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Abstract 

We consider the transmission of a message of size T from a source to a destination with 
guarantees on the end-to-end delay over a computer network with n nodes and rn links. There 
are three sources of delays: (a) propagation delays along the links, (b) delays due to bandwidth 
availability on the links, and (c) queuing delays at the intermediate nodes. First, we consider 
that delays on various links and nodes are given as functions of the message size. If the delay in 
(b) is a non-increasing function of the bandwidth, we propose O(rn2 + mn logn) time algorithm 
to compute a path with the minimum end-to-end delay for any given message size r .  We then 
consider that the queuing delay in (c) is a random variable correlated with the message size 
according to an unknown distribution. At each node, the measurements of queuing delays and 
message sizes are available. We propose two algorithms to compute paths whose delays are 
close to optimal delays with a high probability, irrespective of the distribution of the delays, 
and based entirely on the measurements of sufficient size. 

Keywords and Phrases: End-to-end delay, quality of service, routing, probably approximately 
correct, path-table. 

1 Introduction 

End-to-end delay guarantees are very important in computer networks that are expected to  support 
a variety of services requiring transmission of messages of varying sizes. In the present networks, 
especially the Internet, such guarantees cannot be provided, and a message can indeed be arbitrarily 
delayed under certain load conditions. In the future, however, newer applications such as medical 
image transfer and real-time instrumentation control over networks, require that messages be sent 
with certain guarantees on the end-to-end delay. Since the requirements can be quite varied, 
different “dedicated” network architectures might be required for various applications. The exact 
nature of the guarantees that can be provided over such networks depends on the delay sources 
and their precise contribution to  the end-to-end delay. 

In this paper, we propose polynomial-time source-based algorithms for computing a path with 
end-to-end delay guarantees under fairly general delay profiles, which are specified either as (de- 
terministic) functions or as measurements of random delay variables. In the first case, we present 
an exact algorithm to  compute a path with the minimum end-to-end delay for any given message 
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size. In the second case, we consider that the transmission is subject to  random queuing delays 
with unknown distributions. Based on the measurements of queuing delays, we propose two algo- 
rithms that yield paths which approximate the optimal paths (computable only under a complete 
knowledge of delay distributions) with a high probability, irrespective of delay distributions. The 
closeness of approximation depends on the sample size and the size of the network. 

We consider a computer network represented by a graph G = (V, E )  with n nodes and m edges 
or links. A message of size r must be transmitted from a source node s to  a destination node d 
with performance guarantees on the end-to-end delay. In a deterministic formulation, a message 
transmitted on the network incurs three types of delays: 

( a )  Link Propagation Delay: For each link e = ( V I ,  Q), there is a link-delay d ( e )  2 0 such that a 
message of unit length sent via e from node 01 at time t will arrive at node 02 at time t+d(e ) .  
The link-delay essentially includes the propagation time of the link. 

( b )  Bandwidth Constrained Delay: Each link e E E has a bandwidth b(e) 2 0. Once initi- 
ated, a message of r units can be sent along link e in g(r ,b(e))  + d(e)  time, where g(r ,b )  
is non-decreasing in r and non-increasing in b. For a simple bandwidth constraint, we have 
g(r ,  b(e) )  = r /b (e )  [5] so that the delay along link e is r / b ( e )  + d(e). 

( e )  Deterministic Queuing Delay: At any node ?I, there is a deterministic queuing delay Q,(T) 

which is a function of the message size r .  

Consider a simple path P ,  from source s = 00 to  destination d = wk, given by (VO, VI), (VI ,  V Z ) ,  

. . . , (vk-1, vk), where (wj, q + 1 )  E E ,  for j = 0, 1,. . . , (k - l), and t10, V I , .  . . , uk are distinct. Subse- 
quently, a simple path is referred to simply as a path. Let ej = (vj ,  uj+1). The bandwidth of this 

path, denoted by b(P) ,  is given by minb(ej), and the delay due to bandwidth is given by g ( r , b ( P ) ) .  
Then, the end-to-end delay of path P in transmitting a message of size r is given by 

k-1 

3 =O 

k-1 k-1 

k-1 k-1 

j=O j = O  
Let us denote d(P) = qV,(r) such that t ( r , P )  = g ( r , b ( P ) )  + d ( P )  + 
q(r ,P) .  We show that a path with the minimum end-to-end delay for any given message size T 

can be computed with time complexity O(m2 + mnlogn). A special case of this problem, when 
q(r ,  P )  = 0 and g ( r ,  b(P)) = r /b(P) ,  for all P ,  has been extensively studied under the appellation 
of the quickest path problem [5, 14, 91. 

The algorithm for the above deterministic formulation is applicable to  special networks wherein 
delay functions are accurately known. In more general networks, however, good estimates may be 
available only for link delays and bandwidths, but the queuing delays are only known approximately 
at best. Typically, the queuing delays depend on the messages from other sources competing to  be 
sent on the same link. In practice, however, empirical measurements of the queuing delays can be 
collected at each node by logging the delays and sizes of all messages routed through it. To address 
the problems of this type, we consider a probabilistic formulation of the problem with the queuing 
delays characterized as follows: 

d(e j )  and q(r ,P)  = 

2 



(e’)  A message of size R arrives at the source s according to  an unknown distribution PR 2 .  At 
any node v, Q ,  and R, are the random variables3 denoting the queuing delay and message 
size distributed according to unknown distributions PQ, and PR,, respectively. Note that 
Q ,  is not a simple function of R, in that for any given value of R, there could be more 
than one value for Q,. The measurements (Q,;I, R,,l) ,  ( Q v ; 2 ,  Rv;2), . . ., (Q,;l, Rv;l) that  are 
independently and identically distributed (iid) according to  the joint distribution PQ~,R,, 
are known at each node v E V. For any given message size R, = r, let G,(T) denote the 
expectation of Q,, i. e. tj,(r) = E[&,IR, = r]. For the second algorithm, we assume that 
tj,(r) is a non-decreasing function of T which informally means that longer messages are likely 
to  be more delayed than shorter ones 4. Note that this condition does not imply that the 
values of &,;i plotted against R,;i are non-decreasing. 

We consider two routing problems under the probabilistic formulation for which the algorithm 
developed under the conditions (a)-(c) can be utilized. The end-to-end delay of path P in trans- 
mitting a message of size R is 

which is a random variable of the joint distributions of queuing delays at various nodes and the 
message size. The expected delay of path P averaged over all message sizes is given by 

Let P* denote a path with the minimum expected end-to-end delay, i.e. T(P*)  = min T ( P ) ,  where 

P is set of all paths between s and d. We present an algorithm to compute a path based entirely 
on iid measurements, such that given a sample of size 

P € P  

we have 
P[IT(P) - T(P*)I 2 E ]  5 s, 

where sup g(r,  b )  TI, sup Q ,  5 ~ 2 ,  and T = m a x ( r 1 , ~ ) .  This performance guarantee means that 

with a high probability the expected delay of the computed path is within E of the optimal expected 
delay irrespective of the underlying distributions. 

T,b V 

We consider the end-to-end delay of a path P for a given message size R given by 

k-1 

TR(P) dR, b(P) )  + d ( P )  -k Qv,IR* 
j = O  

2We denote the random variables by capital letters (e. g. R) and their deterministic counterparts by the corre- 
sponding lower case letter (e. g. T ) .  

3For the existence of Qv the sizes of the external messages arriving at all source nodes (not just s) that are routed 
via 2, be probabilistic (in particular, the existence of PR at s alone is not sufficient). Furthermore, it is assumed that 
for any given R the routing path is deterministically chosen for all sources in the network. 

4This is not true for certain queuing disciplines such as the first-in and first-out. 
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The expected delay of path P for a given message size R is given by 

Let Ps be the path with minimum end-to-end delay for message size R, i.e. T’(P;) = min TR(P). 
P € P  

By using regression estimation, we present an algorithm to compute PR such that 

€or a sufficiently large sample. Informally, this condition guarantees that the delay of PR is close to 
that of Pg with a high probability. Performance guarantees of the type in Eq (1.3) and (1.4) are 
similar in spirit to  those in Probably Approximately Correct (PAC) learning [15, 161. Such results 
are about the best one can expect in scenarios where very little information is available about the 
underlying probability distributions. 

The present problem is a special case of the well-known optimal routing problem [3], and can also 
be posed as a special case of the classical minimum cost flow problem [l] studied in transportation 
and operations research. The main contributions of this paper are polynomial-time algorithms, and 
PAC guarantees based only on measurements, i.e. without the knowledge of distributions. 

A number of Quality of Service (QoS) routing algorithms that provide bounds on end-to-end 
delay and/or transmission rates have been studied based on single paths [18,17] and multiple paths 
[lo, 121. Optimization of network-level parameters is discussed in [lo], and their QoS parameters 
are not deterministic nor distribution-free. In spirit, our problem is a special case of the one 
studied in [?I, where the transmission task is specified by several parameters, but our algorithms 
are polynomial-time computable and source-based. More general variations of the problem are 
discussed in [2, 81, but their guarantees are “soft)’ and are not measurement-based. 

The organization of this paper is as follows. An algorithm for computing the minimum end- 
to-end delay path under the conditions (.)-(e) is presented in Section 2. The problem of random 
queuing delays under the conditions ( a ) ,  ( b ) ,  and (e’) is addressed in Section 3. 

2 Minimum End-To-End Delay Routing 

We now describe an algorithm to compute a path with the minimum end-to-end delay according 
to  Eq. (1.1) for transmitting a message of given size r from s to d. We define an augmented delay 
of an edge e = (01, 02) as dA(e)  = d ( e )  + qvl ( T ) .  Let b l ,  ba, . . . , b, denote the distinct values of the 
bandwidths b(e), e E E. Let G(a) = (V,E(a)) denote the subnetwork where e E E(a)  if and only 
if b(e)  2 a.  Let a s - d shortest path in G(a) denote the shortest delay path based only on the 
augmented delay of the edges (Le. with minimum dA(.) value). Our algorithm Min-Path is based 
on the algorithm of [14] which was originally proposed for the special case when qv(r) = 0, and 

Step 1 of this algorithm is executed by c invocations of Dijkstra’s shortest path algorithm with 
a total complexity O(em + c n l o g n )  using Fibonacci heaps [6]. The cost of step 2 is O(c). Thus the 
complexity of this algorithm is O(m2 f rnnlogn). We establish the correctness of this algorithm 
in the following theorem, which is an extension of the results from [14]. 

st?=,b(P)) = M P ) .  
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Theorem 2.1 Let Pt be a path with the minimum end-to-end delay in G for message size r ,  
i. e. t ( P t )  = mint (P) .  Then the following statements are true: 
(i) Pt is a s - d shortest path in G(b(Pt))  according to the augmented delay dA(.) .  

(ii) Let Pj be a s - d shortest path in G(bj), j = 1,2 , .  . . , e ,  and 

P€P 

g ( r ,  b ( 4 ) )  + d ( 9 )  + d r ,  4) = &(S(T, 3=1 W j ) )  + d(Pj) + q(r, Pj)}. 

Then Pl is a minimum end-to-end delay path in G for the message size r .  

Proof: For Part (i), consider any path PI in G(b(Pt))  which implies b(P1) 2 b(Pt).  This condition 
in turn implies q(r, b(P1)) 5 q(r,  b(Pt)) .  Since Pt is a minimum end-to-end delay path, we have 

q(T7 b(Pt ) )  + d(P t )  + q(T,  p t )  5 q ( T 7  b(P1)) f d(P1) + q(T7p1)7 

which implies d(Pt )  + q(P t , r )  5 d(P1) + q(P1, r ) .  Thus Part (i) is true. 
We now consider Part (ii). For the minimum end-to-end delay path P t ,  we have b(Pt) = bj, E 

{ b l ,  ba, . . . , bc}. By Part (i), Pt is shortest in G(bj,) and Pj, is shortest in G(bj,) by hypothesis. 
Thus we have d(Pt) + q(r,Pt) = d(Pj,) + q(r,Pj,). Furthermore, we have b(Pj,) 2 b ( P )  since 
all edges of G(bj,) have the bandwidth of at least bj,. Thus, we have g(r,b(Pjo)) I: g(r ,b(Pt)) ,  
which implies g(r,b(P',)) + d(Pj,) + q(r,  Pj,) 5 g(r ,  b(Pt))  + d(P t )  + q(r, Pt) .  By the minimization 
hypothesis of the theorem we have g(r ,  b(Pz)) + d(Pi) + q ( r , f i )  5 g(r ,  b(Pj,)) + d(Pjo) + q(r, Pj,). 
In summary, we have t ( r ,  Pl) 5 t ( r ,  Pj,) 5 t ( r ,  Pt). 0 

Although the algorithm appears to  be applicable only to  the cases when a complete knowledge 
of the delays is available, it could be useful when only estimators of the delays are available. 

3 Routing Based on Measurements 

The expected end-to-end delay of path P is given by 

Since the distributions PR and PQ = PQ~~,...Q,, are unknown, the best expected end-to-end delay 
path, P ,  such that T ( P )  = minT(P),  cannot be computed. In this section, we first present a 

method to  compute i, that guarantees the condition in Eq (1.3). The expected end-to-end delay for 
a given message size R can be written as follows 

PEP 

IC-1 

= $ ( E ,  V)) + d(P)  t 4;, (R)  
j=O 

where ijv(r) = EIQwIR = r3 is the regression of Qv on R. Under the additional condition that i jv(r) 
is non-decreasing in r ,  we employ a regression estimator Gv(.) to  compute a path & such that 
TR(~ 'R)  is close to  TR(P;~)  as in Eq (1.4). 

algorithm Min-Path(r) 
1. for j = 1,2, .  . . , e, compute s - d shortest path Pj in G(bj); 
2. compute index k which minimizes {g(r,b(Pj)) + d(Pj) + q(r,  Pj)lj = 1,2, .  . . , e } ;  
3. return PIC as the path with the minimum end-to-end delay; 
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3.1 Best Empirical Path Method 

We consider the empirical end-to-end delay given by 
IC-1 IC-1 4 I 

Note that ?(.) can be computed since it involves only the measured quantities. Then the best 
empiricaE end-to-end delay path is defined by r; = argmin?(P), which is computed using the 

algorithm described in Section 2. Note that P is best on the average based on measurements alone. 

Theorem 3.1 Under the conditions ('a)-(c), given a sample of size 

PEP 

the best empirical path P can be computed in O( m2 + mn log n)  time such that 

P[IT(r;) - T(P*)I 2 E] 5 S, 

where supg(r, b )  5 q, sup QV 5 ~ 2 ,  and T = m a x ( r 1 , ~ ) .  
T , b  V 

Proof: Consider that we have P sup IT(P) - f ' (P)l  2 ~ / 2  < S 

for some S > 0. Then, with probability at least 1 - S, we have IT(P) - p(P)I 5 ~ / 2  for all paths 
simultaneously. By noting that f ' ( P )  5 'i"(P), we have 

[ P € P  1 
T ( P )  5 ? ( P )  + E / 2  5 P ( P )  + E / 2  T ( P )  + E 

with probability 1 - S. Thus we have P[IT(P) - T(P*)I 2 E ]  5 P IT(P) - f'(P)I 2 ~ / 2 ]  . 
We now bound the right hand side as follows 

1 

i=l 
where we have g(b(P))  = J g ( R ,  b ( l ' ) ) d P ~  and G(b(P)) = g(b(P), a), 

I 1 &v = / &vdPQw,Rw and $v = 7 Qv;i 
i=l 

for v E V .  The first term of Eq. (3.1) is upper bounded as follows 

'Here we applied the basic result that P[A + B > €1 + €21 5 P [ A  > €11 + P [ A  > €21 since the event A + B > €1 + €2  

implies that event that either A > €1 or A > €2  (or both); we apply this basic result a number of times in the proofs 
of this section. 
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where the last step follows from by Glivenko-Cantelli Lemma ([16], p. 184)). The second term of 
Eq. (3.1) is upper bounded as follows 

where the first inequality is due to  [PI 5 2n, the second inequality is because there are a t  most n 
nodes in any P, and the third inequality is due to  Glivenko-Cantelli Lemma. In summary, we have 

The sample bound follows by noting that the condition S = can be ensured by choosing 
12 t l n ( & ) .  

Notice that the sample size is proportional to O ( n 3 )  for fixed values of parameters E and S, 
with no knowledge about the underlying delay distributions. In statistics literature, asymptotic 
convergence results are more common. Under the condition of Theorem 3.1, we can show that 
T ( P )  + T(P*) with probability one by a direct application of Borel-Cantelli Lemma [4]. 

3.2 Regression Method 

The path P of previous section does not fully exploit the given value of message size. We now 
present a method that utilizes the correlation information between message size and queuing delay 
by utilizing an estimator &(.) of the regression Qw(.). Intuitively, this method "extrapolates" the 
measurements t o  the present value of R, and computes the corresponding best path. Consider, for 
a given message size R, 

IC-1 

j = O  

Let i ) ~  minimize f~(.), i.e. p(&) = min&(P), which can be computed by the algorithm of 
Section 2. Let Q denote set of all non-decreasing functions, and we consider a particular estimator 

PEP 

&(.) E Q that minimizes the empirical cost function given by - f ( & ; ) l  for f E Q. We 
4EQ 

emphasize that for computing PR it not necessary to  have any measurements at the message size R. 
Thus, a main contribution of the regression method is the computation of paths with performance 
guarantees at message sizes for which measurements may not be available. 

Theorem 3.2 Consider that the regression QW(r) = E[Q,IIZ, = r ]  is non-decreasing in r .  Under 
the conditions (a), (b) and (e'), given a sample of size 

the path PR can be computed in O(m2 t m n l o g n )  time such that P[ITR(PR) - TR(P;)~ L E] I 6, 
where sup Q w  5 r2. 

2, 
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Proof: We have 

By Chebyshev's inequality, we have for any €1 , €2 > 0 ,  

k-1 

?=O 
We now upper bound the right hand side. First, we have TR(&) - TR(P~$)  I lijVj(r) - GVj(r)J.  

By utilizing the result of Vapnik [16] (as in the first part of proof of Theorem 3.1), we have 

We note that Vapnik's capacity of Q is 2 which yields the following bound for any 'u E V (see [16] 
for details) 

P [I&,(&) - &,(R)I > ~ / 2 n ]  L: 18l2e--. 

Thus we have P[ITk(&) - p~(P;i)l  > E ]  5 2"n18Z2e--, which yields the required sample size 
by noting that the condition 6 = a12e-b1 can be ensured by choosing I 2 In (&) . 0 

Using Borel-Cantelli Lemma it can be shown that ITR(&) - TR(P~$)I + 0 with probability one. 
The main objective of this theorem is to  demonstrate that regression estimators can be used to  
provide performance guarantees based on finite samples. Several other regression estimators can 
be used in place of 6. But, to  obtain the required sample size, finite sample results are needed for 
regression estimation; such results are fairly uncommon since most regression results are asymptotic 
(with some exceptions [13, 111). For example, using Nadaraya-Watson estimator 6yw, sample sizes 

are estimated in [13] to  ensure the condition P sup lijv(r) - ~ , " " ( T ) I  > E 5 S under additional 
smoothness conditions on regressions and densities. 

2 1 

[ T  1 
4 Conclusions 

We consider the transmission of a message of size T from a source to  a destination with guarantees 
on the end-to-end delay over a computer network with n nodes and m links. Under fairly general 

8 



conditions, we proposed polynomial-time algorithms to compute paths whose delays are close to 
optimal expected delays with a high probability, irrespective of the distribution of delays. These 
algorithms are obtained by developing efficient algorithms for a general deterministic case, which 
could be of independent interest. Our main motivation is to establish that QoS guarantees in PAC 
framework can be provided under fairly general conditions without the knowledge of distributions. 
Several direct improvements are possible: the sample size estimates can be improved, and more 
sophisticated regression estimation methods can be employed. The main limitation of the proposed 
algorithms is the requirement of “stationarity” of the distributions. Extensions of our algorithms 
to  non-stationary cases can be addressed under certain martingale or mixing conditions. 
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