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Abstract—Location information will play a very important
role in emerging wireless networks such as Intelligent Trans-
portation Systems, 5G, and the Internet of Things. However,
wrong location information can result in poor network out-
comes. It is therefore critical to verify all location information
before further utilization in any network operation. In recent
years, a number of information-theoretic Location Verification
Systems (LVSs) have been formulated in attempts to optimally
verify the location information supplied by network users.
Such LVSs, however, are somewhat limited since they rely
on knowledge of a number of channel parameters for their
operation. To overcome such limitations, in this work we
introduce a Machine Learning based LVS (ML-LVS). This
new form of LVS can adapt itself to changing environments
without knowing the channel parameters. Here, for the first
time, we use real-world data to show how our ML-LVS can
outperform information-theoretic LVSs. We demonstrate this
improved performance within the context of vehicular networks
using Received Signal Strength (RSS) measurements at multiple
verifying base stations. We also demonstrate the validity of
the ML-LVS even in scenarios where a sophisticated adversary
optimizes her attack location.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETS) are a particular
type of Intelligent Transportation System (ITS) which uti-
lize communications to assist with various traffic problems.
VANETSs can function based on vehicle-to-vehicle commu-
nication and/or vehicle-to-Road Side Unit (RSU) communi-
cation [1]]. RSUs are fixed base stations installed at certain
locations with an aim to assist VANETSs with their operations.
An RSU (or a trusted vehicle whose location is a priori
verified), can also function as a Processing Center (PC).
The PC processes the communication data before issuing
instructions to the vehicles under its coverage area.

Location information of vehicles is a key ingredient for
VANETSs. The vehicles usually obtain their location infor-
mation through Global Navigation Satellite System (GNSS)
and/or Global Positioning System (GPS), and report this in-
formation to the PC for use in subsequent network operations.
A possibility exists where the supplied location information
from the vehicle has errors in it. This may be due to some
faulty hardware used in recording/forwarding the location
information, or it may be due to a vehicle falsifying its
location information (in order to have advantage over nearby
vehicles or to simply disrupt the network). If the location
information supplied by the vehicle is not verified, and the
location error goes unnoticed, this may result in poor network
outcomes such as traffic queues, traffic congestion, or poor

tolling. In extreme cases, a lack of position verification may
lead to catastrophic situations such as vehicle collisions.

In recent years, a number of Location Verification Systems
(LVSs) [2]-[11]] have been devised to validate the vehicle’s
supplied location information. These LVSs in general make
use of the numerous physical layer properties of the signal
(transmitted by the vehicle and measured at the verifying
base stations) to verify the vehicle’s reported location in-
formation. The physical layer properties include Received
Signal Strength (RSS), Time of Arrival (ToA) of the signal,
and Angle of Arrival (AoA) of the signal. However, all LVSs
have a serious limitation in their operation - they normally
operate efficiently only for the channel conditions assumed
at the time of their design [2]. That is, they normally only
function well under the assumption that all a priori channel
information provided to them remains accurate. Further,
they are only able to efficiently address the threat-model
scenarios they have been specifically designed for [[12]. Such
limitations make their real-world deployment suspect.

Machine Learning (ML) is an important technology which
is now impacting many applications e.g., [13]-[[19], and it is
possible that inclusion of ML techniques may help resolve
some of the LVS limitations mentioned above. Indeed, this
has been shown to be the case in theoretical simulations of
LVSs in the context of ToA schemes [20], and in theoretical
simulations of ‘in-region’ location verification [21]. What
remains to be determined is whether these advances hold up
under conditions where real-world data is input to the ML-
LVS. In this work, which represents the first experimental
deployment of any ML-LVS, we answer this question in the
affirmative. We summarize below our main contributions.

e We carry out for the first time an ML-LVS analysis

based on real-world data, namely RSS measurements.

o We show that our ML-LVS outperforms an information-
theoretic LVS when a malicious vehicle sets its claimed
(untrue) location at some random location.

o We also show that unlike the information theoretic LVS,
the ML-LVS still performs efficiently even when the
malicious vehicle formally minimizes spoofing detection
by optimizing its claimed (untrue) location.

The remainder of this paper is organized as follows.
Section [[I] details the system model. Section presents
the performance analysis using information theory and ML
techniques. Section |[[V|provides numerical results and future
prospects, and Section [V] concludes the paper.



II. SYSTEM MODEL

We consider the following system model in our work:

1) The true location of a legitimate or malicious vehicle
is denoted by x; = [x¢, Yt ].

2) We refer to the reported location from a legitimate or
malicious vehicle as the claimed location, which is
denoted by x. = [z¢,y.]- The claimed location for
a legitimate vehicle is exactly the same as its true
location. On the other hand, a malicious vehicle spoofs
its location, i.e., its claimed which is not the same as
its true location.

3) For a malicious vehicle ||x.—x¢|| > r, where r is an
a priori distance representing the minimum distance
between its claimed and true locations.

4) The framework consists of N RSUs as verifying base
stations, with publicly known true locations. All RSUs
are in the transmission range of the vehicles (whose
claimed locations have to be verified). The true location
of the i-th RSU is x; = [x;,y;] where ¢ = 1,2, ..., N.

5) We choose one of the RSUs as PC. The PC accumulates
its own RSS measurements with the measurements
collected by other RSUs for further processing. The PC
decides on the integrity of a vehicle’s claimed location.

6) Under the null hypothesis H,, the vehicle is legitimate,
i.e., we have

Ho i Xe = Xt (D

7) Under the alternative hypothesis 71, the vehicle is
malicious, i.e., we have

Hit Xe # X¢. 2

Based on a log-normal pathloss model, under H,, the RSS
(all RSS in dBm) measured by the i-th RSU from a legitimate
vehicle, y;, is given by

Yi = Ui + Wi, i:1727"'7N7 (3)

where w; is a zero mean normal random variable with
variance o representing the channel noise, and w; is the
mean RSS at i-th RSU. This latter quantity is given by

C

u; = pa,—107 logyq (%:)7 4

where pg_ is a reference RSS at a reference distance d,, v is
the path loss exponent, and df is the distance of a legitimate
vehicle’s true location to the i-th RSU, given by

@ = (@e — 2 + (ge — i)™

The measurements made by the N RSUs are independent of
each other. Under H,, they collectively form a vector y =
Y1, Y2, .. ,yN]T. Based on (3) the vector y follows a multi-
variate normal distribution given as

f(y|Ho) ~ N(u, 2), (5)

where u = [u,, uo,..., uN]T is the mean RSS vector under
H,, and £ = U%IN is the covariance matrix with I as the

identity matrix.

Under H;, a malicious vehicle spoofs its claimed location.
It reports its claimed location to be at a minimum distance
r away from his true location. As an example scenario -
we can think of the malicious vehicle pretending to be on
the road while it actually is placed off in a nearby street.
The RSS value measured by the i-th RSU from a malicious
vehicle, y;, is given by

yi:Ui+wi7 i:1727"'7N7 (6)
where v; is given by
dt
vi = pa,~107 logyq () ™

and d! is the distance of its true location to the i-th RSU,
given by

di = \/(sct — i)+ (e — i)

The measurements made by N RSUs are independent of
each other. Under H;, they collectively form a vector y =
Wy, Y2,--- ,yN]T. From (6), vector y follows a multi-variate
normal distribution given as

f(y|H1) ~ N(Va Z): (8)
, U N}T is the mean RSS vector under

where v = [vy, va,...
H.

III. PERFORMANCE ANALYSIS

The outcome of an LVS is a binary result i.e. legitimate
or malicious. This is different from a localization system
where the output is an estimated location. We measure the
performance of our LVS using two methodologies; through
information theoretic analysis similar to [22] and, through
the newly designed ML-LVS method which makes use of
machine-learning techniques. In both the cases, a Bayes
average cost function is chosen as the performance metric
for LVS in terms of ‘Total Error’. The Total Error is given
by

§=p(Ho)ax+p(H1)(1 - B), )

where p(H,) and p(H,) are the a priori probabilities of
occurrences of H, (i.e. legitimate vehicle) and H; (i.e.
malicious vehicle), respectively. In this work, we assume the
legitimate and the malicious vehicles in equal proportions so
both p(H,) and p(H1) are equal to 0.5. o represents the False
Positive Rate (the rate of legitimate vehicles being detected
incorrectly) and 3 represents the Detection Rate (the rate
of malicious vehicles being detected correctly). Equation (9)
therefore takes the form

£=050+0.5(1-B). (10)



A. Information-theoretic LVS

We will refer to the information-theoretic analysis as the
Likelihood Ratio Test (LRT) method from now on. The LRT
method requires some parameters and channel information
to be available in advance. This information includes the
pathloss exponent ~, the mean RSS vectors as highlighted
in the system model, and the LRT decision threshold /¢, It
has been proven elsewhere that the LRT method achieves
the optimum detection results for a given false positive rate
[23]]. This leads to the conclusion that the LRT minimizes the
Total Error and maximizes the mutual information between
input and output of the LVS [24]]. We follow decision rule
given below for the LRT method

D,

p(y|HO) D(J
where A (y) is the likelihood ratio, and Dy and D, are the
binary decision values (i.e., whether the vehicle is legitimate

or malicious), while p(y|H,), and p(y|#1) are given by

1 1 -1
H,) = e~ 2(y—w)x (y—w) 12
p(y[Ho) RN (12)
1 1 -1
)= —— e 2T, 13
p(y|H1) Vory/|Z] (13)

where |X| is determinant of . The decision rule given in
(1) can be reformulated as
—3-vIty-v) D
N 2 >
AW = —pmerow < b
Do
We assume that the malicious vehicle optimizes its claimed
location. That is, through an optimization strategy, it min-
imizes its probability of being detected by the LVS. We
assume in this work that the malicious vehicle’s optimum
claimed location is constrained to be within the transmission
range of the RSUs. To optimize its claimed location under
such a constraint, the malicious vehicle minimizes the KL di-
vergence between f(y|H1) to f(y|H,) [25]. This divergence
is as given below

(14)

Dic(F31H) 1 (y1Ho) = / ol n TR,
= 2 (v—u)” =7 (v—u).
15)

Then, the optimal claimed location x} for the malicious
vehicle can be obtained through
x; = argmin Dycp (f(y[H1)llf(y]Ho))-

[Ix:—xXe|[ 27

(16)

B. ML-LVS

This section highlights the novel approach used to design
a classification framework for the verification of a vehicle’s
claimed location through supervised ML techniques. Feed-
forward neural networks are well known for their perfor-
mance in classification problems. We use a multi-layer feed-
forward neural network for the binary classification of a
vehicle as either legitimate or malicious.

The framework considers y (the RSS observation vector
measured in the field) and the vehicle’s claimed location as
inputs. Based on a series of trials with changing architectures
for the ML-LVS, we decided upon a framework that has the
raw inputs (RSS, claimed locations, and RSUs locations), a
10-neuron hidden layer, and a 1-neuron binary output layer.
We also experimented with different transfer functions in
various layers of the ML-LVS. The results shown in the
next section adopted the hyperbolic tangent-sigmoid transfer
function in the hidden layer and the linear transfer function
in the output layer. The ML-LVS utilized the Levenberg-
Marquardt as its backpropagation algorithm.

IV. NUMERICAL RESULTS

RSS measurements from the vehicles were collected in a
150 X 150 meters area by 3 RSUs (an area that mimics a
wide cross section of 2 highways). 3 devices were used as 3
RSUs to independently measure the RSS from the vehicles in
the field at a frequency of 1 Hz simultaneously, i.e., one RSS
measurement per second per RSU. The origin of the area is
set to the location of RSU-1 as shown in Fig. [l Moving
Wi-Fi modems with a single antenna and an attached GPS
(used to record the vehicle’s location at a frequency of 1 Hz)
was used to mimic slow-moving vehicles. The GPS locations
of these ‘vehicles’ are reported to the RSUs every second.
The RSS measurements by individual RSUs and the vehicles’
GPS locations were combined with the help of time stamps
(available with both the measured RSS and the vehicles’ GPS
locations).

The pathloss exponent + is required for the LRT, and is
determined directly from the field measurements via a linear
fit of the measured RSS values against the logarithm of the
distance to a RSU. u and v are calculated using (@) and
under the corresponding hypothesis. o7 is calculated using
the mean RSS vector and the RSS measurements (made by
each RSU).

The RSS measurements data is randomized and equally
divided it into two halves with one half representing the legit-
imate vehicles and the other half representing the malicious
vehicles. To launch a location-spoofing attack, the malicious
vehicles spoof their locations by a minimum distance of
r meters away from their true locations. Random claimed
locations for the malicious vehicles are simulated by taking
into account the distance constraint r. Fig. |1| highlights true
and simulated random claimed locations for a sample of the
malicious vehicles.

We now present some numerical results based on our
analysis from the LRT and ML-LVS. In Fig. 2] we assume
that the malicious vehicles randomly forge their claimed
locations at a minimum distance r away from their true
locations and within the transmission range of the RSUs.
The Total Error is plotted against the number of training data
used. For the LRT based LVS, we calculate the Total Error,
the false positive rate, and the detection rate under different
values of 7 using and (T4). The Total Error for r equal
to 100m, 75m and 50m, is 0.05, 0.22, and 0.29, respectively
(different colored-dashed arrows).



RSU-2

Malicious vehicle
claimed locations. RSU-1

LY
W

Fig. 1. Malicious vehicles fake their locations to launch a location-
spoofing attack. They report their claimed locations r meters away from
their respective true locations. This figure only shows a sample of the
malicious vehicles’ true locations, their simulated random claimed locations
at r meters, and the true locations for the RSUs. The value of r in this
figure is 50 meters.

The data considered for the LRT based LVS in Fig. [2] is
also considered for the ML-LVS. Unlike the LRT method
where the LVS requires a priori information for the channel
parameters, the ML-LVS only uses the measured RSS (at
the RSUs) and the vehicles’ reported claimed locations. This
data which has genuine and malicious vehicles in equal
proportions is randomized and divided into two data sets;
a training set with 80% of the entire data, and a test set with
the remaining 20% of the data. The training set also has
data labels (genuine or malicious). These data labels indicate
whether particular training sample represents a legitimate or
malicious vehicle. Use of such data is required to set the
weights and biases for the ML-LVS in the training phase.
On the other hand, the data in the test set has no such
labels which means that we have no a priori information
if a particular sample belongs to a legitimate or a malicious
vehicle. Once trained, the ML-LVS can be used to test the
data in the test set for classification of the vehicles.

In the training phase in Fig. 2] we supply the ML-LVS
with training samples from the training data at a rate of
one random training sample per unit time and plot the Total
Error for the test set after each unit time. The ML-LVS’s
backpropagation algorithm terminates the training phase once
a threshold for any of its internally set parameters is met.
We observe that in most cases the ‘maximum validation
failures’ parameter of the backpropagation algorithm (the
maximum number of sequential iterations in which the ML-
LVS’s performance fails to improve) is reached, and this
terminates the training phase. We set this parameter to 6.
This trained ML-LVS is then used to classify vehicles in the
test set as either legitimate or malicious. This procedure is
repeated for each value of the training data shown in Fig. 2]
As shown in Fig. |ZL as expected, the Total Error for the test
set improves as the training continues. The final Total Error
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Fig. 2. A comparison study where an ML-LVS outperforms an LRT based
LVS. The ML-LVS with no a priori channel information achieves a final
Total Error (indicated by solid lines) of 0.01, 0.02, and 0.06, for r equal
to 100m, 75m, and 50m, respectively, for the data in the test set. On the
other hand, the LRT based LVS with a priori channel information achieves
a Total Error (indicated by dashed arrows) of 0.05, 0.22, and 0.29, for »
100m, 75m, and 50m, respectively, for the data in the test set. Note, in these
calculations, the malicious vehicles do not optimize their claimed locations.
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Fig. 3. A comparison study of the LRT based LVS with ML-LVS as in
Fig. |Z| except the malicious vehicles now optimize their claimed locations

for the test set (after 500 training samples) using the ML-
LVS for r equal to 100m, 75m and 50m, is 0.01, 0.02, and
0.06, respectively. It is evident from Fig. 2] that the ML-LVS
with no a priori channel information has much-improved
performance relative to the LRT based LVS.

We now assume that the malicious vehicles can overhear
the communication between the legitimate vehicles and the
RSUs. The malicious vehicles use this information to best
optimize their claimed locations (X, = x) prior launching
a location-spoofing attack. That is, they set their claimed



location using (I3) so as to minimize their probability of
being marked malicious by the LVS.

In Fig. 3] we compare the performances of the ML-LVS
and the LRT based LVS. We see again that the ML-LVS
still outperforms the LRT based LVS. However, we notice
a rather counter-intuitive finding where, compared to Fig. 2]
the Total Error for the ML-LVS improves much faster. This
counter intuitive finding is as a result of the geometry of
the RSUs in this specific experiment. This geometry leads
to a clustering in the malicious vehicles’ claimed location
settings. In general (i.e. more general RSU geometries), if
the malicious vehicles’ optimize their claimed locations, the
Total Error for the ML-LVS is expected to take longer to
reach its asymptotic value.

In future work we plan to integrate Support Vector Ma-
chines (SVM) into the designed neural-network framework of
our ML-LVS. We also plan to deploy this modified ML-LVS
in more complex channel fading environments such as those
possessing Rician fading channels. These additional studies
are likely to provide for even more performance gains in
ML-LVSs relative to LRT based LVSs.

V. CONCLUSION

Information-theoretic LVS frameworks, due to their op-
erating limitations, are not practical in many real-world
scenarios. To address this gap, we have proposed the use of
a ML approach to location verification. This new approach
is particulary useful since unlike an information-theoretic
LVS, a ML-LVS does not require a priori information on
the channel parameters. Additionally, a ML-LVS can adapt
itself to any changing channel conditions.

Using real-world RSS data, we have shown for the first
time how a deployed ML-LVS outperforms state-of-the-art
information-theoretic LVS. Further, we have shown how this
result holds even when the adversary optimizes its attack
location. Future work in this area will help us develop a
fully robust state-of-the-art artificially intelligent LVS, an
LVS which will be wholly practical in terms of its location
verification performance in a wide range of future wireless
networks beyond the networks we have studied here.

We believe the novel approach for enhancing the per-
formance of real-world LVSs that we have developed here
potentially forms the foundation for all future works in the
important area of wireless location verification.
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