercase and uppercase boldface letters denote

column vectors and matrices, respectively. Operators Tr(·),
(·)T, (·)H and ‖·‖F, correspond to the trace, the transpose,



Fig. 1. Illustration of a joint MIMO radar-communication system.

the conjugate transpose, the Frobenius norm operations, re-

spectively. Re(·) denotes the real part of complex numbers.

x ∼ CN (m,C) means that random vector x is circularly-

symmetric complex Gaussian with mean m and covariance

C.

II. SYSTEM MODEL

We consider a joint MIMO radar-communication system as

shown in Fig.1, which simultaneously transmits radar probing

waveform to the targets and communication symbols to the

downlink users. The joint station is equipped with a uniform

linear array (ULA) with N antennas, serving K single-antenna

users while detecting radar targets at the same time.

A. MIMO communication model

The received signals at the downlink users is given by

Y = HX+W, (1)

where H = [h1,h2, . . .hK ]
T ∈ C

K×N is the channel matrix,

X = [x1,x2, . . . ,xL] ∈ C
N×L is the transmitted signal matrix

with L being the length of the communication frame, and

W = [w1,w2, . . . ,wL] ∈ C
K×L is the noise matrix with

wj ∼ CN (0, N0IN ) for all 1 ≤ j ≤ L.

We assume [25]: 1) Dual-functional waveform is the trans-

mitted signal matrix X for both radar and communication

operations. In this case, each communication symbol is also a

snapshot of a radar subpulse; 2) The channel H is flat Rayleigh

fading, and remains unchanged during one communication

frame/radar subpulse; 3) The channel H is perfectly estimated

by pilot symbols.

Given the desired symbol matrix S ∈ C
K×L for the

downlink users, the received signals can be rewritten as

Y = S+ (HX− S)
︸ ︷︷ ︸

MUI

+W. (2)

For each user, entries of S are assumed to be drawn from

the same constellation. The second term in (2) represents the

multiuser interference. The total MUI energy is used as the

figure of merit of communication, which is expressed as

PMUI = ‖HX− S‖2F . (3)

The MUI energy is a key performance measure since it is

closely related to the achievable sum-rate of the downlink

users [26]. Specifically, the achievable sum-rate is

R =

K∑

i=1

log2 (1 + γi), (4)

where γi is the signal-to-interference-plus-noise ratio (SINR)

per frame for the i-th user, which is given by

γi =
E

(

|si,j |2
)

E

(∣
∣hT

i xj − si,j
∣
∣
2
)

+N0

. (5)

Here, si,j is the (i, j)-th entry of S, and E(·) denotes the

ensemble average with respect to the time index. For a

given constellation with fixed energy, the power of useful

signal E

(

|si,j |2
)

is also fixed. Hence, the sum-rate can be

maximized through minimization of the MUI energy.

B. MIMO radar model

Traditional phased-array radar transmits over each antenna

correlated signals, indeed, different phase-shifted versions

of a common waveform. In contrast, MIMO radar employs

uncorrelated waveforms and results in higher DoFs than the

traditional phased-array radar. The existing literature [27], [28]

indicate that the design of radar beampattern is equivalent to

designing the covariance matrix of the probing signals. Spatial

covariance matrix of the dual-functional waveform matrix X

is expressed as

RX =
1

L
XXH. (6)

Without loss of generality, we assume L ≥ N to ensure

positive definiteness of RX . Further, the transmit beampattern

for the RadCom system can be characterized as

Pd (θ) = a (θ)
H
RXa (θ) , (7)

where a (θ) =
[
1, ej2π∆sin(θ), ..., ej2π(N−1)∆ sin(θ)

]T ∈ C
N

is the steering vector of the ULA with θ being the detection

angle and ∆ being the spacing between adjacent antennas

normalized by the wavelength.

III. PROBLEM FORMULATION AND OPTIMAL DESIGN

Two optimization problems for dual-functional MIMO Rad-

Com systems in terms of PMUI and RX , are formulated in the

following.

A. Waveform optimization under radar beampattern con-

straints

We first consider the minimization of MUI energy under

MIMO radar-specific constraints. Given a covariance matrix

Rd that corresponds to a well-designed MIMO radar beam-

pattern, the MUI minimization problem is expressed as

min
X

‖HX− S‖2F (8a)

s.t.
1

L
XXH = Rd, (8b)



where Rd is a Hermitian positive-definite matrix satisfying

Tr(Rd) = PT , and PT is the total transmit power. The

case of Rd = PT

N
IN corresponds to the omni-directional

beampattern design, which is usually used in MIMO radar

for initial probing. While a general Rd with Tr(Rd) = PT

corresponds to a specific beampattern design that points to the

directions of interest, which is used for tracking after target

detection.

Problem (8) is non-convex due to the nonlinear equality

constraint (8b). Fortunately, the problem could be efficiently

solved to global optimality by utilizing the special structure.

Proposition 1. Given the Cholesky decomposition of Rd =
FFH and a singular value decomposition (SVD) of FHHHS =
UΣVH, where F is invertible and U ∈ C

N×N and V ∈
C

L×L are unitary. A globally optimal solution X∗ to (8) is

X∗ =
√
LFUVH

N , (9)

where VN is the first N columns of V.

Proof: Let Z = (
√
LF)−1X. Substituting it in (8b) gives

ZZH = IN . We can rewrite (8a) as

‖HX− S‖2
F
= Tr

(

(√
LHFZ− S

)(√
LHFZ− S

)H
)

= Tr
(

LHFF
H
H

H
)

− 2
√
LRe(Tr(SZH

F
H
H

H)) + Tr(SSH).

By the cyclic property of trace operation, solving (8) is

equivalent to the following problem

max
Z

{
Re(Tr(ZHFHHHS)) : ZZH = IN

}
.

Let T = VHZHU, it follows that THT = IN from the

unitarity of V and U. By the SVD of FHHHS, we obtain

Re(Tr(ZHFHHHS)) = Re(Tr(ZHUΣVH))

= Re(Tr(VHZHUΣ))

= Re(Tr(TΣ))

= Re

(
N∑

i=1

Ti,iΣi,i

)

.

By THT = IN , we have |Ti,j | ≤ 1 ∀i, j. Hence, a maximizer

to the above sum is T∗ = IL×N , which is an L ×N matrix

composed by an N ×N identity matrix and an (L−N)×N
zero matrix. Therefore, by definition of T and Z, a glob-

ally optimal solution to (8) is X∗ =
√
LFUIN×LV

H =√
LFUVH

N .

B. Trade-off between radar and communication performances

It should be highlighted that in problem (8) the radar

performance is guaranteed to be optimal under the covari-

ance constraint (8b) and the MUI energy is minimized by

exploiting the remaining DoFs. When the remaining DoFs is

low, the communication counterpart may suffer from serious

performance loss. We therefore consider a trade-off design

by allowing a tolerable mismatch between the designed and

the desired radar beampatterns. Denoting an obtained optimal

solution to (8) by X0, the trade-off problem can be set up in

the following form

min
X

ρ ‖HX− S‖2F + (1− ρ) ‖X−X0‖2F (12a)

s.t.
1

L
‖X‖2F = PT . (12b)

where 0 ≤ ρ ≤ 1 is a weighting factor that makes compro-

mises between radar and communication performances.

Two additional remarks for above formulation are given as

follows. First, for ensuring the coherence between (8) and (12),

we enforce an equality constraint for the power budget, as

the radar station is often required to transmit at its maximum

available power in practice. Second, it seems at the first sight

that a more natural formulation is to use
∥
∥XXH − LRd

∥
∥
2

F

rather than ‖X−X0‖2F in (12a). The price is the intractability

of the resulting quartic polynomial optimization problem.

Problem (12) is a non-convex quadratic program with only

one quadratic constraint, and indeed matrix version of the

trust-region subproblem (TRS) [29]. Hence, the strong duality

holds [30], i.e., the duality gap is zero. Furthermore, according

to [30], the semidefinite programming relaxation (SDR) for

(12) is tight, i.e., the SDR admits a rank-one solution, which

yields a globally optimal solution to (12). Nevertheless, due

to the large number of variables in the problem, SDR is not

computationally efficient for (12). Hence, we propose a low-

complexity algorithm that achieves the global optimum in the

following.

Let X∗ and λ∗ be a pair of optimal primal and dual so-

lutions. Sufficient and necessary global optimality conditions

for (12) are given as [30]

(Q+ λ∗IN )X∗ = G, (13a)

‖X∗‖2F = LPT , (13b)

Q+ λ∗IN � 0, (13c)

where Q = ρHHH+(1−ρ)IN and G = ρHHS+(1−ρ)X0.
Conditions (13a), (13b) and (13c) guarantee stationarity, pri-

mal and dual feasibility, respectively. Conditions (13a) and

(13b) are the well-known Karush-Kuhn-Thcker (KKT) condi-

tions for local optimality, while the condition (13c) excludes

the non-global optimal stationary solutions.

From (13c), we have λ∗ ≥ −λN , where λN is the minimum

eigenvalue of Q. We will deal with two cases separately: (a)

λ∗ = −λN or (b) λ∗ > −λN . The case of λ∗ = −λN

corresponds to the ‘hard case’ in trust region literature, which

is unstable and rarely occurs in practice. It is easy to check by

matrix decomposition whether equation (13a) for λ∗ = −λN

is consistent and admits a solution X∗ satisfying ‖X∗‖2F =
LPT if consistent.

We next focus on the case of λ∗ > −λN . It follows from

(13a) that

X∗(λ∗) = (Q+ λ∗IN )
−1

G (14a)

= V (Λ + λ∗IN )
−1

VHG, (14b)



Algorithm 1 Low-complexity Algorithm for Solving (12)

Input: H,S,X0, PT , and weighting factor ρ ∈ (0, 1).
Output: ǫ-optimal solution X∗.

1. Compute Q, G and the eigenvalue decomposition of Q.
2. Check whether (13a) for λ∗ = −λN admits a solution

X∗ satisfying (13b). If failed, go to Step 3.

3. Find an ǫ-optimal solution λ∗ to (13b) over (−λN , λub)
by bisection search and compute X∗ = (Q+ λ∗IN )

−1
G.

where Q = VΛVH is the eigenvalue decomposition of Q and

Λ = diag (λ1, λ2, . . . , λN ) . We obtain

‖X∗(λ∗)‖2F =

N∑

i=1

L∑

j=1

∣
∣
∣

[
VHG

]

i,j

∣
∣
∣

2

(λ∗ + λi)
2 (15a)

≤ NL

(λ∗ + λN )
2 max

i,j

∣
∣
∣

[
VHG

]

i,j

∣
∣
∣

2

. (15b)

By (15a), function ‖X∗(λ∗)‖2F is strictly decreasing and con-

vex on the interval λ∗ > −λN . Thus, equation ‖X∗(λ∗)‖2F =
LPT has a unique root λ∗, i.e., the optimal dual solution. By

(13b) and (15b), an upper bound of λ∗ is given by

λ∗ ≤ −λN +

√

N

PT

max
i,j

∣
∣
∣

[
VHG

]

i,j

∣
∣
∣ , λub. (16)

Therefore, the unique optimal dual solution λ∗ can be solved

by root-finding methods for ‖X∗(λ∗)‖2F = LPT on the

interval (−λN , λub), e.g., bisection search or Ridders’ method

[31]. The rate of convergence of bisection search or Ridders’

method is at least linear, which means that the algorithms

reach an ǫ-optimal solution within O (log(1/ǫ)) iterations. The

computation burden is dominated by the one-pass eigenvalue

decomposition of Q and matrix multiplication of VHG, which

cost O(N3) and O(N2L) arithmetic operations, respectively.

For clarity, overall solution procedure for (12) is summarized

in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we present numerical results to assess the

proposed waveform design approaches. The simulation set-

tings are as follows. Assume that the station is equipped with

a ULA with half-wavelength spacing between the adjacent

antennas and each entry of the channel matrix H is standard

Complex Gaussian, i.e., hi,j ∼ CN (0, 1). Unit-power QPSK

alphabet is chosen as the constellation for communication,

i.e., the power of each entry in the symbol matrix S is one.

For simplicity, we set PT = 1, N = 64 and L = 70, and

define SNR = PT /N0. Symbols ‘Omni’ and ‘Directional’ are

used to represent the omni-directional beampattern design and

the directional beampattern design, respectively. Further, the

waveform designs based on (8) and on (12) are denoted by

‘Strict’ and ‘Tradeoff’, respectively.

Fig.2 and Fig.3 show the average achievable rate and the as-

sociated radar beampatterns obtained by different approaches

for K = 30, respectively. User’s average achievable rates are
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computed by (4) and (5) and the AWGN channel capacity

is calculated as log2 (1 + SNR). We consider three targets of

interest with angles of −60◦, 0◦, 60◦ for directional beam-

pattern design, and utilize the classic least-squares techniques

[32] to obtain the desired covariance matrix Rd as defined in

(8). It can be seen from Fig.2 that the ‘Strict’ designs result

in a relatively serious performance loss of communication and

average achievable rates can be increased significantly by the

‘Trade-off’ designs, which are close to the AWGN channel

capacity without MUI. Meanwhile, we observe from Fig.3

that the radar beampatterns of the ‘Trade-off’ designs with

weighting factor ρ = 0.1, only experience a slight performance

loss of radar, compared with the ‘Strict’, i.e., the desired

optimal beampatterns. Specifically, the performance loss is less

than 3 dB around angles of the targets of interest.

Fig.4 and Fig.5 show the trade-off curves between the
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communication and radar performances by sweeping the

weighting factor ρ over (0, 1). Detection probability, which

is calculated based on [11, eq. (69)], is used as the metric

for omni-directional beampattern design, where we consider

the constant false-alarm rate (CFAR) detection for a point-like

target in the far field, located at the angle of 36◦. The received

SNR is fixed at −19 dB and the false-alarm probability for

radar is 10−7. Mean squared error (MSE) between the desired

and obtained beampatterns is used as the radar metric for

directional beampattern design. It can be seen from Fig.4

and Fig.5 that there exists a trade-off between communication

rate and radar detection/estimation performance. The average

achievable rate increases for the fixed detection probability or

MSE, as the number of users decreases, which suggests that

the MUI energy can be further minimized by increasing the

DoFs. Both figures indicate that the trade-off waveform design

can achieve a favorable balance between the communication

and radar performances.

V. CONCLUSION

In this paper, we discuss the waveform design for dual-

functional MIMO radar-communication system, which can be

used for both target detection and downlink communications.

Two optimization-based novel waveform designs are proposed.

Efficient algorithms are devised to obtain provable globally op-

timal solutions. Numerical results show the achievability of a

good balance between communication and radar performances.
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