
A Tunneling Approach to Routing with
Unidirectional Links in Mobile Ad-Hoc Networks

Sanket Nesargi Ravi Prakash
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083-0688.

e-mail: fsanket,ravipg@utdallas.edu

Abstract— Mobile ad hoc networks (MANETs) consist of a set of simi-
lar mobile nodes, communicating with each other using wireless links. As
a node may not be able to directly reach every other node, a packet may
need to traverse multiple wireless links from its source to its destination.
Unidirectional links can occur in such networks. Several existing routing
protocols implicitly assume bidirectional links when making their routing
decisions. Not using unidirectional links can lead to sub-optimal routes.
A tunneling solution to allow efficient operation in ad hoc networks with
unidirectional links is presented. The tunneling solution uses information
gathered by the routing protocol to tunnel packets from the end-point of
the unidirectional link to its source. A naive implementation of tunneling
could lead to loops in the system and a deluge of packets. This is because
when ACKs for link layer messages are tunneled across unidirectional links,
ACKs for them may end up being generated recursively. The solution pre-
sented here prevents such a packet explosion from occurring.
Keywords: mobile ad hoc networks, routing protocols, protocol analysis
and design.

I. INTRODUCTION

A mobile ad hoc network (MANET) is composed of a set of
similar mobile nodes, communicating with each other over wire-
less links. The communication range of each node is finite, due
to which two non-neighbor nodes need multiple hops to com-
municate with each other. As the mobility pattern of the nodes
is often non-deterministic, the network topology is always in a
state of flux and paths between node pairs may change signifi-
cantly over time. Each node has to have the capability to route
packets to any other node. Such networks have been studied in
the past in relation to defense research, often under the name of
Packet Radio Networks.

Significant work has been done in the development of rout-
ing protocols for these networks. Internet drafts exist for proto-
cols such as the Ad Hoc On Demand Distance Vector Routing
(AODV) [12], Dynamic Source Routing (DSR) [7], Temporally-
Ordered Routing Protocol (TORA) [9], Zone Routing Protocol
(ZRP) [10], etc. These algorithms have contributed towards the
understanding of the routing problem and the feasible solution
approaches. However, most of these (except DSR) implicitly
assume the links to be “symmetric” or “bidirectional”. As ex-
plained in [14], some routing protocols may make erroneous
routing decisions if they do not account for the presence of uni-
directional links.

The presence of unidirectional links in the system is a mani-
festation of the signal propagation models in use [5]. The rea-
sons for the presence of these links, and the impact that they
have on the different network layers is analyzed in Section II.

The layer at which the unidirectional property of a link starts
manifesting itself is the data-link layer. At this layer, due to the
unidirectional nature of the link, acknowledgments (ACKs) can-
not be sent in the reverse direction. So, none of the conventional
flow control and reliability mechanisms like the sliding window

protocols can be used. However, if the network is strongly con-
nected (in the graph theoretic sense) and all nodes can reach all
other nodes, connectivity information available at the network
layer can be used to send the MAC layer acknowledgements
as described in [3]. If this approach is adopted without care,
it could potentially cause looping and packet explosion as de-
scribed in Section IV-C.

The rest of the paper is organized as follows. In Section II,
the reasons for the presence of the unidirectional links and their
impact on routing is analyzed. Section III describes the system
model and the assumptions under which the proposed solution
would work. In Section IV, the tunneling approach, the motiva-
tion behind it and the proposed protocol are discussed in detail.
The modifications required in the packet headers to support tun-
neling are presented in Section V. We analyze our approach and
the effects it has on the timeout values, windows sizes, etc., in
Section VI. Section VII compares and contrasts our approach
with existing approaches to routing packets over unidirectional
links. Section VIII presents the conclusions and the directions
for future work.

II. OCCURRENCE AND IMPACT OF UNIDIRECTIONAL LINKS

Unidirectional links arise in wireless networks due to a vari-
ety of reasons and their presence affects the performance of the
network in various ways. In this section we describe the reasons
for the occurrence of unidirectional links and their manifesta-
tions in ad hoc networks.

A. Occurrence of Unidirectional Links

There are a few scenarios under which unidirectional links
can occur
1. Some links may be unidirectional due to the hidden terminal
problem [15]. Node A may be able to receive messages from
node B due to little interference in A’s vicinity. However, B may
be in the vicinity of an interfering node and, therefore, unable to
receive A’s messages. Thus, the link between A and B is directed
from B to A. In this case, this unidirectionality may be a tran-
sient phenomenon, which lasts only as long as the interference
around B persists. The link would become bidirectional if the
interference around B reduced.
2. Links may become unidirectional due to disparity between
the transmission power levels of the nodes at either ends of the
link. In Figure 1, the transmission range of nodes operating at
a normal energy level is d. However, the energy level at a node
can decrease due to reasons such as excessive local utilization
or being chosen as a cluster head by routing algorithms causing
more packet transmissions than normal. In such cases, the node
can choose to relay packets only to nodes within a shorter range,
say d0. Thus, node A operating at a depleted energy level, can

send and receive packets from B as the distance AB is less than
d0. However, since the distance AC is greater than d0, A cannot
send packets to C. Node C, operating at a normal energy levels
can still send packets to A as the distanceAC is less than d. This
results in the creation of a unidirectional link, directed from C
to A. Such unidirectional links would be long-lived.

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

������
������
������

������
������
������

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

C

A

B

d

d’

Fig. 1. Range Induced Unidirectionality

B. Impact of Unidirectional Links

The presence of unidirectional links impacts the following
layers in the network protocol stack:
� Data Link Layer
� Network Layer

At the data link layer, error and flow control protocols em-
ploy acknowledgments (ACKs) for the data packets exchanged
between adjacent nodes. However, due to the unidirectional na-
ture of the links, ACKs cannot travel back to the sender. As a
result, the sender would time out and assume that the link be-
tween itself and the destination is down which would result in
the link not being used for further communication.

At the network layer, routing protocols like DSDV [11],
AODV [12] and TORA [9] assume the links to be bidirec-
tional. In these algorithms, information is exchanged between
the neighbors to get information about the network topology.
The unidirectional links cause:
1. Knowledge Asymmetry: In case a unidirectional link exists
between nodes i and j, just because j can hear from i, j cannot
assume that i can also hear from it. Node i does not hear from j
at all, and could assume that no link exists between them. Thus,
there is an asymmetry of knowledge between the nodes at the
two ends of the unidirectional link.
2. Routing Asymmetry: For a unidirectional link between i and
j, the path traversed to reach from i to j is different from the path
required to reach i from j, leading to an asymmetry in routing.

Thus, the problems caused by the presence of unidirectional
links can be summarized as
1. Some frames at the data link layer cannot be acknowledged.
2. The node into which the unidirectional link is incident cannot
directly send its reachability information (as in a distance-vector
based protocol) to the node from which the link is incident.

III. SYSTEM MODEL AND ASSUMPTIONS

The network consists of identical nodes capable of commu-
nicating with each other across a wireless interface. Links be-
tween the nodes can be unidirectional or bidirectional. These
can change their orientation depending upon interference, power
levels of the nodes, etc. We assume that the network is strongly
connected, i:e:; there exists a path from every node to every
other node. The node that can transmit along the unidirectional
link will henceforth be referred to as the source or the head of
the link. The node towards which the unidirectional link is di-
rected, will be known as the sink or target of the link. As shown
in Figure 2, though there is a unidirectional link between B and
C, an alternate pathCDEFGAB exists fromC toB. If the uni-
directional link is not considered, even the forward path between

B and C would require six hops, as compared to the single hop
path that exists via the unidirectional link.

Source Destination

A B C D E

FG

Fig. 2. Representation of Directed and Undirected Paths

IV. TUNNELING APPROACH

We propose tunneling the link layer acknowledgment packets
and the routing algorithm control packets used for topology de-
tection. Our approach is similar to [3] proposed for traditional
wired networks, with modifications made to cater to ad hoc net-
works. This approach solves the problem at the data link layer,
using tunneling to send packets from the sink to the source. The
unidirectionality of the link is made oblivious to the network
and above layers. Hence, as viewed by the network layer, data,
control and ACK packets adopt the same path in both directions
between the source and the sink of the unidirectional link.

A. Motivation

The main motivation in adopting the tunneling approach is to
provide transparency for
1. Link-Layer ACKs
2. Exchange of network-layer routing information between
neighbors
The presence of the unidirectional link can be detected only by
the sink, and the source is unaware of its existence. Hence, if
the routing protocol needs to make use of this link, information
about its existence must be propagated to its source. This routing
information typically consists of the reachability information of
the sink, which can be used by the source to update the reacha-
bility information in its routing table. In case this information is
not tunneled across, the source would not come to know about
the existence of the link and not use it in its routing decisions.
Also, when data flows across this link, link-layer ACKs need to
be exchanged for flow and error control. This is facilitated by
tunneling the ACKs back to the source.

Also, in case of a unidirectional link, the sink gets routing
updates from the source. These updates are of little use to the
sink as the source cannot be reached directly along this link.
Hence, care has to be taken to avoid using these routing updates
at the sink. As the knowledge about the unidirectionality of the
link is maintained both at the data link and the network layers,
the latter can ignore all routing update packets from the source
to the sink.

B. Solution

The solution consists of three parts
1. Detection of unidirectional links
2. Tunneling routing information
3. Tunneling acknowledgments for data packets

B.1 Detection of Unidirectional Links

At the network layer, each node broadcasts a message
hello (similar to the AODV Hello message) once every
hello interval milliseconds. This is a message with a
TTL (time to live) of 1 so that it is only exchanged between
neighbors. In this message, each node broadcasts the list of the
neighbors it is currently receiving hello messages from. This is

used by the nodes to build the neighborhood information. In our
approach, we additionally use it to detect the presence of uni-
directional links. When a node receives a hello message from
a neighbor, and itself is not present in the neighbor’s neighbor-
hood list information, the node can conclude that it is the sink of
a unidirectional link. This is similar to the method used in [1] to
gain neighborhood information which is maintained at the net-
work layer. The link layer, too, is notified of this attribute of the
link. However, there is no way for the source to know about the
directionality of this link. This information has to be conveyed
by the sink to the source.

Thus, to convey the existence of the unidirectional link to its
source a link inform message is tunneled from the sink node
to the source. When this packet is received at the source,
the network layer and the data link layer make a note of the
unidirectional property of the link. This packet also carries
an expiration timeout value, which is the time for which the
link is considered active. This packet has to be tunneled ev-
ery link inform timeout milliseconds, to prevent the link
from being marked inactive. After this packet is received, both
the source and the sink of the unidirectional link are aware of its
existence.

B.2 The Tunneling Approach

The approach adopted to tunnel the information is the same
for all types of packets. As the network is assumed to be strongly
connected, there exists a path from the sink to the source of a
unidirectional link. This path is used to tunnel route updates and
link layer acknowledgements from the sink of the unidirectional
link to its source. For this purpose, information is encapsulated
within a new network layer packet destined for the source of the
unidirectional link.

Our approach reduces the overhead traffic on intermediate
nodes by using selective tunneling. It does not tunnel all packets
from the destination to the source, but tunnels only ACKs and
routing information packets. The compromise made to achieve
this is that the approach is not entirely transparent to the net-
work layer. However, these modifications are still transparent
to the routing module, thereby allowing any routing protocol to
be used. Both the data link and network layer are aware of the
unidirectionality of the link. The advantage of this approach is
that routing protocols can make use of the unidirectional link
to transmit data as well as control information in the forward
direction.

In Figure 3 packets from A to B are sent along the unidirec-
tional link. The ACKs for these packets and the routing informa-
tion packets to be sent to A are encapsulated in a network layer
header, with source asB and destination asA. These packets are
then routed to A based on the information gathered by the rout-
ing protocol being used. Upon reception at A, the outer header
is stripped off and the inner one examined. If the packet is a link
layer ACK, then it is pushed down to the link layer for further
processing. In case it is a packet containing routing information,
it is passed to the routing module for processing. This determi-
nation of whether the tunneled packet is an ACK or a routing
packet, is done on the basis of an option set in the IP header.
The details of this are provided in Section V.

An important issue that needs to be considered in this ap-
proach is that looping and packet explosion should be avoided
at all costs. The cause and impact of the same are discussed in
Section IV-C. Also, B should not use routing updates received
from A to update its own routing table as it cannot reach A via
this link.

Tunneling of Routing Information: Once the existence of

Network Layer
Routing Algorithm

Network Layer
Routing Algorithm

Data Link Layer Data Link Layer

Physical Layer Physical Layer

Data Link
Layer ACKS

Data Link

Link Control Packets
 +
Routing Control Packets
 +
Data Link Acknowledgements
 Tunneled

A B

Layer ACKS

Fig. 3. Tunneling of Packets

on_hello_interval_timeout()
{
neighbor_list = build_neighbor_list()
hello = create_hello_packet()
broadcast_packet(hello)

}

on_hello_message(hello)
{
hello_src = get_source_addr(hello)
hello_nbr_list[hello_src] = get_nbr_list(hello)
local_addr = get_local_addr()
if (is_present_in_list(hello_nbr_list[hello_src]

local_addr))
return

set_unidirectional_sink(hello_src, local_addr)
link_inform = create_link_inform(hello_src,

local_addr)
tunnel_message(link_inform, hello_src)

}

on_link_inform(link_inform)
{
local_addr = get_local_addr()
link_inform_source = get_source_addr(link_inform)
set_unidirectional_source(local_addr,

link_inform_source)
}

Fig. 4. Pseudo-code for Unidirectional Link Detection

the unidirectional link has been established, routing information
from the sink to the source has to be tunneled as the source is ig-
norant of the destinations that can be reached optimally via the
sink. In a protocol like DSDV, the reachability information is
periodically broadcast to the neighbors and the network topol-
ogy diffused through the network. In such a scenario, to make
the source aware of the paths, the reachability information of the
sink has to be tunneled.

A possible optimization would involve tunneling of only
those routes which would be of benefit to the source. This would
help in reducing the control traffic on the links. As the sink
knows about the routing table at the source (via its routing up-
dates), it can compute the destinations for which routing through
it would be more efficient. Information about only these nodes
is propagated to the source. This, however, compromises the
transparency of the tunneling approach to the routing protocol
in use. Also, the stability of the routing information may be in
question if tunneled updates do not make it to the source of the
unidirectional link in time. This is analyzed in Section VI.

These link route update packets would be instrumental in
letting the source know about the possible routes through the
sink. The exact content of these packets would depend upon
the routing protocol in use, and what information needs to be
sent across. At the receiving end, these packets are used by the
source to update its routing table.

Link Layer

// received from network layer
send_packet(packet)
{
sink_mac_addr = get_sink_mac_addr(packet, arp_cache)
local_mac_addr = get_local_mac_addr()
outgoing_packet = replicate_packet(packet)
// check if it is link layer info (which was tunneled)
if (is_link_layer_ack(get_payload(packet)) {

cancel_ack_timer(packet)
return

}
if (is_tunneled_packet(packet))

set_link_layer_tunnel_flag(outgoing_packet)
if(is_link_unidirectional(local_mac_addr, sink_mac_addr))

// don’t ensure reliability
else {

// normal reliability mechanism
start_ack_timer(packet)

}
forward_to_physical_layer(outgoing_packet)

}

// received from physical layer
recv_packet(packet)
{
src_mac_addr = get_src_mac_addr(packet)
local_mac_addr = get_local_mac_addr()
if (is_link_unidirectional(src_mac_addr, local_mac_addr)) {

if (is_tunneled_packet(packet))
// generate no ack

else
tunnel_ack(packet, local_mac_addr, src_mac_addr)

} else
generate_ack(packet, local_mac_addr, src_mac_addr)

forward_to_network_layer(packet)
}

Network Layer

// received from transport layer or for fowarding
send_packet(packet)
{
outgoing_packet = replicate_packet(packet)
if (is_tunneled_packet(packet))

set_network_layer_tunnel_flags(outgoing_packet)
forward_to_link_layer(outgoing_packet)

}

// received from data-link layer
recv_packet(packet)
{
sink_addr = get_sink_addr(packet)
src_addr = get_src_addr(packet)
local_addr = get_local_addr()
// handle only packets for this node, else forward
if (sink_addr != local_addr)

forward_to_next_hop(packet)
if (! is_tunneled_packet(packet))

forward_to_transport_layer(packet)
// received a tunneled packet
tunnel_payload = get_tunnel_payload(packet)
if (is_tunneled_ack(tunnel_payload))

send_to_link_layer(tunnel_payload)
if (is_routing_info(tunnel_payload) &&

!is_link_unidirectional(src_addr, sink_addr))
send_to_routing_module(tunnel_payload)

}

Fig. 5. Pseudo-code for Tunneling

B.3 Tunneling of Acknowledgments

The data packets are sent across the wireless link from the
source to the sink triggering link layer acknowledgments to the
source. The flow and error control mechanisms for these pack-
ets are implemented using sliding window protocols [16], which
transmit a window of packets and then wait for acknowledg-
ments. If the acknowledgments are not received within a timeout
period, the lost packets are retransmitted. In the proposed solu-
tion, as the link layer is aware of the unidirectional nature of
the link, timeout values are increased. This is to accommodate
the latency incurred by ACKs having to travel across multiple
hops to reach the source. The size of the window could also be
increased correspondingly. An analysis of the changes needed

in these values is presented in Section VI.
Thus, network layer messages referred to as link tunnel acks

are generated. These messages encapsulate the link acknowl-
edgments and deliver them to the source. At the source, these
messages are decapsulated, identified as link layer ACKs (as de-
scribed in Section V and then passed to the data link layer to
ensure proper functioning of the sliding window protocols.

Tunneling of ACKs can potentially result in looping of pack-
ets and explosion of network traffic. A solution to this problem
is described next.

C. Loop Freedom

A

B C

D

EF

Fig. 6. Multiple Unidirectional Links

If the path across which data link layer ACKs are tunneled
also contains unidirectional links, additional ACKs may get gen-
erated for these ACKs which are being tunneled. As shown
in Figure 6, when a packet is being sent from node A to node
B across the unidirectional link AB, packets containing ACKs
from B to A have to be tunneled via BCDEFA. This path
also contains a unidirectional link EF . When an ACK traverses
across the linkEF , node F may treat it as an ordinary link layer
message for which a link layer ACK needs to be sent to E. Such
an ACK will be tunneled via FABCDE. As this packet tra-
verses from A to B, at the link layer, ACKs again need to be
tunneled from B to A. Hence, an explosion of ACKs would
result and clog the network which is already resource poor.

To avoid this problem, we do not generate link layer acknowl-
edgments for tunneled packets received on an incoming unidi-
rectional link. Thus, when a data link layer at F receives an
encapsulated packet from E, it does not generate any acknowl-
edgment for it. As a result, packets can be tunneled across
paths which themselves contain unidirectional links, without
any looping problems. In the network shown in Figure 6, the
tunneled ACKs fromB to A acrossBCDEFA, would not gen-
erate any further ACKs, avoiding the ACK explosion problem
entirely. To avoid ACK generation for tunneled packets, certain
modifications need to be made to the data link as well as the
network layer headers. These modifications and the handling of
tunneled packets is described in Section V.

V. PACKET HEADER MODIFICATIONS TO SUPPORT
TUNNELING

In this section, we describe the modifications made to the
packet headers to support the tunneling approach and avoid
ACK generation for tunneled packets. The link layer at the inter-
mediate nodes should be aware that the packet being processed
by it is actually a tunneled packet. If the headers of the tunneled
packet are not modified, the link layer would have to look into
the payload of each packet passing through it to determine if it
is a tunneled packet. For the network topology depicted in Fig-
ure 6, the view of a tunneled ACK from B to A at F would be as
shown in Figure 7. At the data link layer of F, the packet looks
as shown in Figure 7. In order to determine that the packet is a
tunneled one, the data link layer of F would have to look past
the data link and the network layer headers of the packet, into

its payload and search for an ACK packet, or a routing informa-
tion packet. This overhead at the data link layer, for each packet
traversing through it, is unacceptable and violates the principles
of protocol layering.

 Sender

E

Receiver
F

 Data Link Header

Source

 B

 Destination

 A

 Network Layer Header

 Data Link Layer ACK from B to A

Data Link Layer View of Tunneled Packet at F

Fig. 7. Packet View at Network and Data Link Layers of Intermediate Nodes

The ACKs for the packets are generated at the data link layer
and later passed to the routing module of the network layer.
Hence, both these layers should know that the packet is a tun-
neled one, and replicate that information into the outgoing pack-
ets. The packet headers at the data link as well as the network
layer need to be modified to support a flag indicating whether a
packet is a tunneled one or not. At the network layer, this flag
can be added as an option to the IP header, beyond the 20 byte
standard header. If IEEE 802.11 [5] is being used at the MAC
and physical layers, this flag could be added as one of the op-
tions in the Frame Control field. In addition, after stripping the
outer header, the packet is either forwarded to the routing mod-
ule or the link layer. Link layer ACKs are forwarded to the link
layer and routing updates to the routing module. The network
layer at the receiving node should be able to distinguish between
these two types of packets easily, without having to go into the
payload to determine the type. This is accomplished by adding
an option in the network layer header which indicates whether a
tunneled packet is a routing update or a data link layer acknowl-
edgement. The value of this flag is used to determine the module
which receives the packet.

Data Link Network
Payload

NETWORK

 LAYER

 DATA LINK

 LAYER

Tunnel =1 Tunnel = 1

If Data Link Tunnel flag is set

 NO ACK IS GENERATED

 If Network Tunnel flag is set

 SET OUTGOING NETWORK TUNNEL FLAG

SET DATA LINK TUNNEL FLAG

Data Link Network

Tunnel = 1Tunnel =1
Payload

If Network Tunnel flag is set

 DO NOT WAIT FOR PACKET ACK

Fig. 8. tunnel Flag Processing

The processing of a tunneled packet is shown in Figure 8.
On packet reception at the data link layer of an intermediate
node, it is seen that the packet being processed has the tunnel
flag set in its data link header. This suppresses ACK generation
for this packet, if it has been received on an incoming unidirec-
tional link. Thereafter, the packet is handed over to the network
layer. As the IP header size is greater than 20 bytes, options are
checked to determine if the packet is a tunneled one. In case it is,
this flag is replicated in the IP header of the outgoing packet be-
fore it is dispatched to the data link layer (if the processing node
is not the final destination). The option indicating whether that
packet is a tunneled ACK or routing update, is also replicated
into the header of the outgoing packet. The data link layer repli-
cates the tunnel flags set in the network layer into appropriate
fields in the data link header. It also ensures that if an outbound
tunneled packet is leaving on a unidirectional interface, ACKs
for it are not awaited. Thus, this packet is excluded from the
sliding window protocols ensuring reliability at data link layer.
The source does not await ACKs for tunneled packets, but ACKs
for data packets are waited for.

This ensures that ACK flooding is stemmed without excessive
overheads.

VI. ANALYSIS OF THE TUNNELING APPROACH

In this section we analyze the proposed approach based on
the effect it has on the size of the link layer sliding windows and
the timers associated with packets. The impact on the frequency
of routing updates in both pro-active and reactive algorithms is
also analyzed.

A. Impact on Link Layer Windows and Timers

Link layer employs sliding window protocols to ensure reli-
ability of packet delivery between adjacent nodes. When this
scheme is applied across a unidirectional link using tunneling
to propagate ACKs along the return path, propagation delays
in the forward and reverse directions may vary considerably.
This asymmetry in propagation times should be considered in
determining the values of the link layer windows and associated
timers.

We propose to use the round trip time (RTT) of the packet in
determining the windows sizes and timer values. We employ an
approach similar to the one adopted for TCP in [6]. Tunneling
of packets is used to simulate a single link over multiple hops
in the reverse direction and in some sense is similar to a TCP
connection as it has end to end semantics.

The initial value of RTT is (1 +D)t where D is the diameter
of the network, and t is the propagation delay in sending a packet
of length L to an adjacent neighbor. Thereafter, its value adapts
according to the equation

RTT = �RTT + (1� �)RTTlast; � < 1

where RTTlast is the RTT of the last packet acknowledged. �
is a constant chosen to set the importance of history on the RTT
estimate.

Thus, in such a scenario, if the rate of data flow across a uni-
directional link is d bits/sec, the timer values and window sizes
would be

Timeout Duration = � � RTT seconds

This is the same as the approach adopted in the initial versions
of TCP.

Window Size = ! � RTT�d
L

packets

Here ! is a constant lesser than 1. Any value of ! larger than
1 would overload the network. This value has to ensure that the
link does not remain idle while acknowledgements for previ-
ously transmitted packets are awaited. It also should ensure that
the number of packets awaiting acknowledgements is not too
high, as these would clog up the network in case the packet drop
rate (due to errors) is high (as is typically the case in wireless
networks).

B. Impact on Routing Updates

When routing updates are exchanged between adjacent nodes,
it is assumed that when the same is received at the target node,
the information contained in them is still valid and can be used
to route packets. If a link is stable for � seconds, it can be used
to determine the frequency and freshness of routing updates in
both pro-active and reactive routing protocols. � is an estimate
of how long a particular link would exist, based on the signal
strength, fading characteristics, interference and other physical
layer attributes at the time of sampling. This could be computed
by making an estimate of how long it would take for the signal
strength to fall below the levels needed for transmission.

When a routing update has to be sent across a bidirectional
link, it would take time t to get there. This information is valid

for � � t seconds after it reaches its target node. To ensure that
the routing updates are “fresh” and up to date when they reach
their destinations, they should be generated at a rate greater than
1

��t
. However, when the updates are sent upstream over a uni-

directional link, information needs to be tunneled from the sink
to the source which takes Æ seconds to reach the source. Thus,
the information, when received at the source, is fresh only for
�� Æ seconds. Thus, to ensure freshness, the frequency of rout-
ing updates has to be increased to at least 1

��Æ
.

The generation of routing updates depends upon the type of
routing protocol in use. These routing protocols could be either
pro-active (such as DSDV [11]) where the topology information
is periodically exchanged, or reactive (such as AODV[12] or
DSR[7]). In reactive protocols, route computation is performed
only in response to a request to route a packet from a source to
a destination.

In the case of pro-active routing protocols, the frequency of
route updates is increased to 1

��Æ
, as stated earlier. An adaptive

value for Æ can be estimated as RTT � t as it changes according
to network stability. The estimates of RTT are maintained for
every unidirectional interface present on the node. When a node
has no unidirectional interfaces attached to it, it could be gener-
ating routing updates at a rate slightly higher than 1

��t
. How-

ever, when any of the incoming interfaces on the node become
unidirectional, the rate of routing update generation is increased
to 1

��RTT+t
. The rate of routing update generation is increased

across all links, and not just the unidirectional ones to main-
tain the transparency of the routing protocols to the tunneling
approach adopted.

In reactive protocols, route discovery packets are sent to de-
termine the path to a destination in response to a data packet
arriving for it. The responses to these discovery packets may
need to be tunneled in case the original packets were received
over a unidirectional link. It would make sense to tunnel the
packets only if only if � � RTT + t has a value significantly
larger than t so that it can be used for at least some data trans-
mission. When the sink determines that information carried by
the response would expire before it can reach the source of the
unidirectional link, the packet is not propagated. The source
would assume that a route via this link was not discovered and
resort to some other route.

VII. COMPARISON WITH EXISTING SOLUTIONS

In [14], the knowledge about the unidirectionality of links is
maintained and propagated by exchanging messages containing
information about the nodes that can be reached from a partic-
ular node as well as the nodes a particular node can be reached
from. If there are n nodes in the network, the size of each
message exchanged is O(n2). This increased control messag-
ing overhead in a resource poor wireless network could prove
crucial. The main advantage is that since the topology informa-
tion is up to date, there is no latency involved in making routing
decisions.

In [2], unidirectional links are detected and an inclusive cy-
cle containing them is formed. This is used to route information
from the sink to the source. However, it requires two rounds of
message exchange between the sink and the source across the in-
clusive cycle before the path can be used. Our approach, though
more stringent in assuming a strongly connected topology, does
not incur this latency as the packets can be tunneled whenever
required, without waiting for inclusive cycle establishment.

The approach in [13] is based on using incremental source
routing by iteratively building the routing tree at each node. A

link is advertised only if it is being used by the nodes at its ends.
This could potentially lead to longer routes if links along the
shortest path are not being used by the nodes harboring them.

The protocols presented above are complete routing proto-
cols. On the other hand, the approach presented by us is a frame-
work, involving network stack modifications at the data link and
network layer, enabling various routing protocols to take advan-
tage of the existing unidirectional links.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to make use of
unidirectional links in an ad hoc network. This approach uses
a tunneling approach to propagate information across the uni-
directional link. It makes the unidirectional link behave like a
pipe with full data and acknowledgment flow in one direction,
but only acknowledgment and routing update flow in the other
direction). It utilizes only O(n) for information propagation. We
have explained the tunneling approach and the information that
is exchanged and maintained at both the network and the data
link layer to support its operation.

We propose to perform a detailed simulation analysis of the
protocol proposed, and the performance benefits achieved by us-
ing the same. The simulation would determine the likelihood
of occurrence of unidirectional links, and then analyze the im-
pact of the same. We intend to compare the performance of
algorithms making use of the tunneling approach with those not
making use of it, and analyze the improvements in terms of hop
count reduction, throughput benefits etc.

REFERENCES

[1] D. J. Baker and A. Ephremides. The Architectural Organization of a Mo-
bile Radio Network via a Distributed Algorithm. IEEE Transactions on
Communications, pages 1694–1701, November 1981.

[2] Lichun Bao and J. J. Garcia-Luna-Aceves. Link-state Routing in Networks
with Unidirectional Links. In Eight International Conference on Computer
Communications and Networks, pages 358–363, 1999.

[3] E. Duros W. Dabbous H. Izumiyama N. Fujii and Y. Zhang. A Link Layer
Tunneling Mechanism for Unidirectional Links. Network Working Group
Internet Draft, June 1999. Work in Progress.

[4] J. J. Garcia-Luna-Aceves and J. Behrens. Distributed Scalable Routing
Based on Vectors of Link States. IEEE Journal on Selected Areas of Com-
munications, October 1997.

[5] IEEE. IEEE Draft Standard for Wireless LAN Medium Access Control
(MAC) and Physical Layer(PHY) Specification, d2.0 edition, July 1995.

[6] V. Jacobson. Congestion Avoidance and Control. In Proceedings of SIG-
COMM ’88, August 1988.

[7] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad-Hoc
Wireless Networks. T. Imielinski and H. Korth, editors, Mobile Comput-
ing, 1996. Kluwer Academic Publishers.

[8] J. Macker and S.C.(chairs). Mobile Ad-Hoc Networks (manet), 1997.
http://www.ietf.org/html.charters/manet-charter.html.

[9] V. D. Park and M. Scott Corson. A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks. In IEEE Conference on Com-
puter Communications (Infocom ’97), 1997.

[10] M. R. Pearlman and Z. J. Haas. Determining the Optimal Configuration
for the Zone Routing Protocol. IEEE Journal on Selected Areas in Com-
munications, 17(8):1395 – 1414, August 1999.

[11] C. Perkins and P. Bhagwat. Routing over Mulitihop Wireless Network
of Mobile Computers. In SIGCOMM ’94: Computer Communications
Review, pages 234–244, October 1994.

[12] Charles Perkins and Elizabeth Royer. Ad Hoc On-Demand Distance Vec-
tor Routing. In 2nd IEEE Workshop on Selected Areas in Communication,
pages 90–100, February 1999.

[13] Carlos Pomalaza-Raez. A Distributed Routing Algorithm for Multihop
Packet Radio Networks with Uni- and Bi-Directional Links. IEEE Trans-
actions on Vehicular Computing, 44(3):579 – 585, August 1995.

[14] R. Prakash. Unidirectional Links Prove Costly in Wireless Ad Hoc Net-
works. In Proceedings of the Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications (DIAL-M’99), pages 15–
22, August 1999.

[15] A. Demers S. Shenker, V. Bhargavan and L. Zhang. MACAW: A Media
Access Protocol for Wireless LANs. In ACM SigComm ’94, September
1994.

[16] A. S. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs,
3rd edition edition, 1996.

