
An OSPF Based Load Sensitive QoS Routing 
Algorithm using Alternate Paths 

Anirudha Sahoo 
IEEE Member 

1001 S. Main Street, 
Milpitas, CA-95035 

 
Abstract- Real-time applications such as Voice over IP, audio and 
video streaming require Quality of Service (QoS). Such 
applications are being executed over the public Internet. Since 
today’s Internet largely supports best effort traffic, QoS routing 
in the best effort environment is required to support real-time 
applications. Some QoS routing use source routing and others 
use flooding of some QoS attibutes of the nodes. There were also 
some variants of shortest path algorithm reported in the 
literature. But those algorithms require changes to packet 
forwarding engine and logic for loop detection. We believe a 
better way of implementing QoS routing is to localize the QoS 
routing changes to the region where QoS has deteriorated and 
choose loop-free alternate paths. We present such an algorithm 
based on OSPF called LSR algorithm. In LSR algorithm, 
congestion notification is limited to neighbors of the congested 
node and the neighbors try to use alternate next hops  to route 
packets. Alternate LSR next hop is chosen in such a way that it 
preserves the next hop property of OSPF routing which enables 
LSR algorithm to avoid loop.  We present three such methods to 
choose an alternate LSR next hop and prove that these methods 
provide loop free routing. Our simulation results based on the 
three methods show that on an average LSR algorithm performs 
better than OSPF algorithm in terms of delay and jitter. 
 

I.   INTRODUCTION 
       Of late, more and more real-time applications such as Voice over 
IP, audio and video streaming are being executed over the public 
Internet. These applications require Quality of Service (QoS) from 
the Internet to have satisfactory performance. Thus QoS routing has 
become very important for integrated services in IP networks. There 
have been many recent results published on QoS routing [1, 6, 10, 15, 
16] for achieving improved network utilization and providing better 
performance to applications. Despite these benefits, feasibility of 
implementing QoS routing protocols in IP networks is still an 
uncertainty [1]. Supporting QoS routing implies additional costs in 
terms of computational and protocol overhead. Routers have to 
perform more complex path computation and they are required to 
send more attributes of state of the network, e.g., available 
bandwidth, frequently. 
 There has been an upsurge of next generation Internet Service 
Providers who are building integrated voice and data network based 
on IP. So they are providing inexpensive voice services over the 
public Internet. Since public Internet mostly support best effort 
traffic, there is no QoS provided to real-time applications such as 
voice over IP. The routing infrastructure is based on shortest path 
algorithm [5] and is based solely on destination address. Hence, when 
a packet experiences congestion, the routing subsystem cannot send it 
through an alternate path, even though there may be an alternate path 
available which can provide better QoS. If routing subsystem can 
temporarily divert packets through alternate paths, applications can 
get better QoS. Since modern routers have more powerful CPU and 

more memory, it should be able to implement this alternate path 
routing algorithm and store more information required for that. 
 QoS routing has been studied for a while. In [4] a cheapest path 
algorithm from one source to all destinations when links have two 
weights (cost and delay) is presented. Several works have analyzed 
costs associated with QoS routing [8, 13]. Some other solutions use 
source routing along with shortest path routing to achieve the goal 
[12]. But security is a major concern for allowing source routing in 
the Internet. Also, most of the solutions proposed so far use flooding 
mechanism to update the link states with  the available resources [2, 
12]. Thus, protocol overhead and convergence are of concern in those 
cases. Routing on alternate paths based on shortest path first method 
also exists [14]. But the drawbacks of this algorithm is that the packet 
forwarding engine needs to be more intelligent and a loop detection 
mechanism is needed in the algorithm. We believe that a better way 
of implementing QoS routing is to confine the routing change 
information to the region where QoS has deteriorated. This reduces 
the protocol overhead and convergence time of the algorithm. In this 
paper, we present a load sensitive routing (LSR) algorithm based on 
Dijkstra’s shortest path algorithm. We reported the first version of the 
LSR algorithm in [11]. But in this paper we have improved the LSR 
algorithm with three different methods of finding alternate paths. 
When load on the outgoing link of a router reaches a certain 
threshold, then the LSR algorithm will be invoked. This will 
represent congestion in the router for that outgoing link. The LSR 
algorithm will try to find an alternate next hop for the packets that 
may be transiting through the congested link. Thus, our algorithm 
will try to provide a better QoS in terms of delay, jitter and packet 
loss in a best effort routing infrastructure. The strength of our 
algorithm lies with the method used for finding alternate next hop. 
The method is based on the next hop properties of OSPF next hop. 
Hence our method prevents loops. We have shown three methods of 
finding alternate next hops and have given a formal proof to show 
that our algorithm does not give rise to loops. We have implemented 
the LSR algorithm in a simulation environment of a network. We 
present some performance comparison between the LSR algorithm 
and Open Shortest Path First (OSPF) [7] which is based on Dijkstra’s 
algorithm. We show that our algorithm performs better, on an 
average, than the OSPF algorithm. Following are the advantages of 
our LSR algorithm: 
• Better average performance: The LSR algorithm tries to find 
alternate path to route packets when there is congestion in the OSPF 
path. Hence, packets get better QoS in terms of delay, jitter and 
packet loss. 
• Less overhead and scalability: Our algorithm does not use 
flooding mechanism to communicate congestion of a link. Rather the 
congestion notification is only contained to the neighbors of the node. 
Thus, it has less overhead and it can scale easily to large networks. 
• Coexistence with OSPF router: Our algorithm can be 
implemented easily with an extension to the framework of OSPF 
standard [7] by creating a new LSA type. Routers running our 
algorithm can coexist with routers running vanilla OSPF (without our 



 

algorithm). When vanilla OSPF routers get this new LSA types, they 
will simply drop the LSA. Thus, our LSR algorithm can be 
implemented in the Internet in phases. 
• Loop free property: Since alternate next hop is chosen based on 
next hop property of OSPF routing, LSR algorithm is loop-free. 
Hence there is no need for loop detection mechanism. 
 

II.   SYSTEM MODEL 
A.   Network 

We model a network consisting of N nodes. A node i is 
identified by its id Node(i) (0 ≤ i < N). Nodes in a network are 
connected by physical links along which packets can be transmitted. 
Node(i) and Node(j) are considered neighbors of each other if there is 
a physical link between them. The physical link between them is 
identified by the Link(i, j). Cost of transmitting a packet over Link(i, 
j) is denoted by Cost(i, j). 
B.   Routing Table 
    Each node builds a routing table from the network topology. 
Given a network topology, a node runs Dykstra’s shortest path 
algorithm with itself as the source to find shortest path from itself to 
all other nodes in the network. We refer to these paths as OSPF path. 
Then, it builds a routing table so that it can forward packets destined 
for any node in the network. This routing table is called active 
routing table. In addition, it also runs Dijkstra’s algorithm with each 
of its neighbors as source node and builds similar routing tables. We 
refer to these routing tables as passive routing table. Every entry in 
the routing table is a sextuple consisting of destination node, next hop 
node, ospf cost, Hop count, OSPF next hop and LSR flag. 
Destination node is the destination of a packet, next hop node is the 
next hop where a packet destined for destination node should be 
forwarded. Ospf cost (OC) is the cost from the node to the destination 
node along the OSPF path. Hop count (HC) is the number of hops in 
the OSPF path from a node to the destination node. OSPF next hop is 
the next hop as per OSPF shortest path calculation. LSR flag when 
TRUE it means this entry in the routing table is forwarding packets 
according to LSR algorithm. Thus, when this flag is TRUE the next 
hop node would be the one calculated by the LSR algorithm, 
otherwise it would be the one found by OSPF. Hence, when an entry 
in the routing table is routing packets along OSPF nexthop, then next 
hop node and OSPF next hop will be the same and the LSR flag will 
be FALSE. Routing table at node Node(i) calculated with Node(j) as 
source is denoted by RT(i, j). An entry in a routing table RT(i, j) is 
identified by the destination node of the entry and is denoted by 
Entry(Node(p), i, j), where Node(p) is the destination node of the 
entry. If shortest path from Node(i) to Node(j) is through Node(p) 
and Node(q), then corresponding entry in RT(i, i) is given by  
Entry(Node(j), i, i) = {(Node(j), Node(p), OC(i, j), HC(i, j),  

 Node(p), FALSE},           (1)      
when this entry is not forwarding packets through alternate path due 
to LSR algorithm. OC(i, j) is then given by 
     OC(i, j) = Cost(i, p) + Cost(p, q) + Cost(q, j).                             (2) 

At Node(i), active routing table RT(i, i) is used for packet 
forwarding. Passive routing tables (e.g. RT(i, j) i≠j) are not used for 
packet forwarding, but only used during execution of the LSR 
algorithm to find out alternate paths.  
C.   LSR Table 
 Each node also has a LSR table which stores information as to 
whether the node is getting packets from a previous node due to LSR 
routing. An entry in the LSR table is a tuple consisting of LSR 
previous node, Destination Node. LSR table at Node(p) is denoted by 
LSRTbl(p) and an entry in this table is given by  

LSREntry(p, k) = {Node(k), Node(q)},                            (3) 

where  Node(k) is the LSR previous node and Node(q) is the 
Destination node. This entry signifies that Node(k) is temporarily 
rerouting packets destined to Node(q) to Node(p) using LSR 
algorithm. Information stored in this table is used to prevent loop. 
D.   Messages 
 We introduce some control messages to implement our 
algorithm. It is used to communicate some information from one 
node to its neighbors to facilitate distributed execution of our 
algorithm. Following are the new messages needed to implement our 
algorithm: 
• Congestion Notification:  This message is sent by a node to its 
neighbors, when it detects congestion in one of its outgoing links. 
Each node will have a threshold set to detect congestion. Typically 
this threshold will be set to a value greater than 100% of the link 
capacity. When the load on an outgoing link is above the set 
threshold, then a congestion notification message will be sent out by 
the node to its neighbors. We denote this message by Congestion(i, j) 
which signifies that a congestion is experienced on the Link(i, j) by 
node Node(i). 
• Reroute Request: When a node receives a congestion 
notification message, it may send out a reroute request to one of its 
neighbor nodes. When a reroute request message RerouteReq(i, j, k, 
l) is sent from node Node(k) to node Node(p), then this message is 
meant to let Node(p) know that Node(k) is going to temporarily 
reroute packets destined to Node(l) to  Node(p) instead of its OSPF 
neighbor Node(i), because of a congestion reported in Link(i, j). 
• Congestion Over: When a link is no longer congested, the 
associated node sends this message to its neighbors to inform about 
this change of state. We denote this message by CongestionOver(i, j) 
which signifies that a congestion is no longer experienced on the 
Link(i, j) by node Node(i). 
• Reroute Over: This message is sent out by a node when it 
receives CongestionOver message from its neighbor and if this node 
was temporarily routing packets using LSR algorithm because of an 
earlier congestion notification. If  Node(k) is temporarily rerouting 
packets destined to Node(p) to Node(q) because of congestion in 
Link(i, j) , then Node(k) will send out RerouteOver(i, j, k)  to 
Node(q) when it receives CongestionOver(i, j) from its neighbor 
Node(i). 

III.   THE  LSR  ALGORITHM 
A.   OSPF NextHop Properties 

As mentioned earlier, eligible nodes for LSR routing is chosen 
such a way that packets will not end up in a loop due to LSR routing. 
This loop-free property of LSR algorithm is designed based on the 
properties of ospf next hop. If Node(q) is the ospf next hop of 
Node(p) for destination node Node(r) then we have the following two 
properties 
Property 1 : For a given destination, number of hops from next hop is 
less than the number of hops from the current node i.e. 
               HC(q, r) < HC(p, r).                                                           (4) 
Property 2 : For a given destination, ospf cost of next hop is less than 
the ospf cost of the current node i.e. 
                OC(q, r) < OC(p,r).                                                         (5) 
From inequality (4), we have 

a * HC(q, r) <  a * HC(p, r),                                              (6) 
where a > 0. From inequality (5), we have 

b * OC(q, r) < b * OC(p,r),                                            (7) 
where b > 0. Thus, combining (6) and (7), we have 
a * HC(q, r) + b * OC(q, r)  <  a * HC(p, r) + b * OC(p,r),              (8) 
where a ≥ 0 and b ≥ 0 and (a, b) ≠ (0, 0). 

Notation (a, b) ≠ (0, 0) means both a and b cannot be 0. In (8) a 
and b can be 0 separately, but they cannot be 0 at the same time. 
Inequality (8) is the next hop property of OSPF next hop and we will 



 

use the same inequality for choosing LSR next hop. When a node 
looks for an LSR next hop for a particular destination, it should know 
the HC and OC values for all its neighbors. Since our algorithm is 
based on OSPF, every node has knowledge of entire topology of the 
network. Hence this information should be available to all the nodes. 
A neighbor will be considered an eligible LSR next hop if inequality 
(8) holds and if it is not the OSPF next hop. However, the nodes in a 
network has to decide what should be the values of a and b. We will 
refer to these two parameters as the LSR coefficient pair and will be 
represented by an ordered pair (a, b). For a particular destination 
node all the nodes in the network will use the same LSR coefficient 
pair and for each destination there will be a separate LSR coefficient 
pair. This condition ensures that there are no routing loops in the 
network. 
B.   Calculation of LSR Coefficient Pair  

In this section we provide some methods of calculating LSR 
coefficient pair. 
Method 1: One trivial value for LSR coefficient pair is (1, 0), that is 
a=1, b=0. Basically, this method will find alternate route based on 
Property 1 i.e. based on hop count only. Obviously, this method may 
not always find the maximum number of alternate paths. We will 
refer to this method as LSR_a method. 
Method 2: Another trivial value for LSR coefficient pair is (0, 1), that 
is a=0, b=1. Basically, this method will find alternate route based on 
Property 2 i.e. based on ospf cost only. This method also may not 
always find the maximum number of alternate paths. We will refer to 
this method as LSR_b method. 
Method 3: This method is more involved than the previous two trivial 
methods. In this method, we try to find the value pair (a, b) such that 
the number of alternate paths (for a particular destination) is 
maximized. We will refer to this method as LSR_ab method.  
C.   Calculation of LSR Coefficient Pair for LSR_ab Method 
In this section, we will outline the method to calculate LSR 
coefficient pair for LSR_ab method. We need the following two 
theorems for that : 
Theorem 1 Let xi and yi be hop count and ospf cost of a Node(i) 
respectively. Let xj and yj be the corresponding values for its 
neighbor Node(j) and that Node(i) is being considered as an alternate 
LSR next hop at Node(j). Then Node(i) should be rejected as LSR 
next hop of Node(j) if any of the following condition is true: 
Condition 1 : xi > xj   and   yi > yj , Condition 2 : xi = xj   and   yi > yj 
Condition 3 : xi > xj   and   yi = yj,  Condition 4 : if xi = xj  and yi = yj. 
Proof : According to inequality (8) Node(i) will be accepted as 
alternate LSR next hop if 
 a * xi + b * yi  <  a * xj + b * yj,                                           (A1) 
where a ≥ 0 and b ≥ 0 and (a, b) ≠ 0,  i.e. 
 a * (xi – xj) + b * (yi – yj) < 0.                                          (A2) 
        If Condition 1 is true, then (xi – xj) > 0 and  (yi – yj)  > 0. Since a 
≥ 0 and b ≥ 0 and (a, b) ≠ 0, (A2) cannot be true in this case. Hence if 
Condition 1 is true, then Node(i) should be rejected as LSR next hop. 
If Condition 2 is true, then putting xi = xj from this condition in (A2)  
 b * (yi – yj) < 0.                                                        (A3) 
But b ≥ 0 and for Condition 2, (yi – yj) > 0. Hence (A3) can never 
hold for Condition 2. Hence if Condition 2 is true, then Node(i) 
should be rejected. 
If Condition 3 is true then applying this condition to (A2) we have 
 a * (xi – xj) < 0.                                                        (A4) 
 But a ≥ 0 and for Condition 3, (xi – xj) > 0. Hence (A4) can never 
hold for Condition 3. Hence if Condition 3 is true, then Node(i) 
should be rejected. 
If Condition 4 is true, then  putting these equalities in (A2), we verify 
that (A2) cannot hold for this condition. Hence in this case, Node(i) 
should be rejected.  Q. E. D. 

Theorem 2 Let xi and yi be hop count and ospf cost of a Node(i) 
respectively. Let xj and yj be the corresponding values for its 
neighbor Node(j) and that Node(i) is being considered as an alternate 
LSR next hop at Node(j). If Node(i) is not rejected as LSR next hop 
due to Theorem 1, then Node(i) can be chosen as LSR next hop as 
follows : 
Case 1 : if xi < xj  and yi ≤ yj  then Node(i) can be accepted as LSR 
next hop if 
   a > 0 and b ≥ 0.                                                         (9) 
Case 2 : if xi < xj and yi > yj then Node(i) can be accepted as LSR 
next hop if  
   b < p * a,                                                                 (10)   

     where                p = (xj – xi) / (yi – yj).                       (11) 
Case 3 : if xi ≥ xj  and yi < yj then Node(i) can be accepted as LSR 
next hop if 

   b > q * a,                                                   (12) 
where q = (xi – xj) / (yi – yj).                                                           (13) 
Proof : From (A1) we have 
 a * (xj – xi)  +  b * (yj – yi)  >  0.                                         (A5) 
Case 1 : if xi < xj  and yi ≤ yj then (xj – xi) > 0 and (yj – yi)  ≥  0. Thus, 
(A5) will hold for any value of a and b, a > 0, b ≥ 0.  Hence for this 
case, Node(i) will be accepted as LSR next hop if a > 0, b ≥ 0. 
Case 2 : From (A5) we have, 
 b < a * (xj – xi) / (yi – yj),                                                (A6) 
that is b < p * a, where  p = (xj – xi) / (yi – yj). 
     Since in this case, xi < xj and yi > yj,  p > 0. Thus, for this case 
Node(i) will be accepted as LSR next hop if b <  p * a. 
Case 3 : From (A5) we have, 
 b  > a * (xi – xj) / (yj – yi),                                               (A7) 
that is b > q * a, where  q = (xi – xj) / (yj – yi). 
      Since in this case, xi ≥ xj and yi < yj,  q ≥ 0. Thus, for this case 
Node(i) will be accepted as LSR next hop if b > q * a.             Q.E.D. 
       Note that Theorem 1 and Theorem 2 cover all the possible 
combinations of inequalities between (xi, xj) and (yi, yj). Without loss 
of generality we can take the value of a=1 for all destinations. Then 
the task is to determine the value of b such that number of alternate 
path (AP) is maximized. Case 1 of theorem 2 will be taken care of as 
long as b ≥ 0. Hence we only concentrate on Case 2 and Case 3 and 
make sure that b ≥ 0. For a particular destination, when a node wants 
to find an LSR next hop, it considers all neighbors, except the ospf 
next hop for LSR next hop. If a neighboring node satisfies any of the 
conditions outlined in Theorem 1 then the node is rejected. 
Otherwise, cases in Theorem 2 are tried. If it falls under Case 1, then 
it is not considered (for determining value of b). If it falls under Case 
2, then it is marked as p-node. If it falls under Case 3, it is marked as 
q-node. This procedure is repeated for every node in the network 
except for the destination node. Thus, for a particular destination p-
nodes and q-nodes in the entire network are identified. Let there be m 
number of p-nodes and n number of q-nodes. Let the p values of the 
p-nodes be sorted in ascending order and also the q values of q-nodes 
be sorted in ascending order i.e. 

p1 ≤ p2 . . . . ≤ pm
         and  q1 ≤ q2 . . . . ≤ qn. 

Remember that we have chosen a=1. The value of b will decide 
which of these p-nodes and q-nodes will become eligible LSR nodes. 
Number of eligible LSR nodes is a measure of total Alternate Paths 
(AP) available for the destination. Now b is determined depending on 
what is the possible scenario : 
Scenario 1 : m =0 and n = 0, in this case choosing any value of b will 
not change the number of alternate paths. So we choose b = 1. 
Scenario 2 : m > 0 and n = 0. Then the number of Alternate Paths 
(AP) will be maximized if b < p1, since b will be less than all the ‘p’ 
values and according to (10) all p-nodes can be eligible LSR nodes.  



 

Scenario 3 : m = 0 and n > 0. Then according to (12) the number of 
AP will be maximized if b > qn. 
Scenario 4 : m > 0 and n > 0. In this case, it is not trivial to determine 
the value of b so as to maximize the number of APs (i.e. total number 
of eligible p-nodes and q-nodes is maximized) . For this scenario, 
there can be different cases as follows: 
Case 1 : In this case qn < p1. Obviously, the number of APs will be 
maxmimum if 

qn < b <  p1.  
Case 2 : In this case pm < q1. b is chosen as follows 
 b < p1  if m ≥ n, 
 b  > qn  if n > m. 
Case 3 :  For all other cases the following algorithm should be 
followed. Basically, this algorithm checks each p-node and q-node to 
see which one gives rise to the maximum number of alternate paths. 
Then it chooses the value of b accordingly. 
 complex_method_calc_b()  { 
      alt_path = 0; 
      for all points pk in p-node family  do { 
           Let  z = pk; alt_path_p = 0;  
           for all qi for which z > qi do { 

alt_path_p++; /* add this as an eligible node */ 
           } for all pj for which z ≤ pj  do { 
          alt_path_p++;    /* add this as an eligible node */ 
           } if (alt_path_p > alt_path) { 
          alt_path = alt_path_p;  node_type = ‘P’;node_indx = k; 
            } 
       } for all points qk in q-node family  do { 
            Let  z = pk; alt_path_q = 0; 
            for all qi for which z ≥ qi do {  
                  alt_path_q++; /* add this as an eligible node */ 
            } for all pj for which z < pj  do { 
             alt_path_q++; /* add this as an eligible node */  
            } if (alt_path_q > alt_path) { 
             alt_path = alt_path_q; node_type = ‘Q’; node_indx = k; 
            } 
        } 
    /* Now ‘alt_path’ contains maximum number of alternate paths */ 
        if (node_type == ‘P’) { 
            find the largest qi such that qi < pnode-index. 
            If such a qi exists { 
           find the largest pj  such that pj < pnode-index. 
           If such a pj exists { 
                 If (qi ≥ pj) choose ‘b’ such that qi < b < pnode-index. 
                 else choose ‘b’ such that pj < b < pnode-index. 
           }else choose ‘b’ such that qi < b < pnode-index. 
            } else { /* such a qi does not exist */ 
           find the largest pj  such that pj < pnode-index. 
           If such a pj exists choose ‘b’ such that  pj < b < pnode-index. 
           else choose ‘b’ such that  0 < b < pnode-index. 
             } /* else of If such a qi exists */ 
          }  else {  /* node_type == ‘Q’ */ 
              find the smallest pi such that  pi > qnode-index. 
              If such a pi exists {  
                    find the smallest qj  such that qj > qnode-index. 
               If such a qj exists { 
                    If (qj ≥ pi) choose ‘b’ such that pi > b > qnode-index. 
                    else choose ‘b’ such that qj > b > qnode-index. 
               } else  choose ‘b’ such that pi > b > qnode-index. 
               } else { /* such a pi does not exist */ 
               find the smallest qj  such that qj > qnode-index. 
               If such a qj exists choose ‘b’ such that  qj > b > qnode-index. 
               else choose ‘b’ such that  b > qnode-index. 
         } 

       } 
} 
While calculating ‘b’ we assumed a=1 for LSR_ab method. So it 
covers the case of (1, 0). But it does not cover the case of (0, 1). 
Hence number of alternate paths is found using LSR coefficient pair 
(0, 1). Whichever pair gives maximum number of alternate paths is 
accepted as the final LSR coefficient pair.  
D.  The LSR Algorithm 
A. When Node(i) detects congestion on Link(i, j) it sends 
Congestion(i, j) message to all its neighbor except Node(j) and sets 
up LSR routing for all destinations for which ospf next hop is 
Node(j). 

B. When Node(k) receives congestion message Congestion(i, j), it 
executes the following: (Note that since Congestion message is only 
sent to neighboring nodes, this means that Node(k) is a neighbor of 
Node(i)) 
B1    Congestion_Notification(i, j) 
B2    { 
B3         Let D = {set of all destination nodes in the routing table  
                      RT(k, k) for which Node(i) is theOSPF next hop node}; 
B4         Let D’ = {Node(p) | (Node(p) ∈ D) and (Node(j) is the  
                               OSPF next hop node in the routing table RT(k, i)  
                               for destination node Node(p))} 
             /* D’ contains all the destinations for which packets 
               * forwarded from Node(k) to Node(i) would go 
               * out on congested link Link(i, j) */ 
B5          for each node Node(p) ∈ D’ do { 
           /* find all the nodes eligible for LSR forwarding  for 
                 * destination Node(p) */ 
B6      R = {set of all neighboring nodes of Node(k)} – {Node(i)}; 
B7           Q = {Φ}; 
B8           For each node Node(q) ∈ R do { 
B9               if ( inequality (8) holds ) {  

        /* substitute p for r, k  for p and q for q  in (8) */ 
B10          Q=Q+{Node(q)}; /* Node(q) is an eligible LSR node */ 
B11        } 
B12      } /* end of for each node Node(q) */ 
B13      while ( Q != {Φ} ) do {  
B14         Node(r) = a randomly selected node in the set Q; 
B15               If (LSREntry(k, r) == {Node(r), Node(p)}) { 

     /* Node(r) is sending LSR packets destined to Node(p)  
       *  to this node Node(k), so do not send packets for 
       * destination Node(p) to Node(r) to avoid looping */ 

B16                 Q = Q – {Node(r)}; 
B17                } else break; 
B18       } /* of while */ 
B19       if (Q == {Φ}) continue; 
B20       Send RerouteRequest(i, j, k, p) message to Node(r); 
B21       Set the next hop node of Entry(Node(p), k, k) to Node(r); 
B22       Set the LSR flag of Entry(Node(p), k, k) to TRUE; 
B23          } /* for each node Node(p) */ 
B24  } /* Congestion_Notification() */ 

C. When Node(r) receives RerouteRequest(i, j, k, p) from Node(k) 
it executes the following: 
C1 Process_RerouteReq(i, j, k, p) 
C2 { 
C3     if ( (next hop of Entry(Node(p), r, r) is Node(k) )  &&  
C4           (LSR flag of Entry(Node(p), r, r) is  TRUE)) { 
             /*Node(r) is temporarily routing packets destined for Node(p) 
              * to Node(k) due to LSR algorithm, a direct loop detected */ 
C5         if ( Node(r) > Node(k) ) { 
               /* Fall back to OSPF routing */ 
C6              set next hop of Entry(Node(x), r, r) to OSPF next hop 



 

                       of Entry(Node(x), r, r); 
C7                 set LSR flag of Entry(Node(x), r, r) to FALSE; 
C8             } 
C9        } 
C10      set LSREntry(r, k) = {Node(k), Node(p)}; 
C11 } /* Process_RerouteReq() */ 

D. When Node(i) detects that congestion is over on Link(i, j), then 
it sends CongestionOver(i, j) to all its neighbors except Node(j). 

E. When Node(k) receives CongestionOver(i, j), it does the 
following: 
E1  Process_Congestion_Over(i, j) 
E2  { 
E3       Let D = {set of all destination nodes in the routing table  
                     RT(k, k) for which Node(i) is the OSPF next hop node}; 
E4       Let D’ = {Node(p) | (Node(p) ∈ D) and (Node(j) is the OSPF 
                            next hop node in the routing table RT(k, i)  
                           for destination node Node(p))} 
            /* D’ contains all the destinations for which packets 
             * forwarded from Node(k) to Node(i) 
             * would go out on congested link Link(i, j) */ 
E5       for each node Node(p) ∈ D’ do { 
E6           if ( LSR flag of Entry(Node(p), k, k) is TRUE ) { 
          /* This entry in RT(k,k) is doing LSR routing, reset it back  
                 *  to OSPF routing */ 
E7               Node(r) = next hop node of Entry(Node(p), k, k); 
E8               Set next hop node of Entry(Node(p), k, k) equal to 

     OSPF next hop; 
E9               Send RerouteOver(i, j, k, p) to Node(r); 
E10     } /* if 
E11      } /* for */ 
E12 } 

F. When Node(r) receives RerouteOver(i, j, k, p) from Node(k), it 
deletes entry LSREntry(r, k). 
E.   Loop-free Property 

The LSR algorithm does not use flooding to calculate an alternate 
path for a destination. Rather a congested node sends the congestion 
notification to all its neighboring nodes and the notification stops 
there. The neighboring node may change the next hop of packets 
going through the congested link by applying LSR algorithm. Thus, 
when some nodes are routing packets using LSR algorithm, other 
nodes in the network will have a different view of the routing 
topology of the network due to the local nature of the LSR algorithm. 
Thus, making LSR algorithm loop free is of utmost importance. In 
this section we will provide a formal proof that the LSR algorithm 
does not introduce looping of packets.  
Theorem 3 The LSR algorithm does not give rise to looping. 
Proof: There can be two kinds of looping that can happen: direct 
looping and indirect looping. Direct looping happens when a node 
Node(p) sends packets with destination, say Node(r), to Node(q) and 
Node(q) sends packets to Node(p) for the same destination. In this 
case, there is a direct loop between Node(p) and Node(q). An indirect 
loop, on the other hand, involves at least one intermediate node 
between two nodes to form a loop. As an example, for a particular 
destination node Node(r), Node(p) may forward packets to Node(x), 
Node(x) forwards to Node(q) and Node(q) forwards to Node(p). 

First we take the case of direct loop. There are two cases to 
consider for direct loop. First, when a node Node(p) has already 
received RerouteRequest from previous node Node(q) and then it 
tries to reroute packets to Node(q) due to LSR algorithm. Condition 
B15 in the algorithms identifies this case and prevents direct loop. 
Second, it is possible that a node Node(p) is already forwarding 
packets to Node(q) for a particular destination using LSR routing, 
and Node(q) is also forwarding packets to Node(p) for the same 

destination due to LSR routing. But the two nodes have not yet 
received RerouteRequest message from each other. But this looping 
is only short lived until the node with higher node id comes out of 
LSR forwarding due to condition C5 in the algorithm. 

Now let us take the case of indirect loop. We prove this by 
contradiction. Let us say that there is an intermediate node Node(x) 
between Node(p) and Node(q) through which there is a loop for 
packets going to a particular destination Node(r). That is Node(p) is 
forwarding packets to Node(x) and Node(x) is forwarding packets to 
Node(q) and Node(q) is forwarding packets to Node(p). 

There can be eight combinations of packet forwarding between 
these three nodes, since each could do OSPF forwarding or LSR 
forwarding. This is illustrated in the table below 

Case # Node(p) Node(x) Node(q) 
1 OSPF OSPF OSPF 
2 OSPF OSPF LSR 
3 OSPF LSR OSPF 
4 OSPF LSR LSR 
5 LSR OSPF OSPF 
6 LSR OSPF LSR 
7 LSR LSR OSPF 
8 LSR LSR LSR 

 
Table 1 

Remember that LSR next hop is chosen such that inequality (8) is 
satisfied. 
Case 1 : All the nodes are forwarding packets by OSPF next hop. 
Since OSPF routing does not have loops, this looping scenario is not 
possible. 
Case 2 : Node(q) is forwarding packets to Node(p) using LSR, hence 
inequality (8) should be satisfied i.e.  
a * HC(p, r) + b * OC(p, r)  <  a * HC(q, r) + b * OC(q, r)            (14) 
Since Node(p) is forwarding packets to Node(x) using OSPF, using 
inequality (8) 
a * HC(x, r) + b * OC(x, r)  <  a * HC(p, r) + b * OC(p, r)          (15) 
And since Node(x) is forwarding packets to Node(q) using OSPF, 
using inequality (8) 
a * HC(q, r) + b * OC(q, r)  <  a * HC(x, r) + b * OC(x, r)          (16) 
Using (14) in (15) we get 
a * HC(x, r) + b * OC(x, r)  < a * HC(q, r) + b * OC(q, r)          (17) 
Inequality (17) contradicts (16), so this indirect loop is  not possible. 
Proof for all other cases are the same, since OSPF next hop and LSR 
next hop are based on the same property (inequality (8)). The same 
proof can be extended to multiple number of intermediate nodes. 
Thus, LSR algorithm does not give rise to loop. Q.E.D. 
 

IV.   PERFORMANCE  EVALUATION 
In this section, we evaluate the performance of LSR algorithm. 

We compare performance of LSR algorithm when it uses different 
methods of calculating LSR coefficients and also against OSPF  

Figure 1. Topology of the Simulation Network. 
algorithm. We have simulated a network of nodes running LSR and 
OSPF algorithm to route packets and measured various performance 
parameters. The simulation is written in C and run on a SUN/Solaris  

0 1 2 3 

4 

5 6 
7 

8 

9 

1 1 1 
1 

1 
10 3 

7 

1 

10 
7 1 

7 
10 

3 

7 

7 

10 3 
10 

3 

3 



 

environment. 
A.    Topology 

The topology of our simulation is shown in Figure 1. There are 
ten nodes in the network. Cost of direct paths between nodes are 
shown in the figure. Cost of the links are assigned using the rule 
given in [3] as follows. 

         cost  = (100000000/bandwith in bps)                           (18) 

Figure 2.                                        Figure 3. 
We have assumed FDDI (100Mbps), T3 (45Mbps)  Ethernet 

(10Mbps)  and token ring (16Mbps) links for our simulation 
topology. Utilization of every link is varied uniformly from 0% to a 
maximum load (Lmax) (in percentage) and average delay (davg)  and 
jitter (Javg) are measured between node 0 and node 5. The FDDI link 
from node 4 to 5 is kept under scrutiny i.e. reading of performance 
metrics are taken when this link experienced congestion. The 
congestion threshold for this link is set at 100%. The duration for 
which utilization of a link remains in effect is exponentially 
distributed. The mean duration of this distribution is denoted by tmean. 
B.   Results 

Figure 2 shows the davg versus Lmax when tmean is 50msec. It is 
clear from the plot that the average delay for LSR algorithm using 
LSR_a, LSR_b and LSR_ab coefficients are all much better than that 
for OSPF. Delay for LSR_ab is the lowest among the LSR methods, 
because it is based on finding the LSR coefficient so that number of 
APs is maximum. However, delay of LSR_ab method is very close to 
that of LSR_a method because the number of APs in those two 
methods are close to each other. As load increases performance of all 
the LSR methods becomes even better than that of OSPF.  Delay in 
OSPF method is at least 80% worse than LSR_ab method. The same 
trend is observed for average delay when tmean is 100msec as shown 
in Figure 3. Figure 4 and Figure 5 compares average jitter for 
different LSR algorithms and OSPF algorithm when tmean is 50msec 
and 100msec respectively. In these cases also all LSR algorithms 
perform better than OSPF. Among different LSR algorithms, again 
LSR_ab method has the lowest jitter. Jitter value of OSPF algorithm 
is worse by at least 20% compared to LSR_ab method at different 
load values. So, on an average, all LSR algorithms perform better 
than OSPF algorithm in terms of delay and jitter and LSR algorithm 
using LSR_ab method performs the best. 

V.   CONCLUDING  REMARKS 
A Load Sensitive Routing (LSR) algorithm based on Dijkstra’s 

shortest path algorithm is presented in this paper. In LSR algorithm, 
notification of congestion is limited only to the neighboring nodes. 
Hence this algorithm uses less network resources than that proposed 
in OSPF extension for QoS support [2], since the latter uses flooding. 
Only overhead added for LSR algorithm is to calculate passive 
routing table of all the neighboring nodes, store those tables and send 
LSR messages to the neighboring nodes and calculate LSR 
coefficients. This overhead should not be a concern for modern 
routers which have lot of memory and powerful CPU. Moreover, the 
computation of new active and passive routing table and LSR 
coefficients would only happen when topology of the network 
changes. One advantage of LSR routing is that the forwarding engine  

need not know whether it is sending packet along OSPF next hop or 
LSR next hop. Thus, no change in the forwarding engine is required 
to implement LSR algorithm. Another advantage of LSR algorithm is 
that it can easily be implemented in the framework of OSPF by using 
a new LSA type, so routers running LSR algorithm can coexist with 
those running OSPF. This will allow deployment of LSR algorithm in 
the Internet in phases. 

               Figure 4.                                         Figure 5. 
In this study, we have developed LSR_ab method in which 

number of alternate path is maximized. Another way LSR 
coefficients may be calculated is to maximize coverage of alternate 
paths i.e. find LSR coefficients such that the number of nodes which 
has at least one alternate LSR next hop is maximized. Route 
flapping in LSR algorithm and effectiveness of route flap damping 
method to overcome route flapping similar to [9] may be studied. 

REFERENCES 
[1] G. Apostolopoulos, R. Gu'erin, and S. Kamat, "Implementation and 

PerformanceMeasurements of QoS Routing Extensions to OSPF." 
Proceedings of IEEE INFOCOM'99, New York, April 1999. 

[2]  G. Apostolopoulos, A. Orda, D. Williams, R. Gu'erin, T. Przygienda, and 
S. Kamat, "QoS Routing Mechanisms and OSPF Extensions." Internet 
Request for Comments, RFC 2676, August, 1999. 

[3] “OSPF Design Guide.” http://www.cisco.com/warp/public/104/2.html,   
2002. 

[4]  A. Goel, K. G. Ramakrishnan, D. Katatria, D. Logothetis, “Efficient 
Computation of Delay-sensitive Routes from One Source to All 
Destinations.” Proceeding of IEEE Infocom 2001. 

[5]  C. Huitema, “Routing in the Internet.” Englewood Cliffs, New Jersey, 
Prentice Hall PTR, 1995. 

[6]  W. C. Lee, M.G. Hluchyj, and P. A. Humblet, “Routing Subject to 
Quality of Service Constraints in Integrated Communication Networks.” 
IEEE Networks, pp. 46-55, July/August 1995. 

[7]  J. Moy, “OSPF Version 2, Internet Request for Comments.” RFC 2178, 
July 1997. 

[8]  Q. Ma and P. Steenkiste, "On Path Selection for Traffic with Bandwidth 
Guarantees." Proceedings of IEEE International Conference on Network 
Protocols (ICNP), Atlanta, Georgia, October 1997. 

[9]   C. Villamizar, R. Chandra, R. Govindan, “BGP Route Flap Damping.” 
Internet Request for Comments (RFC 2439), November 1998. 

[10]  G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, A. Przygienda, and 
D. Williams,"QoS routing mechanisms and OSPF extensions." Internet 
Request for Comments (RFC2676), April 1999. 

[11]   A. Sahoo, “An OSPF Based Load-Sensitive QoS Routing Protocol in 
Best-Effort Environment.” IEEE Milcom, 2002, in press. 

[12]  A. Segall, P. Bhagwat, A. Krishna, “QoS Routing Using Alternate 
Paths.” Journal of High Speed Networks, 7(2): pages 141-158, 1998. 

[13]  A. Shaikh, J. Rexford, and K. Shin, "Efficient precomputation of 
quality-of-service routes." Proceedings of Workshop on Network and 
Operating Systems Support for Digital Audio and Video, July 1998. 

[14]  Z. Wang, and J. Crowcroft "Shortest path first with emergency exits." 
ACM SIGCOMM ’90, pp. 166-176,  Philadelphia, PA, Sept. 1990.  

[15]   Z. Wang, and J. Crowcroft, “Quality of Service Routing for Supporting 
Multimedia Applications.” IEEE Journal Selected Areas in 
Communications, 14(7):1228-1234, 1996. 

[16] R. Widyonon, “The Design and Evaluation of Routing Algorithms for 
real-time channels.” Technical Report TR-94-024, University of 
California at Berkeley, June 1994. 

Average Delay vs Load

0

50

100

150

200

250

100 110 120 130 140 150 160 170 180 190 200
Maximum Load in %

D
el

ay
 in

 m
s

LSR_a
LSR_b
LSR_ab
OSPF

mean duration (tmean) = 50msec

Average Delay vs Load 

0

50

100

150

200

250

300

350

400

450

500

100 110 120 130 140 150 160 170 180 190 200
Maximum Load in %

A
vg

. D
el

ay
 in

 m
s

LSR_a
LSR_b
LSR_ab
OSPF

mean duration (tmean) =100msec

Average jitter vs Load 

0

500

1000

1500

2000

2500

3000

3500

4000

100 120 140 160 180 200
Maximum Load in %

A
vg

. j
it

te
r 

in
 m

s

LSR_a
LSR_b
LSR_ab
OSPF

mean duration (tmean) = 50msec

Average jitter vs Load 

0

1000

2000

3000

4000

5000

6000

7000

8000

100 120 140 160 180 200
Maximum Load in %

A
vg

. j
it

te
r 

in
 m

s

LSR_a
LSR_b
LSR_ab
OSPF

mean duration (tmean) = 100msec


