
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Improving video-on-demand server efficiency through stream tapping

Permalink
https://escholarship.org/uc/item/2ts0s1gf

Authors
Carter, SW
Long, DDE

Publication Date
1997

DOI
10.1109/icccn.1997.623313

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ts0s1gf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Improving Video-on-Demand Server Efficiency Through Stream Tapping

Steven W. Carter and Darrell D. E. Longt
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064

Abstract
EfJiciency is essential for Video-on-Demand

be successful. Conventional VOD sewers are i
they dedicate a disk stream for each client, quickly using
up all available streams. Howevel; several systems have

sewer containing video data the client can use. This is ac-
complished through the use of a small buffer
set-top box and requires less than 20% of th
width used by conventional systems for p
We present a description and analysis of
ping system as well as comparisons between it and other
eficiency-improving systems.

1 Introduction
Video-on-Demand (VOD) allows a clien

a VOD server using a television set-
STB to make a selection from the
and begin watching the selected vid
of time-ideally, instantaneously.

Unfortunately, VOD has run into some problems. Many
companies jumped into the market only to quickly jump
back out. Others entered with high expectations only to
drastically cut back on what they had originally intended.
The reason is cost: VOD is an expensive business to start
up. Any system that can use existing hardware more effi-
ciently or that can reduce the amount of hardware needed
is very valuable.

Market tests suggest that VOD will be competitive with
video rentals, cable movie channels, pay-per-view chan-
nels, and satellite television [l]. Thus it is also important
for the VOD server to be run as efficiently as possible so it
can support the large number of clients expected to use it.

There are two primary measures of VOD server effi-
ciency: latency, the average time a client must wait before
it can begin viewing its request, and bandwidth, the amount
of disk (or network) resources used by the server. This

tThis research was supported by the Office of Naval Research under
Grant N00014-92-J-1807.

poses difficulties for the VOD provider since minimizing
not necessarily minimize the other. For example,
provider might have the option of showing a par-

ticular video every five minutes or every ten minutes. The
first option has half the latency but requires twice the band-

ping and other efficiency-improving systems: display
stream, a stream of data a client receives at its STB,
and disk stream, a stream of data the VOD server reads
from local (disk) storage. The number of simultaneous
disk streams a VOD server can support while maintain-
ing Quality-of-Service (QOS) is limited, and so the careful

ese streams is essential.
ventional VOD systems use no strategy at all when

disk streams. They simply reserve a disk
h display stream. While this is the simplest

ystems, including stream tapping, attempt to ser-
vice multiple display streams from each disk stream. This
makes more efficient use of the available disk bandwidth
on the VOD server, and with more clients able to use the
server at any one time, latencies are usually lower as well.

What makes stream tapping unique is how it goes about
increasing the number of display streams for each disk
stream. The client STB initially receives its own disk
stream, but then it is allowed to aggressively “tap” into
other disk streams from the VOD server. This tapped data
is then stored in a small local buffer until the STB needs
it. Notice that every time the STB is able to tap data, the
initial disk stream, which had only one display stream, is
needed for less time, and the tapped disk stream gains an-
other display stream over the time the STB is able to tap
data from it. This increases the average number of display
streams per disk stream.

2 Related Work
Several other systems for improving VOD server effi-

ciency have been proposed, and we describe some of them
below. Some of the systems use several techniques. We

, it is also the least efficient.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

distinguish them by using the most fundamental idea of
the system.
2.1 Batching

A simple but effective technique for improving VOD
server efficiency is known as batching [2,3]. When the
VOD server has multiple requests for the same video in its
request queue, it may service them all (that is, batch the
requests together) by multicasting the video to all of the
requesting clients. However, this strategy will not attempt
to make efficient use of the server’s disk streams until all
of the streams are in use.
2.2 Staggered Broadcasting

In this system [4,5], a disk stream for a video is only
started at regular intervals (such as every 10 minutes), and
all requests for the video received during the current inter-
val are batched together. While this makes very good use of
the server’s available bandwidth, it guarantees a non-zero
average Iatency.
2.3 Pyramid Broadcasting

Pyramid broadcasting [6,7] is a variation on staggered
broadcasting. It also reserves a certain number of disk
streams for particular videos, but rather than having the
disk streams read the entire video, it has the streams read
multiplicatively increasing segments of the video. The
client STB must then jump from stream to stream in order
to receive the entire video.

Pyramid broadcasting reduces the latency found in stag-
gered broadcasting, but in order for the STB to receive each
segment in time, the system requires that the video data
be transferred at a rate much higher than it is consumed.
The STB also requires a local buffer of moderate size: for
MPEG-1, the buffer must be between 250 and 600 MB,
depending on the version of pyramid broadcasting used.
2.4 Piggybacking

In this system [8,9], the display rates of videos are
changed by f 5 % (little enough so human observers should
not notice) so that two existing disk streams can be
“merged” into one. However, the slow merging rate (two
streams 3 minutes apart take 30 minutes to merge) limits
this system’s potential.
2.5 Asynchronous Multicasting

Asynchronous multicasting [lo, 113 allows a client to
join a multicast group for a video after the video has
started. The VOD server accomplishes this by breaking up
the video into segments of length S and sending out a seg-
ment every S minutes-but using a transfer rate N times
the consumption rate of the video, so the transfer takes only
SIN minutes. This allows a client to join a multicast group
late, store the segments that are current for the other mem-
bers of the group in a local buffer until they are needed,
and use the gaps between the segments to receive segments
which it missed.

The buffer for asynchronous multicasting must be able
to hold at least NS minutes of video data. Using N = 3
and S = 6 [l l] , this is larger than 200 MB. Also, since
the client can only receive one segment at a time (due to
the high transfer rate), in order to join an existing mul-
ticast group it must receive its first segment before the
group receives the N” segment of the video. That means a
client can only join a multicast group that started less than
(N - 1)s - S/N minutes in the past.

Stream tapping uses a variation on asynchronous mul-
ticasting (see §3.1), but it does not break the video into
segments, does not make any assumptions about the trans-
fer rate, makes more efficient use of the client buffer, and
requires a lower data rate at the client.

3 Stream Tapping
The key idea behind stream tapping is that clients are

not restricted to their assigned disk stream. If other disk
streams for the same video are active on the VOD server,
clients are allowed to “tap” into them, storing the tapped
data in a local buffer until it is needed. By using existing
disk streams as much as possible, the clients minimize the
amount of time they require their own disk streams. The
rest of this section elaborates upon how this strategy works.
3.1 Definitions

Several of the parameters used by stream tapping are
defined below:

,6 the size of the STB buffer, measured in minutes of
video data. Measuring in time allows us to ignore the
particulars of the video encoding used. We assume
that all STB’s have the same buffer size, although this
is not required.

N the number of videos offered by the VOD server.

Li the length of video i, in minutes, for 1 5 i 5 N .

S the maximum number of disk streams the VOD server
can support.

C the maximum number of disk streams the client STB
can support.

X the arrival rate of requests at the VOD server, mea-
sured in requests per hour.

A the difference in time, in minutes, between the current
request for a video and the last request for the same
video which required an original disk stream.

Of the above values, only C, N, and S are required to have
integer values.

Stream tapping also divides disk streams into three
types. These types are defined as follows:

201

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

disk in its entirety.

ored in the STB’s

original stream for
A > p). This type

e of disk stream (e

202

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

This decision can be made based on the request’s video
group. A video group is the set of disk streams for the re-
quested video, starting with the most recent original stream
and including all subsequent tap streams. With a minimal
amount of extra storage (one counter for each video), the
VOD server can keep track of A,, the scheduling rate of
streams in the group.

Given A, and A, the VOD server estimates two values:

0 The average disk usage of a video group which exists
for A + 1/A, minutes and has a scheduling rate of
A,.

0 The optimal average disk usage of a video group
which exists for less than or equal to A minutes and
has a scheduling rate of A,.

The first is the average usage of the group with the request,
and the second is the best average usage of the group with-
out the request. If the first valve is less than the second,
the request is assigned a partial tap stream; otherwise it is
assigned an original stream.

Once all of the requests have been assigned stream
types, the VOD server will know deterministically the disk
scheduling and usage required by each (for this iteration).
It can then use this information to order the requests in the
queue and to determine which requests can be serviced.
3.3 Other Options

With the basic part of the stream tapping system, the
client STB need only receive at most two disk streams at
any one time. If it can receive more without affecting the
QOS requirements, then two other options can be used.

The first of these options is called extra tapping. It al-
lows a stream to tap data from any disk stream on the video
server, not just from the original stream in its video group.
This can only be performed under two conditions: the new
video data does not displace any data the STB expects to
be in its buffer, and the new video data will still be in the
buffer when it is needed. Together these conditions mean
that extra tapping can be used only during the first p min-
utes of full and partial taps.

An example of extra tapping is shown in Figure 2. The
buffer size is 10 minutes, and B and C are full tap streams
starting, respectively, 5 and 7 minutes after original stream
A. The before part of the figure shows the video data
(light gray) that the STB receiving stream C can tap from
stream B. The after part shows the only parts of the full
tap streams that need to be reserved on the VOD server.

The second option is called stream stacking. When an
STB has data in its buffer to which it is trying to “catch up,”
and when it also has extra space in its buffer, it can use any
available disk streams on the VOD server to help load in
more quickly the data it needs. This does not change the

I After

I Before

IO 20 30 40

Time (in mm)

C

[B
‘ A

I IO 20 30 40

Time (in min)

Figure 2: Extra tapping: A is an original stream
and B and C are full tap streams to A. The lightly
shaded area indicates the part of B which C can
tap.

number of disk minutes required by the stream, but it re-
arranges when they take place, potentially avoiding future
bandwidth contention.

Figure 3 provides an example of stream stacking. The
buffer size is 10 minutes, and B is a full tap stream starting
5 minutes after original stream A. Since the STB receiving
B only needs to reserve half of its buffer for stream A’s
data, it can use the rest of the buffer to more quickly load
the first five minutes of the video. In this example, we
assume stream E is available, and that the STB receiving
B is able to use it for two minutes before another stream
reserves it. The before part of the figure shows the part of
stream B (light gray) that is read by stream E, and the after
part shows how stream B becomes available two minutes
earlier than it would have otherwise.

4 Simulation
We analyzed the stream tapping system using simula-

tion. Each run of the simulation consisted of a two-hour
warm-up period followed by a twelve-hour interval during
which statistics were kept. Each data point presented in
the next section is the mean average of five such runs. This
kept the variance of the values to (typically) less than 1 %.

4.1 Videos
The length of each video was modeled using a normal

distribution with a mean of 110 minutes and a standard
deviation of 10 minutes. These lengths were capped at a
minimum of 90 minutes and a maximum of 180 minutes to
keep the values realistic.

The probability of each video was modeled using a
Zipf-like distribution. This distribution was recommended
by Drapeau et al. [12], and as in other studies [2,91 we
configured the distribution to more closely fit empirical

203

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

I I Before I
E

B
$ B

A

10 20 30 40

Time (in nun)

5

and B is a full tap stream. The lightly shaded area
indicates the part of

ith interarrival time

ceived requests, serviced reques
sources, queued requests if it d

p o p u l ~ future.

about the server,
effects of the ser

ve its effects from the res hour before it even begins to generate

204

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

Lambda= 3 -
Lambda= 12 -+-

Lambda = 120 A-.-

Lambda= 30 .e...
Lambda= 60 *-

1
\ -... ~_,___A._.-.---.- ,

........... I, A--- * *

....
........... e.-- o-

....
+-------

-x-- --.. *
10

e.-

+------ + _.__._ ..__..
+--- 6

4

n l I
5 10 15 20 25 30 35 40

Buffer Size (min)

Figure 4: Effects of the STB buffer size on disk
usage (N = 1, S = 00).

10 I i

Lambda=300 -
Lambda = 375 -+---

Lambda = 450 -e--
Lambda = 525 -* -
Lambda = 600 -*

Figure 5: Effects of the STB buffer size on latency.

Figure 6 shows how the number of disk streams on the
VOD server affects latency. The arrival rates are given as
a percentage of those streams per hour. This allows each
arrival rate in the figure to be meaningful. Unsurprisingly,
the VOD server performs much better as it receives more
disk streams. This is simply because increasing the num-
ber of requests for a video by some factor does not also
increase the bandwidth used by the video by the same fac-
tor. This is one reason that stream tapping scales well.

Figure 7 shows how much disk bandwidth is saved by
using stream tapping instead of a conventional system. We
could compare latencies as well, but for any arrival rate that
gives non-zero latencies for stream tapping, a conventional
system generates an infinite queue. Note that stream tap-
ping saves over 80% when the interarrival time is 2 minutes
or less (that is, when the video is popular), and even saves
15% when the interarrival time is 60 minutes.

Figure 8 compares stream tapping to the two broadcast-
ing systems. Because of their deterministic nature, it is

100 200 300 400 500 600 700
Maximum Server Streams

Figure 6: Effects of the number of disk streams
on the VOD server latency.

possible to write functions for latency based on the disk
bandwidth (measured in streams) provided the two broad-
casting systems. Given a video i, we used

hi
2s

L,(S) = -

for staggered broadcasting and

for pyramid broadcasting [7]. Note that even with the high
arrival rate (a request every ten seconds) stream tapping
outperformed both broadcasting systems given sufficient
disk streams.

Figures 9 and 10 compare stream tapping to batching
and asynchronous multicasting. We estimated the per-
formance of asynchronous multicasting by modeling it as
stream tapping with only full tap streams. This provides an
upper bound on its performance since, using a 10-minute
buffer, a request in asynchronous multicasting can only
join a multicast group for a video that started less than 6-7
minutes in the past. Our model increases this to 10 min-
utes.

Figure 9 compares the three systems using disk band-
width. It is probably a little misleading since by allowing
the VOD server unlimited disk streams to measure usage
without contention, the server never has any requests in its
queue, and thus batching in this case performs exactly the
same as a conventional system. However, in both Figures 9
and 10, stream tapping handily outperforms the other sys-
tems.

The only system that we could not compare stream tap-
ping to directly was piggybacking. However, we note that
the "simple merging policy" [8] is essentially the same as
stream tapping using only full taps and no options, but

205

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

10

rigs m
d of 1,

s = 00).

45 r I
Staggered B

Pyramid B
Stre

35

where the number of dis

system called stream t

the average client latency fo
it

Requ tha

0 Performs as well
tems under a var

Arnval Rate (per hour)

F
a
(N = 1, s = 00).

Figure 10:
asynchronous multicasting, and stream tapping.

206

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

References [141 Steven W. Carter and Darrell D. E. Long. Stream tapping:
[l] James R. Allen, Blake L. Heltai, Arthur H. Koenig, Don- a system for improving efficiency on a video-on-demand

ald F. Snow, and James R. Watson. VCTV: a video-on- server. Technical Report UCSC-CRL-97-11, University
demand market test. AT&T Technical Joumal, 72(1):7-14, of California, Santa Cruz, April 1997.
January 1993.

[2] Asit Dan, Dinkar Sitaram, and Perwez Shahabuddin. Dy-
namic batching policies for an on-demand video server.
Multimedia Systems, 4(3):112-21, June 1996.

[3] Charu C. Aggarwal, Joel L. Wolf, and Philip S. Yu. On opti-
mal batching policies for video-on-demand storage servers.
In Proceedings of the Intemational Conference on Multi-
media Computing and Systems, pages 253-8, Hiroshima,
Japan, June 1996. IEEE Computer Society Press.

[4] Kevin C. Almeroth and Mostafa H. Ammar. The use of mul-
ticast delivery to provide a scalable and interactive video-
on-demand service. IEEE Joumal on Selected Areas in
Communications, 14(5):1110-22, August 1996.

[5] Tzi-cker Chiueh and Chung-ho tu . A periodic broadcasting
approach to video-on-demand service. Proceedings of the
SPIE - The Intemational Society for Optical Engineering,

[6] S. Viswanathan and T. Imielinski. Metropolitan area video-
on-demand service using pyramid broadcasting. Multime-
dia Systems, 4(4): 197-208, August 1996.

[7] Charu C. Aggarwal, Joel L. Wolf, and Philip S. Yu. A
permutation-based pyramid broadcasting scheme for video-
on-demand systems. In Proceedings of the Intemational
Conference on Multimedia Computing and Systems, pages
118-26, Hiroshima, Japan, June 1996. IEEE Computer So-
ciety Press.

[8] Leana Golubchik, John C. S. Lui, and Richard R. Muntz.
Adaptive piggybacking: a novel technique for data sharing
in video-on-demand storage servers. Multimedia Systems,
4(30): 140-55, June 1996.

[9] Charu C. Aggarwal, Joel L. Wolf, and Philip S . Yu. On
optimal piggyback merging policies for video-on-demand
systems. In Proceedings of the Intemational Conference on
Multimedia Systems, pages 253-8, Hiroshima, Japan, June
1996. IEEE Computer Society Press.

[lo] Heekyoung Woo and Chong-Kwon Kim. Multicast schedul-
ing for VOD services. Multimedia Tools and Applications,

[1 11 Hari Kalva and Borko Furht. Techniques for improving the
capacity of video-on-demand systems. In Proceedings of
the 29th Annual Hawaii Intemational Conference on Sys-
tem Sciences, pages 308-15, Wailea, HI, USA, January
1996. IEEE Computer Society Press.

[12] Ann L. Drapeau, David A. Patterson, and Randy H. Katz.
Toward workload characterization of video server and digi-
tial library applications. I994 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems,
22(1):2745, May 1994.

2615: 162-9, 1996.

2(2):157-171, March 1996.

[13] Kdeo Store Magazine, December 13, 1992.

207

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore. Restrictions apply.

