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Abstract—The unmanned aerial vehicles base stations (UAV-
BSs) have great potential in being widely used in many dynamic
application scenarios. In those scenarios, the movements of served
user equipments (UEs) are inevitable, so the UAV-BSs needs to
be re-positioned dynamically for providing seamless services.
In this paper, we propose a system framework consisting of
UEs clustering, UAV-BS placement, UEs trajectories prediction,
and UAV-BS reposition matching scheme, to serve the UEs
seamlessly as well as minimize the energy cost of UAV-BSs’
reposition trajectories. An Echo State Network (ESN) based
algorithm for predicting the future trajectories of UEs and a
Kuhn-Munkres-based algorithm for finding the energy-efficient
reposition trajectories of UAV-BSs is designed, respectively. We
conduct a simulation using a real open dataset for performance
validation. The simulation results indicate that the proposed
framework achieves high prediction accuracy and provides the
energy-efficient matching scheme.

Index Terms—Unmanned Aerial Vehicle, Base Station, Predic-
tion, Echo State Network, Kuhn-Munkres Algorithm.

I. INTRODUCTION

With the rapid development of cellular communication

techniques, people become dependent on mobile devices, such

as cell phones and tablets in daily life. Most communication

services for these devices are provided by ground base stations

(BSs). However, in some remote or hot-spot areas where

ground BSs are unable to cover, the quality of communications

service is usually very poor. To solve this problem, the use of

unmanned aerial vehicles (UAVs) as BSs has been a popular

research topic in recent years. UAV-BSs can deliver reliable,

cost-effective, and on-demand cellular communication service

especially to dynamic scenarios [1].

Recent study [2] on UAV-BSs mainly focuses on finding

the optimal placement of the UAV-BSs while serving the user

equipments (UEs) in the target area. However, in most pa-

pers [3] [4] [5], few take dynamic scenarios into consideration.

In real scenarios, the UAV-BSs are expected to dynamically

reposition in response to the dynamic movement of UEs.

In [6], the approach considered dynamic scenarios, but the

reposition action is performed after the movement of UEs,

which may cause communication service outage. In order to

serve the UEs seamlessly, a prediction on the future positions

of UEs can be performed before the reposition action of UAV-

BSs in the next time slot. This prediction can be implemented

by applying an Echo State Network (ESN), a type of recurrent

neural network.

Current Predicted

Fig. 1. The considered dynamic application scenario.

The main contribution of this paper is to propose a sys-

tem framework for dynamic placement of multiple UAV-BSs,

aiming to serve the UEs seamlessly and minimize the energy

cost of UAV-BSs’ trajectories. The merits of this work are

described from the following three aspects:

• We design an ESN-based algorithm for predicting the

future trajectories of UEs, aiming at serving the UEs

seamlessly. With the precise predicted locations of UEs,

the system can search for the potential locations of UAV-

BSs in the next time slot for the seamless services.

• We develop a Kuhn-Munkres-based weighted bipartite

matching algorithm to find the energy-efficient trajecto-

ries of multiple UAV-BSs when reposition from current

positions to the predicted positions in the next time slot.

This algorithm is aiming at minimizing the energy cost

in the reposition action phase.

• We adopt the GeoLife dataset [7] as the input information

with some preprocessing steps for our simulations. The

simulation results indicate that the proposed algorithm

can achieve high accuracy in terms of root mean square

error (RMSE).

The remaining parts of this paper are organized as follows.

In Section II, the related work is introduced. In Section III,

we discuss the ESN-based prediction algorithm, the KM-based

matching algorithm, and the proposed algorithm step by step.

In Section IV, the simulation results are discussed in detail.

We make the conclusion remarks in Section V.

http://arxiv.org/abs/1909.11598v2


II. RELATED WORK

For UAV control, in [6], the authors studied on finding

the optimal altitude for a single UAV-BS with the maximum

coverage and minimum required transmit power. The authors

in [3] showed that the UAV-BS placement in the horizontal

dimension can be modeled as a circle placement problem and

a smallest enclosing circle problem, and they proposed an

optimal 3D placement algorithm for maximizing the number

of served users with the minimum transmit power. In [4], a

method using the heuristic algorithm for finding the positions

of UAV-BSs in an area with different user densities was

proposed. This algorithm can estimate the minimum number

of UAV-BSs and their placement, while satisfying coverage

and capacity constraints. In [5], the placement problem was

modeled as a knapsack-like problem, and a density-aware

placement algorithm to maximize the number of covered users

with the constraint of the minimum required data rates per user

was proposed.

For learning, the authors in [8] proposed a Q-learning based

method for finding the optimal trajectory of an UAV-BS to

serve multiple users. In their method, the UAV-BS acts as an

autonomous agent to learn the trajectory that maximizes the

sum rate of the transmission. A dataset from a project called

GeoLife is introduced in [7]. This dataset consists of 182

users’ locations and GPS trajectories in a period of over five

years. In [9], the authors proposed an Markov Chain predictive

model for predicting the next location of an individual based

on its recent locations and mobility behavior over a period of

time. In their simulation part, the GeoLife dataset was used to

evaluate the proposed algorithm.

III. PROPOSED SYSTEM FRAMEWORK

We consider the dynamic application scenario depicted

in Fig. 1. The UAV-BSs are expected to reposition to the

potential positions in advance of the movement of the UEs. In

Section III-A, we design an ESN-based algorithm to predict

the future trajectories of UEs for finding the potential positions

of UAV-BSs. In Section III-B, we also take the energy cost

of the reposition action of UAV-BSs into account. A KM-

based matching algorithm is proposed to find the energy-

efficient trajectories. In Section III-C, the proposed algorithm

consisting of clustering, placement, prediction, and matching

is introduced step by step.

A. ESN-based Prediction Algorithm

To obtain the predicted positions of UEs in the next time

slot, an algorithm based on ESN is proposed. We choose ESN

due to its low computation time and energy cost. ESN forms

a hidden layer of the network by randomly deploying a large

numbers of neurons, known as the reservoir pool. The ESN

model has the following characteristics:

1) containing a large number of neurons;

2) the connection between neurons is generated randomly;

3) the links between neurons are sparsity.

V R W

Fig. 2. The framework of an echo state network.

The structure of the ESN model is drawn in Fig. 2, where V

represents the input weight matrix, R is the reservoir weight

matrix and W is the output weight matrix.

In the input layer, we define the input vector as un×1, and

its dimensions is n×1. In the reservoir pool, the typical update

equation is written as [10]

xm×1(n) = tanh(Wm×n
in un×1(n) +Wm×1

x (n− 1)), (1)

where xm×1 is a vector of internal units in the reservoir

pool. Wm×n
in is the connection weight matrices between input

layer and reservoir pool, and Wm×1
x is the recurrent weight

matrices.

The reservoir pool is linearly connected to the output layer,

which can be defined as

y(n) = Wn×m
out xm×1(n), (2)

where y(n) is the output vector and Wn×m
out is the connection

weight matrices between reservoir pool and output layer.

We use root mean square error (RMSE) to evaluate the

quality of this model, the expected value is ŷi and the actual

result is yi. RMSE is defined as

RMSE =

√

√

√

√

1

M

M
∑

i=1

wi(yi − ŷi)2, (3)

where
∑M

i=1 wi = 1, M is the number of predictions, and wi

are the weights. In the considered dataset, some UEs move

unexpectedly (U-turn, right-angled turn), and the positions of

these unexpected movements are assigned with the smaller

weights.

B. KM-based Matching Algorithm

Without considering environmental factors, if the sum-

mation of all UAV-BSs’ moving distance from the current

positions to the positions in the next time slot is smaller, the

less energy will be consumed. Such an Energy-Efficient Dis-

placement Optimization (EEDO) problem can be formulated

as Definition 1. The energy-efficient placement optimization

problem also can be reduced from a well-known problem,

Minimum Weighted Perfect Bipartite Matching, as shown in

Fig. 3.

Definition 1 (EEDO): At time t, the current position of a

UAV is denoted as Li(t) ∈ R
2, and the potential position of

a deployed UAV in the next time slot is denoted as Pj(t) ∈



Fig. 3. Reposition matching of multiple UAV-BSs.

R
2, i, j ∈ [1, n], n is the number of UAVs, and wi,j is the

energy cost for a UAV to fly from position Li to position Pj .

The total energy cost of the UAV-BSs’ displacements can be

optimized by

min
∑

∀i,j∈[1,n]

wi,jxi,j (P1)

s.t.

n
∑

i=1

xi,j = 1, ∀j = 1, 2, . . . , n,

n
∑

j=1

xi,j = 1, ∀i = 1, 2, . . . , n,

xi,j ∈ {0, 1}.

In this work, we assume the number of UAV-BSs is n, and

the heights of the multiple UAV-BSs are the same and equal

to a constant. At time t, the number of current positions and

the number of predicted positions of UAV-BSs are both equal

to n. The coordinate of the ith current position is defined as

Li(t) = [xi(t), yi(t)]
T ∈ R

2 and the coordinate of the jth

predicated position is defined as Pj(t) = [x̄j(t), ȳj(t)]
T ∈

R
2, ∀i, j ∈ [1, n], where T is a predefined time period slot

between the predictions, and xi(t) and yi(t) are the latitude

and longitude of the ith current position, respectively. x̄j(t)
and ȳj(t) are the latitude and longitude of the jth predicated

position, respectively. The vertex labeling of Li(t) and Pj(t)
are denoted as A[Li(t)] and B[Pj(t)], respectively. The weight

between Li(t) and Pj(t) is defined as [Li(t)][Pj(t)], which

can be calculated by the distance between Li(t) and Pj(t).

We aim at minimizing the energy cost, which is equivalent

to finding the smallest sum of total weights. A bipartite

matching method based on Kuhn-Munkres (KM) algorithm

is used. According to KM algorithm, A[Li(t)] and B[Pj(t)]
will be

A[Li] =min{W [Li(t)][P0(t)],W [Li(t)][P1(t)], . . . ,

W [Li(t)][Pn(t)]},

B[Pj(t)] =0, ∀i, j ∈ [1, n]. (4)

Since the number of UAV-BSs is equal to the number of

predicated positions, a weighted perfect matching can be found

using the Hungarian algorithm [11].

C. Proposed Algorithm

In this part, the proposed system framework for dynamic

placement of multiple UAV-BSs is introduced. Assume N

is the number of UEs and n is the number of UAV-BSs.

Vcurrent(k) = [xcurrent(k), ycurrent(k)]
T is the coordinate of the

kth UE’s current position where 1 ≤ k ≤ N .

1) In the initial time slot, cluster the UEs by using the K-

means algorithm, and divide UEs into n clusters.

2) Use the density-aware placement algorithm [5] to find

the local optimal positions of each cluster to deploy

UAV-BSs in the initial time slot. Let the UAV-BSs fly

to those positions.

3) Collect the real-time latitude and longitude information

of each UE’s position every λ seconds for τ seconds.

4) Use the collected information in 3) as the input UEs’

trajectories data for the ESN-based prediction algorithm

to predict the UE’s positions in the next time slot:

Vpredicted(k) = [xpredicted(k), ypredicted(k)]
T .

5) Use Vpredicted(k) as input, calculate the optimal positions

of UAV-BSs in the next time slot by using the K-means

algorithm and density-aware placement algorithm again.

6) Use the KM-based matching algorithm to find the

energy-efficient trajectories of UAV-BSs when moving

from current positions to the predicted positions. Let

the UAV-BSs fly to those positions.

7) Repeat from Step 3) to Step 6) after a given time slot

T .

In general, the system performance on allocated data rates

will be better if T is smaller. However, the total energy cost of

UAV-BSs will dramatically increase if T becomes too small.

The pseudo-codes of the proposed algorithm are shown in

Algorithm 1.

IV. SIMULATION RESULTS

In this section, we discuss the performance of our proposed

algorithms. In Section IV-A, the Euclidean distance between

the predicted trajectory and actual trajectory of the UE is

used to evaluate the ESN-based prediction algorithm. In Sec-

tion IV-B, the KM-based matching algorithm is compared to

random matching methods in term of the sum of total distance

between the current positions and the predicted positions.

A. Performance of Prediction

In the first part, the dataset from the GeoLife project

provided by Microsoft Research Asia is used to evaluate our

proposed ESN-based prediction algorithm. We select the data

in the area of Beijing. 75% of the data is used as train set and

the rest 25% is used as the test set. In order to adapt the data

to the real UAV-BSs application scenario, we set each UE’s

trajectory data time interval to 3 seconds by interpolating the

data and fine-tuning the value of data time.

The actual trajectory and predicted trajectory of the UE are

both depicted with Google Map and shown in Fig. 4. The



Algorithm 1: The pseudo-codes of the proposed algorithm

1 Function Prediction(V (N)):

2 Load ESN-based prediction algorithm and update

V (N)←
[(xpredicted(1), ypredicted(1)), (xpredicted(2), ypredicted(2))
, . . . , (xpredicted(N), ypredicted(N))];

3 return V (N);
4 end

5 Function Placement(L):

6 Execute the density-aware placement algorithm and

update all the prediction locations of all the

UAV-BSs in L;

7 return L;

8 end

9 Function Match(L, P):

10 Load the KM-based matching algorithm to find the

minimum weighted perfect bipartite matching m

between the current locations L and the predicted

locations P ;

11 return m;

12 end

13 Function Main(N,n,WN , T, λ, τ):

14 Obtain the positions of UEs at the initial time slot

V (N)← [(xinitial(1), yinitial(1)), (xinitial(2), yinitial(2))
, . . . , (xinitial(N), yinitial(N))];

15 Cluster N UEs into n clusters using K-means;

16 At the initial time slot, the initial locations of

UAV-BSs are L = {L1, L2, . . . , Ln} ←
Placement(L);

17 Boolean variable C = 1;

18 repeat

19 for t = 0; t < τ ; t = t+ λ do

20 Collect the real-time positions of all UEs and

update V (N)← [(xcurrent(1), ycurrent(1)),
(xcurrent(2), ycurrent(2)), . . . , (xcurrent(N),
ycurrent(N))];

21 end

22 Vpredicted(N)← Prediction (Vcurrent(N));
23 Cluster UEs into n clusters by using K-means;

24 The prediction result of UAV-BS locations for the

next time slot is P = {P1, P2, . . . , Pn} ←
Placement(L);

25 Do the displacement matching Match(L, P);

26 until C 6= 1;

27 end

actual trajectory of the UE is red-dotted line, and the predicted

trajectory of UE is blue-dashed line. From this figure, we can

find that the predicted trajectory is very close to the actual

trajectory.

We use the actual trajectory data of the UE within 15

minutes as input and predict the trajectory of the UE in the next

5 minutes time slot with the proposed ESN-based prediction

model. In Fig. 5 and Fig. 6, the longitude and latitude of

Fig. 4. The comparison of predicted and actual trajectories of a UE.
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Fig. 5. Predicted longitude v.s. actual longitude of a UE.

predicted trajectory (marked as a blue-dashed line) and actual

trajectory (marked as a red-solid line) of the UE are shown

respectively. The predicted trajectory and actual trajectory are

depicted with 100 predicted positions and 100 actual positions,

respectively. The time interval between the predicted positions

is set to 3 seconds, which equals to the time interval between

the actual positions.

It is obvious that for both longitude and latitude, the

predicted value is close to the actual value. Due to the

randomness and uncertainty of movement of users, the curve

of predicted value is almost smooth, while the curve of actual

value fluctuates a little bit. As there is a vertical turn of the

actual trajectory in Fig. 6, we find the reason after reviewing

the actual data, which is the UE changed its direction at that

time. We also observe that the curve of predicted longitude and

latitude in both Fig. 5 and Fig. 6 are straight. It means that the

proposed ESN model cannot predict the trend of the position

changes very well. The reason is that there is no sufficient

data of non-straight trajectories in GeoLife dataset.

We also evaluate the performance of the ESN model with

different sizes of the reservoir pool. We set the size Nx to

500, 1000, 2000, 3000 and 5000, and calculate the distance

between the predicted trajectory and actual trajectory of the

UE, respectively. According to the result in Fig. 7, it indicates

that when Nx is set to 5000, the predicted value is closest

to the actual value. The RMSE is also calculated and shown

in Fig. 8. We find that the RMSE value of each model is no

more than 0.030, which indicates that the ESN model has a

high prediction accuracy. In addition, when Nx is no more than
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Fig. 6. Predicted latitude v.s. actual latitude of a UE.
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Fig. 7. The performance comparisons of the ESN model using different sizes
of the reservoir pool.
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5000, the predicted accuracy increases with the increment of

Nx, which is corresponding to the results in Fig. 7.

B. Performance of Matching

We set the number of UAV-BSs to 3. TABLE I shows the

current latitude and longitude of UAV-BSs, and the predicted

latitude and longitude of UAV-BSs in the next 5 minutes time

slot. We calculate the distance between each current position

and each predicted position when taking the curvature of

the Earth into account. The results are shown in TABLE II.

For instance, if a possible matching scheme (A → α,B →
β,C → γ) is obtained, the UAV-BS whose current position

is A needs to fly to the position α in the next time slot. So

the distance of the reposition trajectory for this UAV-BS is

267 meters. The rest distance can be deduced in the same

way, and the total distance of this matching scheme will be

(267 + 467 + 718) = 1452 meters.

TABLE I
CURRENT AND PREDICTED LATITUDES AND LONGITUDES OF UAV-BSS

Latitude Longitude

Current position A 39.984536 116.316354

Current position B 39.984501 116.313659

Current position C 39.98492 116.314663

Predicted position α 39.986506 116.314564

Predicted position β 39.988203 116.316238

Predicted position γ 39.988461 116.321711

TABLE II
THE DISTANCE BETWEEN CURRENT AND PREDICTED POSITIONS OF

UAV-BSS

Predicted
position
α

Predicted
position
β

Predicted
position
γ

Current position A 267 m 408 m 631 m

Current position B 236 m 467 m 851 m

Current position C 117 m 389 m 718 m

TABLE III
THE REPOSITION MATCHING SCHEME OBTAINED BY KM-BASED

MATCHING ALGORITHM

Predicted
position
α

Predicted
position
β

Predicted
position
γ

Current position A × × ©

Current position B © × ×

Current position C × © ×
1×: Mismatched ©: Matched

TABLE IV
THE DISTANCE OF ALL THE POSSIBLE MATCHING SCHEMES

Reposition matching scheme Sum of distance (in meters)

A → α,B → β,C → γ 1452

A → α,B → γ,C → β 1471

A → β, B → α,C → γ 1362

A → β, B → γ,C → α 1400

A → γ,B → α,C → β 1256 (minimal)

A → γ,B → β,C → α 1275

We implement the KM-based matching algorithm in Python

3 and use the values in TABLE II as the input information. The

output reposition matching scheme (A→ γ,B → α,C → β)
is shown in TABLE III.

Each possible reposition matching schemes and its corre-

sponding sum of distance are listed in TABLE IV. It is obvious

that the reposition matching scheme (A→ γ,B → α,C → β)
is the same as the one obtained by the KM-based matching

algorithm and it has the minimal sum of the distance. In other

words, our KM-based matching algorithm can find the energy-

efficient trajectories of multiple UAV-BSs when reposition

from the current positions to the predicted positions in the

next time slot.



V. CONCLUSION

In this paper, the dynamic placement problem of UAV-BSs

is studied. We propose an ESN-based algorithm to predict the

future trajectories of the UEs. The predicted trajectories can

be used to find the potential positions to reposition the UAV-

BSs in the next time slot. Additionally, we consider the energy

cost of reposition. A KM-based algorithm is designed to solve

the minimum weighted perfect bipartite matching problem

and find the minimum energy cost reposition scheme. The

simulation results show that the ESN-based algorithm has high

accuracy on predicting the next 5 minutes trajectories of the

UEs based on previous 15 minutes actual trajectories data, and

the matching scheme obtained by the KM-based algorithm sat-

isfies the energy-efficient requirement of UAV-BSs reposition

trajectories. In the future, we are going to develop a Generative

Adversarial Network (GAN) based framework for generating

sufficient trajectory data and thus improve the performance of

prediction.
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