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Abstract— Event pattern detection is the one of the major techniques describes its syntax and semantics. More details and an SEL

used for event correlation in network and distributed systems management. pattern detection algorithm can be foundin [6]

This paper focuses on the design issues of event pattern specification lan-

guages. The discussion is organized around the event operators in existing

event languages that we think are problematic and around the temporal || SEMANTIC ISSUES OF EVENT PATTERN LANGUAGES
specification aspect. Semantic issues are discussed and various languages AND MOTIVATION OF SEL

are investigated. The study has revealed weaknesses of design in semantic . . . L

appropriateness and completeness of certain event operators, in flexibility ~ VWe motivate SEL by discussing the semantic issues of event
of operator usage and timing specification, in effectiveness and efficiency pattern Ianguages and related work. The discussion is organized

of expressions, and in readability of the languages. Based on the findings,around the event operators in existing Ianguages that we think
we propose a hew event language called SEL, which attempts to avoid some . e
of these problems. SEL is novel in its negation operator usage, the way &r€ problematic and around the temporal specification aspect.
followed-by semantics is provided, and how composite event time is deter- Examples used in the discussion are taken from a few represen-
mined in the presence of the negation operator. It is comprehensive yet {gtive Ianguages including GEM, ODE, CEDAR, and EBBM.
relatively simple and intuitive to use. Expressions written in SEL appear to GEM [7] is a declarative rule-based interpreted Ianguage de-

be very readable and easy to maintain. s : e -
Keywords— event correlation, network management, event pattern de- Slgned for real-time distributed system monitoring. ODE [8]

tection, composite event, event expression is proposed as a specification language for events that are used
to fire active database triggers. CEDAR [9], [10] is designed
l.INTRODUCTION for active databases that are used for network management and

Event monitoring and analysis is crucial for managing neiberefore has many features targeting at network management
works and distributed systems. As one of the primary technigqu@iPlications. EBBM [11] tries to provide high-level abstraction
adopted for this purpose, event correlation [1], [2], [3] aims &f heterogeneous system behaviors for debugging purposes. But
deriving more concise and meaningful information from poteRefore we start our discussion of the language issues, we first
tially large volumes of lower level events. Detecting event pateed to define a few terms.
terns expressed in the form of event expressions is a common .
event correlation technique. This paper proposes a novel evéntEvent model and definition of terms
pattern specification language, SEL. An eventor event instancés an instantaneous happening of

Event patterns are specified as event expressions which daterest. It is defined as a tuple: event typeevent time
sist of events connected by event operators, constraints on eattribute list >. Event typedefines the name of a set of events
attributes expressed as predicates on the attributes, and edmeh share a common system defined meankgent times
straints on time windows which delimit occurrence time of ththe time at which the event occuwttribute listis a list of typed
patterns. Event languages are inherently more complex thaues which carry further information about the event.
regular expressionbecause events are dynamic, events have at-A primitive eventis an instance of any basic event type de-
tributes, and event languages need to provide means so thafised in a particular event correlation system. Event patterns
phisticated timing relationship between events can be specifiate expressed @&vent expression¥vhen an event stream is in-

Our study of existing event pattern languages has reveagggcted to detect an event pattern, we say that the corresponding
weaknesses of design in semantic appropriateness and cevient expression igvaluatedn the context of the same event
pleteness of certain common event operators, in flexibility of optream. Acomposite event [ fired when the event pattef is
erator usage and timing specification, in effectiveness and effbtected. Each event expression effectively defines a new event
ciency of expressions, and in readability of the languages. Basgge whose instances are all composite events that the event ex-
on these findings, we propose a new event language, SEL, whi¢gssion can potentially fire.
tries to avoid some of these problems. SEL is novel in its nega-
tion operator usage, the way followed-by semantics is providd#, The negation operator

and how composite event time is determined in the presence ofhe semantics of the negation operator (symbolized here as !)
the negation operator. It is comprehensive yet simple and ik defined in regular expressions are well knbwtowever, it
tuitive to use. Expressions written in SEL appear to be Vefyrns out that designing a flexible negation operator suitable for
readable and easy to maintain. The language has shown its @$@nt expressions is not such an easy task. Some languages like

fulness in SHAMAN network management scripting frameworkggM omit the negation operator altogether, losing a powerful
[4] and SDB, a SHAMAN application debugger [5]. The rest

of the paper discusses the motivation behind SEL and brieflya string matches the regular expressi@if it does not matcte.



means to express a large class of event patterns. In the conte®iverlapping, non-contiguous semantics:

of event pattern detection, it makes more sense to associateBlseend time must be earlier thd@'s end time, but there is
negation operator semantics with time constraints. A straight constraint for the two start times. Other relevant primitive
forward approach is to define &s a composite event that hapevents could happen between the two end times. Examples are
pens where never occurs in a specified time interval. Now how6EM’s *;’, CEDAR'’s fby, and ODE'sprior.

this time interval should be specified becomes an issue. GEMNon-overlapping, contiguous semantics:

requires the negation expression to be delimited by two ordered end time must be earlier thaf's start time; no relevant
events as i{a;b}!'e— ais followed byb with no e happening primitive event is allowed to happen between the two times.
in between. CEDAR uses a similar approach: in the expressiimere is no event language to our knowledge that has this se-
enot_in [a,b], a andb are the delimiting events. One problemmantics. However, if we think of regular expressions as a very
is that both languages only allow the end of the time interval simple event language with the set of relevant events defined
be relative to the start of the interval, but they don’t allow thas the whole alphabet, itncatenatioroperator has the exact
start of the time interval to be relative to the end of the intervalame semantics.

If we want to detectf which is not preceded byin 2 minutes, « Overlapping, contiguous semantics:

we would like to specify the pattern using a sliding time windo’s end time must be earlier thafis end time, but there is no
the end point of which is relative to the time ef constraint for the two start times. No relevant primitive event

An even serious problem is that GEM and CEDAR'’s negatid allowed to happen between the two end times. Examples are
operators are inflexible. This becomes apparent when one tf¥8E's sequenceand CEDAR'’sseq
to specify a pattern such as:is followed byb with f but no
e happening in between. One can specify the pattern in G
as{a; f;b} & {a b}!eplus an attribute clause constraining the,
two a’'s and twob’s to be identical respectively. This desigqto
is unsatisfactory. The problem is due to the inflexible fashion ) o o
in which the negation operators are tied to the other operator§©r the sake of semantic completeness, it is our opinion that

(the followed-by operator in GEM and the interval construct il four semantics should be incorporated. However, there is

CEDAR). the dilemma of providing more semantics versus minimizing the
In our language SEL, we define ! in such a way that althou rwmber of operator.s. Our approach to'the prob!em s to prpvide

the negation sub-expressions are ultimately bound by time int gsic operators which have the potential of easily expressing all

vals, these intervals can be flexibly specified and it is permisgﬁm"’mtICS in straightforward ways. In our language, we simply

ble to mix the negation operator with other operators. For fovide two operators;» and", for followed-by and repetition

. ; respectively, and assign them only the “non-overlapping, non-
ample, the aforementioned patterns can be simply expressed as. 4 . :
i . .~ ~contiguous” semantics. We allow other semantics through easy
a— (f&!'e) > band('le— f) in 2minutes. Our construction

is apparently not only more expressive but also very intuitive.Operator con-1b|nat|ons. . . _
The “contiguous semantics” (or “immediately followed-by

semantics”) is realized by using the ! operator. We can spec-
ify “ ais immediately followed-by” asa —!E — b, whereE is

Composite events have durations. For instance, a compoS8ftéhe formey|e;|... which represents a list of events that should
event fora — b has a duration which starts at primitive evenfiot happen betweemandb.
a and ends at primitive eveit We say two eventsverlapif The “overlapping semantics” is realized by converting a com-
their durations overlap. We say two time instants @vatigu- posite event to a primitive event through the us¢ ftheprim-
ousor oneimmediately followshe other if there is no relevantitive event converteoperator.{E} in effect changes the com-
event happening between them. Note the term “relevant”. we gosite even€ to a primitive event. For example, we can use
not demand that there be no event of any kind happening in Be-— b} — {c — d} to specify(a = b) = (c = d), where=
tween, but that the events happening in between should be otiemotes “overlapping, non-contiguous” followed-Hy. is also
relevance to the pattern being detected. In other words, we darséful in the situation where the duration of a sub-composite
want to reject the actual matching based on the occurrencegwént should not have any effect on the composite event. More-
events which are of no relevance to the pattern we are detectioger, use of } can be an effective tool in a distributed environ-
The reason is obvious because only by defining “contiguousient where a composite event is regarded as having no differ-
this way can we express event patterns efficiently. With thesace from a primitive event when it is received at a remote site.
definitions, the followed-by operator B — F may have any of
the four semantics described below:

Since a repetition expression can be seen as shorthand for
sequence of followed-by expressions, the repetition opera-
r also may have four corresponding semantics based on the
llowed-by semantics listed above.

C. The followed-by operator and the repetition operator

Compared to the approach that constrains the timing relation-
ship through attribute predicates, our approach has the advan-
« Non-overlapping, non-contiguous semantics: tage of allowing users to figure out the timing constraints by just
E’s end time must be earlier thdfis start time; other relevant looking at the major part of the event expression without look-
primitive events could happen between the two times. Examplag at the attribute predicates. This approach therefore results in
are ODFE’srelative, and EBBM’se(Sequentigl. more readable expressions.



D. Temporal relationship specification constraints are allowed: fixed windowis given by its start-

In network management, event correlation is traditionalff9 time and finishing time; &liding windowis given by an
handled as an aggregation procedure over sets of alarms [i ger number Qenotmg its duratlon. Details are omitted for
[13], [14]. A typical event correlation rule would be “if we seePredicateonattributesandcalendactime
alarmsa, b, andc, all occurring within 30 seconds, the condi- - primitive_event
tion is met that indicates a certain fault might have happenecEi."|| £ Lattribu;e_constrainq |time windowconstrain
These approaches usually provide little support for specifying |(E) || {E} | E*n || E Atimespan| 'E | E&E || E[E | E — E
timing relationships among events. If temporal constraints m%ﬁﬁibute_constramt:: it predicateon.attributes
be specified, they are dealt with in the attribute predicate PAt. windowconstraint-— at [calendartime calendat timd
or th_e aqtion part of the rqles, whereby the event pattern SPECT 1 ime span
|f|c§tlop is scattered, making the rule harder to understand ML s pan::= n seconds| n minutes || n hours || n days
maintain. Newer approaches have added better temporal speci- integer
fication capabilities. However, there are a few problems:

» The languages are too bulky with the new capability. For i Composite event semantics

stance, [1] has introduced 9 temporal operators that can be used

to specify the relative temporal locations of two events. The Semantics of composite events delimited by sliding windows
utility of some of these operators, such as the “exact” relatiofte much more difficult to define than fixed windows. We there-
ship operators “STARTS”, “FINISHES”, and “COINCIDES”, fore start with the fixed window case. Limited by space, we
is doubtful since such relationships are based on exact timifig not describe the semantics in details including the evaluation
which is generally hard to obtain in a distributed environmentof attribute constraints. Interested readers may refer to [6] for
« Limited temporal specification capability. One particular limmore details. However, two important attributesarttimeand
itation is the flexibility in manipulating time windows. For in-time, are clearly defined because they are indispensable to our
stance, in many languages, only one time window is allowed@pproach of semantic specification. These denote the start and
a pattern specification. A pattern that requires multiple windo&d time of a composite event.

must be specified, like in [7], by combining multiple rules. This ) ] .

makes it hard to specify situations that require multiple wirB-1 Fixed window semantics

dow constraints, which is a useful capability in network man- The definition is recursively given. All event expressions are
agement. We believe a language can create more readable gégignited by the fixed window constraiat [t;,t,] which is not

if it allows such rules to be directly specifiable in single syntagepeated belowCE denotes a composite event for the corre-
tic constructs. Such reasoning is based on the “encapsulaignding event expression.

principle” of software engineering. _ _ Primitive eventpe CE happens when @e happens within
« Readability of a specification suffers greatly with the intro- . : def , . L def
duction of temporal specification capability, particularly whefhe fixed window. starttimeCE) = time(pe); time(CE) =
it relies on event attribute semantics. [15] describes an evéI e(pe). . .

correlation approach which specifies temporal relationships ‘o Atimespan CE happensimespantime after ank hap-

events solely through predicates on timing attributes of evert§NS prowded!ilg?e(E) +timespanis inside the :?e):ed window.

For instance, the following pattern is used to cause an emgtarttimgCE) = time(E) +timespan time(CE) = time(E) +
gency alert to be sent to the network administrator [15]: “evefifne.span

linkdownis received butinkup is not received within 2 min- » {E}: This is the same & A 0 seconds.

utes after that, andlert has not been generated in the past 6 !E: CE happens if naE happens inside the fixed window.

minutes”. To specify this pattern, [15] uses (with other detaitarttimegCE) £'ty; timeg(CE) £'t,.

omitted): - E*'n: CE happens when a sequence of at leashon-
@(LinkADown) + 2minutes < @ (LinkU p. @(LinkADOWN ), 1 overlappingE’s happen within the fixed window. AE is
and @(LinkADoWn) + 2ninutes < @r(LinkADownlert @(LinkADowni), 1) fired for each consecutive sub-sequence of exaél’s. |If
and@(LinkAD(-Jw-ni)+2-minutesZ.@r(LinkADownAlen@(LinkADowni).O). . . the sub—sequence E;---,Ei+n—11 we have:starttime(CE) d:ef
A specification with our language SEL is much simpler and def

starttimgE;); time(CE) = time(Ej1n_1).

- E | F: CE happens when ak happens within the fixed

window; similarly, aCE happens when aR happens within
[1l. SEL SYNTAX AND SEMANTICS the fixed window. Note that this implies that o@E hap-

A. SEL syntax pens for each instance & and/orF. Let X represent either

. . def
The syntax of SEL is defined using BNF notation with ong orE, WhIChe.VGt’ actug(lelfy.happens, we hagearttimeCE) =

exception:| and| are used as meta-symbols denoting optiondiarttimgX); time(CE) = time(X). o

structures, whereasand] are used as terminals of the lans E&F: CE happenswhen both &hand arF happeninside the

guage, not BNF meta-symbols. Two types of time windo¥ixed window.starttimgCE) d:Efmin(starttime(E),starttime(F));

more intuitive, and therefore more readable:

ILinkADownAlert— {LinkADown—!LinkAU pin 2 minutes} in 5minutes



time(CE) &'

maxtime(E),time(F)).

4. Report at the first instance of evdnafter eventa within 2
minutes:

a—!b— bin 2minutes

« E — F: This definition is more involved and interested readebs Eventa happens bub does not happen within 2 minutes, and

may refer to [6] for more details:

eventc did not happen in the past 5 minutes:

1. If E’s front-end is ‘“rigid”, that is ifstarttimgE) can be !¢— ({a—!b} in2minutes) in Sminutes _
independently determined, theiE happens when a@ happens 6. Eventa happens but is not preceded Ibyn the previous 20
within the fixed window(ts,t;], and anF happens within the secondsa is then followed byc andd or followed byc but not

fixed window[time(E), to].

ein the next 2 minutes:

2. If E’'s front-end is “fluid”, thenF’s back-end must be (!b— ain20seconds) — (c& (d|!€) in 2minutes)
“rigid” since we don’t allow both these facing ends to be “fluid”/. Four or more successive US Federal Reserve rate cuts (

CE happens when dr happens within the fixed windof#, to],

and anE happens within the fixed windolt, starttimegF)].

starttimeCE) £'time(E); time(CE) &' time(F).

B.2 Sliding window semantics
. . (1]
If a composite evenCE ever happens and i€E has a

rigid front-end, we can dete@E given a fixed window which
starts asstarttimgCE). Therefore, for this particular event, wel
can see the sliding window as a fixed window which starts @t
starttimgCE). In order to determinstarttimgCE), we need a
new functionsCEgjrst, Which is a primitive event derived from
CE and is used to “mark the start” of a composite event. F@i
example,(a —!b — C)irst is sSimply a. Therefore &CE hap-
pens only when &€E;sirst happens, and it is always the case that
starttimgCE) = starttimgCE;irst). CEast can be similarly de- [5]
fined with obvious meaning. Using these functions, the semap-
tics for the sliding window case can be easily defined. In the
following, event expressions are delimited by the fixed window
constraintin sw. 7l
« If E's back-endis “rigid”, we use the fixed window semantics
with these two modifications: (8]

1. For each instance @E;is; that happens within the time
sw, we get a fixed window:
[starttim&CEfirst ), starttimgCErirst) + SW). (9]

2. A CE detected in this fixed window must share the samgy)
constituent events as the correspondtrs: .
« If E's front-end is “rigid”, we use the fixed window semantic?n]
with these two modifications:

1. For each instance @ that happens within the tinsy,
we get a fixed window:
(time(CBast) — SWHM&(CEjagt)]-

2. A CE detected in this fixed window must share the same
constituent events as the correspondifs;. (13]
« If both ends ofE are fluid, the expression is illegal. [14]

[12]

C. Examples

The following examples have been used to motivate SEL des]
sign. Here we use them to illustrate SEL usage with emphasis[ﬂﬂ
followed-by and negation operators and sliding time windows:

1. Eventa happens bub does not happen within 20 second§l7]
aftera a—!bin 20seconds

2. Eventa happens bub does not happen within 5 minutes be-
forea: 'b— ain5minutes

3. Within 40 seconds, eveathappens followed bi, but event

c does not happen in between: a —!c — b in 40 seconds

without an intervening rate increasgif 2 years:
c— lioc— li»c— li—cin730days
(c— ')*[3,3] = c in 730days

or
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