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Abstract— Event pattern detection is the one of the major techniques
used for event correlation in network and distributed systems management.
This paper focuses on the design issues of event pattern specification lan-
guages. The discussion is organized around the event operators in existing
event languages that we think are problematic and around the temporal
specification aspect. Semantic issues are discussed and various languages
are investigated. The study has revealed weaknesses of design in semantic
appropriateness and completeness of certain event operators, in flexibility
of operator usage and timing specification, in effectiveness and efficiency
of expressions, and in readability of the languages. Based on the findings,
we propose a new event language called SEL, which attempts to avoid some
of these problems. SEL is novel in its negation operator usage, the way
followed-by semantics is provided, and how composite event time is deter-
mined in the presence of the negation operator. It is comprehensive yet
relatively simple and intuitive to use. Expressions written in SEL appear to
be very readable and easy to maintain.

Keywords— event correlation, network management, event pattern de-
tection, composite event, event expression

I.. INTRODUCTION

Event monitoring and analysis is crucial for managing net-
works and distributed systems. As one of the primary techniques
adopted for this purpose, event correlation [1], [2], [3] aims at
deriving more concise and meaningful information from poten-
tially large volumes of lower level events. Detecting event pat-
terns expressed in the form of event expressions is a common
event correlation technique. This paper proposes a novel event
pattern specification language, SEL.

Event patterns are specified as event expressions which con-
sist of events connected by event operators, constraints on event
attributes expressed as predicates on the attributes, and con-
straints on time windows which delimit occurrence time of the
patterns. Event languages are inherently more complex than
regular expressionsbecause events are dynamic, events have at-
tributes, and event languages need to provide means so that so-
phisticated timing relationship between events can be specified.

Our study of existing event pattern languages has revealed
weaknesses of design in semantic appropriateness and com-
pleteness of certain common event operators, in flexibility of op-
erator usage and timing specification, in effectiveness and effi-
ciency of expressions, and in readability of the languages. Based
on these findings, we propose a new event language, SEL, which
tries to avoid some of these problems. SEL is novel in its nega-
tion operator usage, the way followed-by semantics is provided,
and how composite event time is determined in the presence of
the negation operator. It is comprehensive yet simple and in-
tuitive to use. Expressions written in SEL appear to be very
readable and easy to maintain. The language has shown its use-
fulness in SHAMAN network management scripting framework
[4] and SDB, a SHAMAN application debugger [5]. The rest
of the paper discusses the motivation behind SEL and briefly

describes its syntax and semantics. More details and an SEL
pattern detection algorithm can be found in [6].

II. SEMANTIC ISSUES OF EVENT PATTERN LANGUAGES

AND MOTIVATION OF SEL

We motivate SEL by discussing the semantic issues of event
pattern languages and related work. The discussion is organized
around the event operators in existing languages that we think
are problematic and around the temporal specification aspect.
Examples used in the discussion are taken from a few represen-
tative languages including GEM, ODE, CEDAR, and EBBM.
GEM [7] is a declarative rule-based interpreted language de-
signed for real-time distributed system monitoring. ODE [8]
is proposed as a specification language for events that are used
to fire active database triggers. CEDAR [9], [10] is designed
for active databases that are used for network management and
therefore has many features targeting at network management
applications. EBBM [11] tries to provide high-level abstraction
of heterogeneous system behaviors for debugging purposes. But
before we start our discussion of the language issues, we first
need to define a few terms.

A. Event model and definition of terms

An eventor event instanceis an instantaneous happening of
interest. It is defined as a tuple:< event type;event time;
attribute list>. Event typedefines the name of a set of events
which share a common system defined meaning.Event timeis
the time at which the event occurs.Attribute listis a list of typed
values which carry further information about the event.

A primitive eventis an instance of any basic event type de-
fined in a particular event correlation system. Event patterns
are expressed asevent expressions. When an event stream is in-
spected to detect an event pattern, we say that the corresponding
event expression isevaluatedin the context of the same event
stream. Acomposite event Eis firedwhen the event patternE is
detected. Each event expression effectively defines a new event
type whose instances are all composite events that the event ex-
pression can potentially fire.

B. The negation operator

The semantics of the negation operator (symbolized here as !)
as defined in regular expressions are well known1. However, it
turns out that designing a flexible negation operator suitable for
event expressions is not such an easy task. Some languages like
EBBM omit the negation operator altogether, losing a powerful

1A string matches the regular expression !E if it does not matchE.



means to express a large class of event patterns. In the context
of event pattern detection, it makes more sense to associate the
negation operator semantics with time constraints. A straight-
forward approach is to define !e as a composite event that hap-
pens whenenever occurs in a specified time interval. Now how
this time interval should be specified becomes an issue. GEM
requires the negation expression to be delimited by two ordered
events as infa;bg!e— a is followed byb with no e happening
in between. CEDAR uses a similar approach: in the expression
enot in [a;b], a andb are the delimiting events. One problem
is that both languages only allow the end of the time interval to
be relative to the start of the interval, but they don’t allow the
start of the time interval to be relative to the end of the interval.
If we want to detectf which is not preceded bye in 2 minutes,
we would like to specify the pattern using a sliding time window
the end point of which is relative to the time ofe.

An even serious problem is that GEM and CEDAR’s negation
operators are inflexible. This becomes apparent when one tries
to specify a pattern such as:a is followed byb with f but no
e happening in between. One can specify the pattern in GEM
asfa; f ;bg & fa;bg!e plus an attribute clause constraining the
two a’s and twob’s to be identical respectively. This design
is unsatisfactory. The problem is due to the inflexible fashion
in which the negation operators are tied to the other operators
(the followed-by operator in GEM and the interval construct in
CEDAR).

In our language SEL, we define ! in such a way that although
the negation sub-expressions are ultimately bound by time inter-
vals, these intervals can be flexibly specified and it is permissi-
ble to mix the negation operator with other operators. For ex-
ample, the aforementioned patterns can be simply expressed as
a! ( f &! e)! b and(!e! f ) in 2 minutes. Our construction
is apparently not only more expressive but also very intuitive.

C. The followed-by operator and the repetition operator

Composite events have durations. For instance, a composite
event fora! b has a duration which starts at primitive event
a and ends at primitive eventb. We say two eventsoverlap if
their durations overlap. We say two time instants arecontigu-
ousor oneimmediately followsthe other if there is no relevant
event happening between them. Note the term “relevant”: we do
not demand that there be no event of any kind happening in be-
tween, but that the events happening in between should be of no
relevance to the pattern being detected. In other words, we don’t
want to reject the actual matching based on the occurrences of
events which are of no relevance to the pattern we are detecting.
The reason is obvious because only by defining “contiguous”
this way can we express event patterns efficiently. With these
definitions, the followed-by operator inE ! F may have any of
the four semantics described below:

� Non-overlapping, non-contiguous semantics:
E’s end time must be earlier thanF ’s start time; other relevant
primitive events could happen between the two times. Examples
are ODE’srelative, and EBBM’s�(Sequential).

� Overlapping, non-contiguous semantics:
E’s end time must be earlier thanF ’s end time, but there is
no constraint for the two start times. Other relevant primitive
events could happen between the two end times. Examples are
GEM’s ‘;’, CEDAR’s f by, and ODE’sprior.
� Non-overlapping, contiguous semantics:
E’s end time must be earlier thanF ’s start time; no relevant
primitive event is allowed to happen between the two times.
There is no event language to our knowledge that has this se-
mantics. However, if we think of regular expressions as a very
simple event language with the set of relevant events defined
as the whole alphabet, itsconcatenationoperator has the exact
same semantics.
� Overlapping, contiguous semantics:
E’s end time must be earlier thanF ’s end time, but there is no
constraint for the two start times. No relevant primitive event
is allowed to happen between the two end times. Examples are
ODE’ssequence, and CEDAR’sseq.

Since a repetition expression can be seen as shorthand for
a sequence of followed-by expressions, the repetition opera-
tor also may have four corresponding semantics based on the
followed-by semantics listed above.

For the sake of semantic completeness, it is our opinion that
all four semantics should be incorporated. However, there is
the dilemma of providing more semantics versus minimizing the
number of operators. Our approach to the problem is to provide
basic operators which have the potential of easily expressing all
semantics in straightforward ways. In our language, we simply
provide two operators,! and�, for followed-by and repetition
respectively, and assign them only the “non-overlapping, non-
contiguous” semantics. We allow other semantics through easy
operator combinations.

The “contiguous semantics” (or “immediately followed-by
semantics”) is realized by using the ! operator. We can spec-
ify “ a is immediately followed-byb” asa!!E ! b, whereE is
of the forme1je2j::: which represents a list of events that should
not happen betweena andb.

The “overlapping semantics” is realized by converting a com-
posite event to a primitive event through the use offg, theprim-
itive event converteroperator.fEg in effect changes the com-
posite eventE to a primitive event. For example, we can use
fa! bg ! fc! dg to specify(a) b)) (c) d), where)
denotes “overlapping, non-contiguous” followed-by.fg is also
useful in the situation where the duration of a sub-composite
event should not have any effect on the composite event. More-
over, use offg can be an effective tool in a distributed environ-
ment where a composite event is regarded as having no differ-
ence from a primitive event when it is received at a remote site.

Compared to the approach that constrains the timing relation-
ship through attribute predicates, our approach has the advan-
tage of allowing users to figure out the timing constraints by just
looking at the major part of the event expression without look-
ing at the attribute predicates. This approach therefore results in
more readable expressions.



D. Temporal relationship specification

In network management, event correlation is traditionally
handled as an aggregation procedure over sets of alarms [12],
[13], [14]. A typical event correlation rule would be “if we see
alarmsa, b, andc, all occurring within 30 seconds, the condi-
tion is met that indicates a certain fault might have happened.”
These approaches usually provide little support for specifying
timing relationships among events. If temporal constraints must
be specified, they are dealt with in the attribute predicate part
or the action part of the rules, whereby the event pattern spec-
ification is scattered, making the rule harder to understand and
maintain. Newer approaches have added better temporal speci-
fication capabilities. However, there are a few problems:
� The languages are too bulky with the new capability. For in-
stance, [1] has introduced 9 temporal operators that can be used
to specify the relative temporal locations of two events. The
utility of some of these operators, such as the “exact” relation-
ship operators “STARTS”, “FINISHES”, and “COINCIDES”,
is doubtful since such relationships are based on exact timing
which is generally hard to obtain in a distributed environment.
� Limited temporal specification capability. One particular lim-
itation is the flexibility in manipulating time windows. For in-
stance, in many languages, only one time window is allowed in
a pattern specification. A pattern that requires multiple windows
must be specified, like in [7], by combining multiple rules. This
makes it hard to specify situations that require multiple win-
dow constraints, which is a useful capability in network man-
agement. We believe a language can create more readable rules
if it allows such rules to be directly specifiable in single syntac-
tic constructs. Such reasoning is based on the “encapsulation
principle” of software engineering.
� Readability of a specification suffers greatly with the intro-
duction of temporal specification capability, particularly when
it relies on event attribute semantics. [15] describes an event
correlation approach which specifies temporal relationships of
events solely through predicates on timing attributes of events.
For instance, the following pattern is used to cause an emer-
gency alert to be sent to the network administrator [15]: “event
linkdown is received butlinkup is not received within 2 min-
utes after that, andalert has not been generated in the past 5
minutes”. To specify this pattern, [15] uses (with other detail
omitted):
@(LinkADown; i)+2minutes �@r(LinkU p;@(LinkADown; i);1)

and @(LinkADown; i)+2minutes �@r(LinkADownAlert;@(LinkADown; i);1)

and @(LinkADown; i)+2minutes �@r(LinkADownAlert;@(LinkADown; i);0):

A specification with our language SEL is much simpler and
more intuitive, and therefore more readable:
!LinkADownAlert!fLinkADown!!LinkAU pin 2 minutesg in 5 minutes

III. SEL SYNTAX AND SEMANTICS

A. SEL syntax

The syntax of SEL is defined using BNF notation with one
exception:b andc are used as meta-symbols denoting optional
structures, whereas[ and ] are used as terminals of the lan-
guage, not BNF meta-symbols. Two types of time window

constraints are allowed: afixed windowis given by its start-
ing time and finishing time; asliding windowis given by an
integer number denoting its duration. Details are omitted for
predicateon attributesandcalendartime.

E ::= primitive event

k E battribute constraintc btime window constraintc

k (E) k fEg k E�n k E ∆ time spank !E k E &E k E j E k E ! E

attribute constraint::= if predicateon attributes

time window constraint::= at [calendar time;calendar time]

k in time span

time span::= n secondsk n minutes k n hours k n days

n ::= integer

B. Composite event semantics

Semantics of composite events delimited by sliding windows
are much more difficult to define than fixed windows. We there-
fore start with the fixed window case. Limited by space, we
do not describe the semantics in details including the evaluation
of attribute constraints. Interested readers may refer to [6] for
more details. However, two important attributes,starttimeand
time, are clearly defined because they are indispensable to our
approach of semantic specification. These denote the start and
end time of a composite event.

B.1 Fixed window semantics

The definition is recursively given. All event expressions are
delimited by the fixed window constraintat [t1; t2] which is not
repeated below.CE denotes a composite event for the corre-
sponding event expression.
� Primitive eventpe: CE happens when ape happens within

the fixed window. starttime(CE)
def
= time(pe); time(CE)

def
=

time(pe).
� E ∆ time span: CE happenstime spantime after anE hap-
pens providedtime(E)+ time spanis inside the fixed window.

starttime(CE)
def
= time(E)+ time span; time(CE)

def
= time(E)+

time span.
� fEg: This is the same asE ∆ 0 seconds.
� !E: CE happens if noE happens inside the fixed window.

starttime(CE)
def
= t1; time(CE)

def
= t2.

� E�n: CE happens when a sequence of at leastn non-
overlappingE’s happen within the fixed window. ACE is
fired for each consecutive sub-sequence of exactn E’s. If

the sub-sequence isEi; :::;Ei+n�1, we have:starttime(CE)
def
=

starttime(Ei); time(CE)
def
= time(Ei+n�1).

� E j F : CE happens when anE happens within the fixed
window; similarly, aCE happens when anF happens within
the fixed window. Note that this implies that oneCE hap-
pens for each instance ofE and/orF. Let X represent either

E or F, whichever actually happens, we have:starttime(CE)
def
=

starttime(X); time(CE)
def
= time(X).

� E&F: CE happens when both anE and anF happen inside the

fixed window.starttime(CE)
def
= min(starttime(E);starttime(F));



time(CE)
def
=

max(time(E); time(F)).
� E!F: This definition is more involved and interested readers
may refer to [6] for more details:
1. If E’s front-end is “rigid”, that is if starttime(E) can be

independently determined, thenCE happens when anE happens
within the fixed window[t1; t2], and anF happens within the
fixed window[time(E); t2].
2. If E’s front-end is “fluid”, thenF ’s back-end must be

“rigid” since we don’t allow both these facing ends to be “fluid”,
CE happens when anF happens within the fixed window[t1; t2],
and anE happens within the fixed window[t1;starttime(F)].

starttime(CE)
def
= time(E); time(CE)

def
= time(F).

B.2 Sliding window semantics

If a composite eventCE ever happens and ifCE has a
rigid front-end, we can detectCE given a fixed window which
starts atstarttime(CE). Therefore, for this particular event, we
can see the sliding window as a fixed window which starts at
starttime(CE). In order to determinestarttime(CE), we need a
new functions:CEf irst , which is a primitive event derived from
CE and is used to “mark the start” of a composite event. For
example,(a !!b ! c) f irst is simply a. Therefore aCE hap-
pens only when aCEf irst happens, and it is always the case that
starttime(CE) = starttime(CEf irst). CElast can be similarly de-
fined with obvious meaning. Using these functions, the seman-
tics for the sliding window case can be easily defined. In the
following, event expressions are delimited by the fixed window
constraintin sw.
� If E’s back-end is “rigid”, we use the fixed window semantics
with these two modifications:
1. For each instance ofCEf irst that happens within the time

sw, we get a fixed window:
[starttime(CEf irst);starttime(CEf irst)+sw).
2. A CE detected in this fixed window must share the same

constituent events as the correspondingCEf irst .
� If E’s front-end is “rigid”, we use the fixed window semantics
with these two modifications:
1. For each instance ofCElast that happens within the timesw,

we get a fixed window:
(time(CElast)�sw; time(CElast)].
2. A CE detected in this fixed window must share the same

constituent events as the correspondingCElast.
� If both ends ofE are fluid, the expression is illegal.

C. Examples

The following examples have been used to motivate SEL de-
sign. Here we use them to illustrate SEL usage with emphasis on
followed-by and negation operators and sliding time windows.
1. Eventa happens butb does not happen within 20 seconds
aftera: a!!b in 20seconds
2. Eventa happens butb does not happen within 5 minutes be-
forea: !b! a in 5 minutes

3. Within 40 seconds, eventa happens followed byb, but event
c does not happen in between: a!!c! b in 40seconds

4. Report at the first instance of eventb after eventa within 2
minutes: a!!b! b in 2 minutes

5. Eventa happens butb does not happen within 2 minutes, and
eventc did not happen in the past 5 minutes:
!c! (fa!!bg in 2 minutes) in 5 minutes

6. Eventa happens but is not preceded byb in the previous 20
seconds;a is then followed byc andd or followed byc but not
e in the next 2 minutes:
(!b! a in 20seconds)! (c & (d j !e) in 2 minutes)
7. Four or more successive US Federal Reserve rate cuts (c)
without an intervening rate increase (i) in 2 years:
c! !i ! c! !i ! c! !i ! c in 730days or
(c! !i)�[3;3]! c in 730days
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