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Improving Video-on-Demand Server Efficiency Through Stream Tapping 

Steven W. Carter and Darrell D. E. Longt 
Department of Computer Science 

University of California, Santa Cruz 
Santa Cruz, CA 95064 

Abstract 
EfJiciency is essential for Video-on-Demand 

be successful. Conventional VOD sewers are i 
they dedicate a disk stream for each client, quickly using 
up all available streams. Howevel; several systems have 

sewer containing video data the client can use. This is ac- 
complished through the use of a small buffer 
set-top box and requires less than 20% of th 
width used by conventional systems for p 
We present a description and analysis of 
ping system as well as comparisons between it and other 
eficiency-improving systems. 

1 Introduction 
Video-on-Demand (VOD) allows a clien 

a VOD server using a television set- 
STB to make a selection from the 
and begin watching the selected vid 
of time-ideally, instantaneously. 

Unfortunately, VOD has run into some problems. Many 
companies jumped into the market only to quickly jump 
back out. Others entered with high expectations only to 
drastically cut back on what they had originally intended. 
The reason is cost: VOD is an expensive business to start 
up. Any system that can use existing hardware more effi- 
ciently or that can reduce the amount of hardware needed 
is very valuable. 

Market tests suggest that VOD will be competitive with 
video rentals, cable movie channels, pay-per-view chan- 
nels, and satellite television [l]. Thus  it is also important 
for the VOD server to be run as efficiently as possible so it 
can support the large number of clients expected to use it. 

There are two primary measures of VOD server effi- 
ciency: latency, the average time a client must wait before 
it can begin viewing its request, and bandwidth, the amount 
of disk (or network) resources used by the server. This 

tThis research was supported by the Office of Naval Research under 
Grant N00014-92-J-1807. 

poses difficulties for the VOD provider since minimizing 
not necessarily minimize the other. For example, 
provider might have the option of showing a par- 

ticular video every five minutes or every ten minutes. The 
first option has half the latency but requires twice the band- 

ping and other efficiency-improving systems: display 
stream, a stream of data a client receives at its STB, 
and disk stream, a stream of data the VOD server reads 
from local (disk) storage. The number of simultaneous 
disk streams a VOD server can support while maintain- 
ing Quality-of-Service (QOS) is limited, and so the careful 

ese streams is essential. 
ventional VOD systems use no strategy at all when 

disk streams. They simply reserve a disk 
h display stream. While this is the simplest 

ystems, including stream tapping, attempt to ser- 
vice multiple display streams from each disk stream. This 
makes more efficient use of the available disk bandwidth 
on the VOD server, and with more clients able to use the 
server at any one time, latencies are usually lower as well. 

What makes stream tapping unique is how it goes about 
increasing the number of display streams for each disk 
stream. The client STB initially receives its own disk 
stream, but then it is allowed to aggressively “tap” into 
other disk streams from the VOD server. This tapped data 
is then stored in a small local buffer until the STB needs 
it. Notice that every time the STB is able to tap data, the 
initial disk stream, which had only one display stream, is 
needed for less time, and the tapped disk stream gains an- 
other display stream over the time the STB is able to tap 
data from it. This increases the average number of display 
streams per disk stream. 

2 Related Work 
Several other systems for improving VOD server effi- 

ciency have been proposed, and we describe some of them 
below. Some of the systems use several techniques. We 

, it is also the least efficient. 
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distinguish them by using the most fundamental idea of 
the system. 
2.1 Batching 

A simple but effective technique for improving VOD 
server efficiency is known as batching [2,3]. When the 
VOD server has multiple requests for the same video in its 
request queue, it may service them all (that is, batch the 
requests together) by multicasting the video to all of the 
requesting clients. However, this strategy will not attempt 
to make efficient use of the server’s disk streams until all 
of the streams are in use. 
2.2 Staggered Broadcasting 

In this system [4,5], a disk stream for a video is only 
started at regular intervals (such as every 10 minutes), and 
all requests for the video received during the current inter- 
val are batched together. While this makes very good use of 
the server’s available bandwidth, it guarantees a non-zero 
average Iatency. 
2.3 Pyramid Broadcasting 

Pyramid broadcasting [6,7] is a variation on staggered 
broadcasting. It also reserves a certain number of disk 
streams for particular videos, but rather than having the 
disk streams read the entire video, it has the streams read 
multiplicatively increasing segments of the video. The 
client STB must then jump from stream to stream in order 
to receive the entire video. 

Pyramid broadcasting reduces the latency found in stag- 
gered broadcasting, but in order for the STB to receive each 
segment in time, the system requires that the video data 
be transferred at a rate much higher than it is consumed. 
The STB also requires a local buffer of moderate size: for 
MPEG-1, the buffer must be between 250 and 600 MB, 
depending on the version of pyramid broadcasting used. 
2.4 Piggybacking 

In this system [8,9], the display rates of videos are 
changed by f 5 %  (little enough so human observers should 
not notice) so that two existing disk streams can be 
“merged” into one. However, the slow merging rate (two 
streams 3 minutes apart take 30 minutes to merge) limits 
this system’s potential. 
2.5 Asynchronous Multicasting 

Asynchronous multicasting [lo, 113 allows a client to 
join a multicast group for a video after the video has 
started. The VOD server accomplishes this by breaking up 
the video into segments of length S and sending out a seg- 
ment every S minutes-but using a transfer rate N times 
the consumption rate of the video, so the transfer takes only 
SIN minutes. This allows a client to join a multicast group 
late, store the segments that are current for the other mem- 
bers of the group in a local buffer until they are needed, 
and use the gaps between the segments to receive segments 
which it missed. 

The buffer for asynchronous multicasting must be able 
to hold at least NS minutes of video data. Using N = 3 
and S = 6 [ l l ] ,  this is larger than 200 MB. Also, since 
the client can only receive one segment at a time (due to 
the high transfer rate), in order to join an existing mul- 
ticast group it must receive its first segment before the 
group receives the N” segment of the video. That means a 
client can only join a multicast group that started less than 
(N - 1)s - S/N minutes in the past. 

Stream tapping uses a variation on asynchronous mul- 
ticasting (see §3.1), but it does not break the video into 
segments, does not make any assumptions about the trans- 
fer rate, makes more efficient use of the client buffer, and 
requires a lower data rate at the client. 

3 Stream Tapping 
The key idea behind stream tapping is that clients are 

not restricted to their assigned disk stream. If other disk 
streams for the same video are active on the VOD server, 
clients are allowed to “tap” into them, storing the tapped 
data in a local buffer until it is needed. By using existing 
disk streams as much as possible, the clients minimize the 
amount of time they require their own disk streams. The 
rest of this section elaborates upon how this strategy works. 
3.1 Definitions 

Several of the parameters used by stream tapping are 
defined below: 

,6 the size of the STB buffer, measured in minutes of 
video data. Measuring in time allows us to ignore the 
particulars of the video encoding used. We assume 
that all STB’s have the same buffer size, although this 
is not required. 

N the number of videos offered by the VOD server. 

Li the length of video i, in minutes, for 1 5 i 5 N .  

S the maximum number of disk streams the VOD server 
can support. 

C the maximum number of disk streams the client STB 
can support. 

X the arrival rate of requests at the VOD server, mea- 
sured in requests per hour. 

A the difference in time, in minutes, between the current 
request for a video and the last request for the same 
video which required an original disk stream. 

Of the above values, only C,  N, and S are required to have 
integer values. 

Stream tapping also divides disk streams into three 
types. These types are defined as follows: 

201 

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 23,2021 at 00:53:09 UTC from IEEE Xplore.  Restrictions apply. 



disk in its entirety. 

ored in the STB’s 

original stream for 
A > p). This type 

e of disk stream (e 
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This decision can be made based on the request’s video 
group. A video group is the set of disk streams for the re- 
quested video, starting with the most recent original stream 
and including all subsequent tap streams. With a minimal 
amount of extra storage (one counter for each video), the 
VOD server can keep track of A,, the scheduling rate of 
streams in the group. 

Given A, and A, the VOD server estimates two values: 

0 The average disk usage of a video group which exists 
for A + 1/A, minutes and has a scheduling rate of 
A,. 

0 The optimal average disk usage of a video group 
which exists for less than or equal to A minutes and 
has a scheduling rate of A,. 

The first is the average usage of the group with the request, 
and the second is the best average usage of the group with- 
out the request. If the first valve is less than the second, 
the request is assigned a partial tap stream; otherwise it is 
assigned an original stream. 

Once all of the requests have been assigned stream 
types, the VOD server will know deterministically the disk 
scheduling and usage required by each (for this iteration). 
It can then use this information to order the requests in the 
queue and to determine which requests can be serviced. 
3.3 Other Options 

With the basic part of the stream tapping system, the 
client STB need only receive at most two disk streams at 
any one time. If it can receive more without affecting the 
QOS requirements, then two other options can be used. 

The first of these options is called extra tapping. It al- 
lows a stream to tap data from any disk stream on the video 
server, not just from the original stream in its video group. 
This can only be performed under two conditions: the new 
video data does not displace any data the STB expects to 
be in its buffer, and the new video data will still be in the 
buffer when it is needed. Together these conditions mean 
that extra tapping can be used only during the first p min- 
utes of full and partial taps. 

An example of extra tapping is shown in Figure 2. The 
buffer size is 10 minutes, and B and C are full tap streams 
starting, respectively, 5 and 7 minutes after original stream 
A. The before part of the figure shows the video data 
(light gray) that the STB receiving stream C can tap from 
stream B. The after part shows the only parts of the full 
tap streams that need to be reserved on the VOD server. 

The second option is called stream stacking. When an 
STB has data in its buffer to which it is trying to “catch up,” 
and when it also has extra space in its buffer, it can use any 
available disk streams on the VOD server to help load in 
more quickly the data it needs. This does not change the 

I After 

I Before 

IO 20 30 40 

Time (in mm) 

C 

[ B  
‘ A  

I IO 20 30 40 

Time (in min) 

Figure 2: Extra tapping: A is an original stream 
and B and C are full tap streams to A. The lightly 
shaded area indicates the part of B which C can 
tap. 

number of disk minutes required by the stream, but it re- 
arranges when they take place, potentially avoiding future 
bandwidth contention. 

Figure 3 provides an example of stream stacking. The 
buffer size is 10 minutes, and B is a full tap stream starting 
5 minutes after original stream A. Since the STB receiving 
B only needs to reserve half of its buffer for stream A’s 
data, it can use the rest of the buffer to more quickly load 
the first five minutes of the video. In this example, we 
assume stream E is available, and that the STB receiving 
B is able to use it for two minutes before another stream 
reserves it. The before part of the figure shows the part of 
stream B (light gray) that is read by stream E, and the after 
part shows how stream B becomes available two minutes 
earlier than it would have otherwise. 

4 Simulation 
We analyzed the stream tapping system using simula- 

tion. Each run of the simulation consisted of a two-hour 
warm-up period followed by a twelve-hour interval during 
which statistics were kept. Each data point presented in 
the next section is the mean average of five such runs. This 
kept the variance of the values to (typically) less than 1 %. 

4.1 Videos 
The length of each video was modeled using a normal 

distribution with a mean of 110 minutes and a standard 
deviation of 10 minutes. These lengths were capped at a 
minimum of 90 minutes and a maximum of 180 minutes to 
keep the values realistic. 

The probability of each video was modeled using a 
Zipf-like distribution. This distribution was recommended 
by Drapeau et al. [12], and as in other studies [2,91 we 
configured the distribution to more closely fit empirical 
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Figure 4: Effects of the STB buffer size on disk 
usage ( N  = 1, S = 00). 
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Figure 5: Effects of the STB buffer size on latency. 

Figure 6 shows how the number of disk streams on the 
VOD server affects latency. The arrival rates are given as 
a percentage of those streams per hour. This allows each 
arrival rate in the figure to be meaningful. Unsurprisingly, 
the VOD server performs much better as it receives more 
disk streams. This is simply because increasing the num- 
ber of requests for a video by some factor does not also 
increase the bandwidth used by the video by the same fac- 
tor. This is one reason that stream tapping scales well. 

Figure 7 shows how much disk bandwidth is saved by 
using stream tapping instead of a conventional system. We 
could compare latencies as well, but for any arrival rate that 
gives non-zero latencies for stream tapping, a conventional 
system generates an infinite queue. Note that stream tap- 
ping saves over 80% when the interarrival time is 2 minutes 
or less (that is, when the video is popular), and even saves 
15% when the interarrival time is 60 minutes. 

Figure 8 compares stream tapping to the two broadcast- 
ing systems. Because of their deterministic nature, it is 

100 200 300 400 500 600 700 
Maximum Server Streams 

Figure 6: Effects of the number of disk streams 
on the VOD server latency. 

possible to write functions for latency based on the disk 
bandwidth (measured in streams) provided the two broad- 
casting systems. Given a video i, we used 

hi 
2s 

L,(S) = - 

for staggered broadcasting and 

for pyramid broadcasting [7]. Note that even with the high 
arrival rate (a request every ten seconds) stream tapping 
outperformed both broadcasting systems given sufficient 
disk streams. 

Figures 9 and 10 compare stream tapping to batching 
and asynchronous multicasting. We estimated the per- 
formance of asynchronous multicasting by modeling it as 
stream tapping with only full tap streams. This provides an 
upper bound on its performance since, using a 10-minute 
buffer, a request in asynchronous multicasting can only 
join a multicast group for a video that started less than 6-7 
minutes in the past. Our model increases this to 10 min- 
utes. 

Figure 9 compares the three systems using disk band- 
width. It is probably a little misleading since by allowing 
the VOD server unlimited disk streams to measure usage 
without contention, the server never has any requests in its 
queue, and thus batching in this case performs exactly the 
same as a conventional system. However, in both Figures 9 
and 10, stream tapping handily outperforms the other sys- 
tems. 

The only system that we could not compare stream tap- 
ping to directly was piggybacking. However, we note that 
the "simple merging policy" [8] is essentially the same as 
stream tapping using only full taps and no options, but 
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