
COPAS: Dynamic Contention-Balancing to Enhance
the Performance of TCP over Multi-hop Wireless

Networks
Carlos de M. Cordeiro, Samir R. Das, and Dharma P. Agrawal

Department of ECECS, University of Cincinnati
Cincinnati, OH 45221-0030 USA

{cordeicm, sdas, dpa}@ececs.uc.edu

Abstract – Most studies on TCP over multi-hop wireless ad hoc
networks have only addressed the issue of performance
degradation due to temporarily broken routes, which results in
TCP inability to distinguish between losses due to link failures or
congestion. This problem tends to become more serious as
network mobility increases. In this work, we tackle the equally
important capture problem to which there has been little or no
solution, and is present mostly in static and low mobility multi-
hop wireless networks. This is a result of the interplay between the
MAC layer and TCP backoff policies, which causes nodes to
unfairly capture the wireless shared medium, hence preventing
neighboring nodes to access the channel. This has been shown to
have major negative effects on TCP performance comparable to
the impact of mobility. We propose a novel algorithm, called
COPAS (COntention-based PAth Selection), which incorporates
two mechanisms to enhance TCP performance by avoiding
capture conditions. First, it uses disjoint forward (sender to
receiver for TCP data) and reverse (receiver to sender for TCP
ACKs) paths in order to minimize the conflicts of TCP data and
ACK packets. Second, COPAS employs a dynamic contention-
balancing scheme where it continuously monitors and changes
forward and reverse paths according to the level of MAC layer
contention, hence minimizing the likelihood of capture. Through
extensive simulation, COPAS is shown to improve TCP
throughput by up to 90% while keeping routing overhead low.

I. INTRODUCTION
 A mobile ad hoc network (MANET) is a network in which a group
of mobile computing devices communicate among themselves
wirelessly, without the aid of any fixed infrastructure. Here, nodes
within radio range of each other are capable of talking directly via
wireless links, while those that are far apart use other nodes as relays
in a multi-hop fashion.
 The majority of applications in the Internet today make use of the
TCP (Transmission Control Protocol) for reliable communication.
TCP has been designed for and fine-tuned to wired environments;
recent studies have shown that current TCP control mechanisms are
inadequate for wireless networks, such as traditional one-hop wireless
cellular system [1, 2]. TCP in multi-hop wireless networks has been
shown to perform even worse [3, 4], since, in addition to all links
being wireless and thus causing a high packet error rate, mobility
causes frequent link breakages and this leads TCP to normally invoke
its congestion control mechanisms even though congestion may not
occur. This problem has been the objective of recent research [3, 5, 6,
7, 10], where highly mobile networks have been considered.
 An equally important problem is the severe unfairness and capture
conditions due to the interplay of the MAC (Medium Access Control)
layer and TCP backoff policies [4, 8, 9] which result in a single node
in its radio range being able to access the medium at all times, while
others in its neighborhood starve. To the same extent as mobility

related effects over TCP, the capture problem has been shown to
drastically affect TCP performance [4, 8, 9] and is stressed in wireless
MAC protocols that employ exponential backoff schemes such as
IEEE 802.11 [14] and FAMA (Floor Acquisition Multiple Access)
[15] as their backoff mechanisms always favor the last successful
station [8, 9].
 Contrary to mobility related TCP issues, the capture problem is
mostly present when network nodes are static or possess small
mobility since nodes stay longer within radio range of each other,
while in high mobility networks nodes are often moving out of range
of each other and, as a result, nodes rarely have the chance to capture
or be captured. As we shall see later, the capture problem is severe
enough that when nodes cannot access the medium for some amount
of time they generate route error packets even though the network is
completely static. For TCP traffic, this causes retransmission timers to
go off and throughput to drastically degrade. Capture conditions are
very likely in current generation routing protocols as the same route is
used for forward and reverse traffic given a <source, destination> pair
[11, 12, 13]. For TCP, this implies that data packets in the forwarding
direction and ACK packets in the reverse direction compete to access
the same shared medium, frequently causing ACK packets to be
unable to reach the source and, thus, TCP executing its congestion
control algorithms. It has been shown that TCP data packets often
capture the medium preventing ACK packets from reaching their
destination [8, 9]. As we show later, this problem is worsened by the
presence of multiple TCP flows.
 In this paper, we propose an algorithm called COPAS (COntention-
based PAth Selection) to address TCP performance drop due to the
capture problem. COPAS implements two novel routing techniques in
order to contention-balance the network, namely, the use of disjoint
forward (for TCP data) and reverse (for TCP ACK) paths to reduce
the conflicts between TCP packets traveling in opposite directions, as
well as a dynamic contention-balancing technique that continuously
monitors network contention and selects routes with minimum
contention to avoid capture conditions. Unlike recent research that
either evaluates a single TCP session [3, 5, 6, 10], or when multiple
TCP sessions are considered the network is fully mobile [7], or the
connections mostly cover one hop employing unrealistic topologies
such as ring and string [4, 8, 9], in this work we have performed
extensive simulations where we consider multiple TCP connections
under several scenarios, and where the network is comprised of only
static hosts. This is the worst case scenario where capture conditions
are mostly severe since nodes remain within radio range of each other
continuously, and where multiple TCP flows compete to have access
to the shared medium. The algorithm we propose here could cooperate
with any of the other proposed schemes in [3, 5, 6, 7, 10], since we
tackle TCP degradation in a static to low mobility network while they
cope up with mobility related issues.
 The rest of this paper is organized as follows. Section II precisely
defines and gives the motivation for the problems attacked in this

paper as well as points out the related work, while section III
elaborates on our novel COPAS algorithm. Next, sections IV and V
present the simulation model and extensive results of our scheme.
Finally, this paper is concluded in section VI.

II. PROBLEM DEFINITION, MOTIVATION AND RELATED WORK
 By far, TCP is the most widely used transport protocol over the
Internet today, and every application which requires reliability
eventually runs on top of TCP. Therefore, its use over MANETs is a
certainty. We can identify two main problems to the large
performance detriment of TCP over wireless multi-hop ad hoc
networks, where these problems reveal themselves in opposite
mobility patterns. The first is the so-called link breakage problem
which becomes increasingly worse as nodes become highly mobile.
The second is called capture problem and is mostly severe when the
network is static or with little mobility.
 While current research has dedicated most of its effort to tackle the
link breakage problem [3, 5, 6, 7, 10], no effective solution has been
proposed to tackle the capture problem. The capture problem is due to
the interplay of the MAC layer and TCP backoff policies, which
causes nodes to unfairly capture the wireless shared medium and
always favor the last successful station [4, 8, 9]. Also behind this
problem is the fact that proposed routing protocols for mobile ad hoc
networks often employ the very same route for forward and reverse
traffic, and as these protocol evaluations have been made using of
UDP traffic only, capture conditions have passed unnoticed. Only a
partial MAC layer solution to the problem has been suggested in [16],
where a yield time scheme is proposed to address the unfairness
problem in the specific case of IEEE 802.11. However, this causes the
aggregate throughput to degrade even more, and conflicts of TCP
packets flowing in opposite directions still remain. In [23, 24] the
issue of fairness is addressed, but they to not cope up with the
problems we discuss here. Nevertheless, we see our proposed solution
and the ones in [16, 23, 24] to be complementary rather than
competing since we employ network layer strategies while they
suggest MAC layer techniques.
 As an example of the conflict of TCP data and ACK packets
traveling in opposite directions, consider Figure 1 where a TCP
connection exists between nodes S and D. Now let us assume that at
the time node S is sending a TCP data packet to node A destined to D,
node D itself senses the medium in order to forward an ACK packet to
node B destined to S. Surprisingly, node D will detect node’s S
transmission to node A and will backoff. This is because in carrier
sense wireless networks, the interfering range – and sensing range – is
typically larger than the communication range [18]. As a matter of
fact, WaveLAN wireless systems [22] are engineered in such a way
that the interfering and sensing range are more than two times the size
of the communication range [8]. Therefore, larger sensing and
interfering ranges will severely degrade the network performance in
wireless multi-hop networks [8, 18]. The larger interfering range
makes the hidden terminal problem worse, while the larger sensing
range intensifies the exposed terminal problem. In particular for TCP
which relies on traffic in both forward and reverse direction, this is a
serious detriment to performance. This problem can be aggravated in
such a way that, in Figure 1, some nodes along the forward traffic
completely capture the shared medium and totally prevent TCP ACK
packets from flowing back and reaching the source node, hence
resulting in TCP timeouts and consequent performance degradation.
This is exaggerated when multiple TCP connections use nearby nodes
as they tend to capture each other, hence badly degrading the overall
throughput.
 Our approach, elaborated in the next section, tackles this problem
by finding two disjoint paths with minimum “contention” during route
construction phase, and monitoring these paths while they are still

valid. We accomplish to find minimum contention paths by
monitoring MAC layer behavior. TCP data and ACK packets travel
through the two disjoint paths. Since the traffic pattern may change in
the network, we also dynamically monitor the network contention to
alter routes if needed.

Figure 1 – TCP connection between nodes S and D

 Note that here, we distinguish between load and contention. Load is
indicated by the number of data packets flowing through a node, while
contention is indicated by radio interference seen by the MAC layer of
a node. A node with low load can still experience high contention. Our
goal here is to focus on minimum contention path rather than
minimum load path, as contention is seriously detrimental to TCP
performance [4, 8, 9]. We also note here that routing over minimally
loaded paths was previously reported in [17], but this work was done
with UDP traffic.

III. THE COPAS ALGORITHM
 We propose a novel algorithm called COPAS (COntention-based
PAth Selection) for building exactly two least contented routes to be
used as forward and reverse paths between each source and
destination pair. These routes are to be rebuilt as the contention along
the path changes. COPAS builds routes on-demand and can be
implemented in any on-demand routing protocol such as AODV [11]
and DSR [12].

A. Route Establishment
 In on-demand protocols, a route discovery process is initiated when
a route to a destination is needed and none is available. The source
floods the network with a ROUTE REQUEST (RREQ) packet to
discover a route to the destination. When the destination receives the
RREQ, it responds with a unicast ROUTE REPLY (RREP) packet
back to the source. The details of how these procedures are done are
protocol specific. For example, DSR uses source routing and stores
routing information in the form of route caches, whereas AODV
employs hop-by-hop routing and stores routing information in route
table entries.
 In COPAS, upon receipt of a non-duplicate RREQ packet, to this
packet nodes append a weighted average (BACKOFFµ) of the number
of times it has backed off in the last TBACKOFF seconds due to activity
in the medium. The RREQ packet is then re-broadcast. By keeping
track of the recent average number of times a node has backed off, we
are actually determining how busy the wireless shared medium is in
the neighborhood of a node. More times a node backs off, means that
more busy is the medium around it. This gives us precise information
on the contention experienced along the paths traveled by a RREQ. In
order to calculate BACKOFFµ , every node determines how many
times it has backed off (NBACKOFF) at each TBACKOFF seconds and
computes the following:

BACKOFFBACKOFFBACKOFF N×+×−= αµαµ)1(
where α is a constant less than 1. We anticipate that contention will be
better modeled by emphasizing more recent information. Thus, we
recommend α > 0.5.
 After receiving the first RREQ packet, the destination waits for an
appropriate amount of time (TCOLLECT) to learn all possible routes. In
order to learn all the routes and their contention information, the

S

C

A

B D

TCP data

TCP ACK

(1)

destination node accepts duplicate RREQ received from different
previous nodes. When the RREQ collection timer expires, COPAS
employs two selection criteria in order to choose exactly two routes:
path disjointness, and least contented routes.
 Disjoint path routing has been explored before in connection with
both DSR [20] and AODV [19] routing protocols. COPAS uses
similar techniques to choose all possible node-disjoint routes (between
source and destination) at the destination and selects the two least
contented routes based on the information collected by the arriving
RREQ packets. Least contented routes are computed by evaluating the
sum of the contentions experienced by the RREQ packets on each
node-disjoint route and then minimizing the sum over all disjoint
routes available. Ties are resolved by favoring lower route lengths (in
hops) and then by the arrival order of the RREQ packets. In the
absence disjoint paths, COPAS behaves similarly to existing routing
protocols with the difference that it can take advantage of network
contention information.
 The destination responds with two RREPs along the chosen paths.
Along with the RREP, the destination also sets a direction flag in
the packet header to indicate to the source node which path is to be
used as forward (for TCP data packets) and reverse (for TCP ACK
packets) traffic. This direction information is also kept in a node’s
routing table. To illustrate this, consider the scenario of Figure 2(a)
wherein the source node S sends a RREQ packet towards the
destination node D. In this case and with the contention values as
depicted in the Figure 2(a), the destination first applies the
disjointness path rule and finds out routes i = <S-B-E-H-D>, j = < S-
C-J-D >, and k = < S-G-I-F-D> to be disjoint. Next, it applies the
minimum contention sum rule and ends up selecting routes i and k to
be used as reverse (for TCP ACK) and forward (for TCP data) paths
respectively, as showed in Figure 2(b).
 Employing disjoint forward and reverse paths is also desirable for
robustness reasons. Capture conditions can be so severe that links
appear to be broken even when there is no mobility. Therefore, to
guarantee continuous operation even in link breakage situations we
make use of previously established forward and reverse routes. In a
capture scenario, it is usually the MAC layer which reports to the
network layer the link breakage (the IEEE 802.11 standard has this
capability [14]) since it is in this layer where the capture problem is
rooted. When a route is disconnected, the immediate upstream node of
the broken link sends a ROUTE ERROR (RERR) message to the
source of the route notifying the route invalidation. Nodes along the
path to the source remove the route entry upon receiving this message
and relay it to the source.
 In traditional on-demand routing protocols, the source reconstructs
a new route by flooding a RREQ when informed of a route
disconnection. In COPAS – in addition to flooding a RREQ to
reconstruct the broken route – we redirect TCP packets using the
second alternate path when available, hence providing uninterrupted
communication. It is up to TCP to recover from potential lost packets
due to link breakage, while we try to minimize the route disruption by
rerouting data packets. In this case, COPAS behaves similar to
existing approaches.

B. Dynamic Contention-Balancing and Route Reconstruction
 Traffic pattern across the network changes a lot with time and
space. Therefore, routes that were optimal during the initial route
construction process may not be good paths anymore as contention
might have increased with the new traffic pattern. Therefore, we
implement a scheme to dynamically monitor and change routes
between any <source, destination> pair that have their contention
noticeably increased.
 While the data communication is active, intermediate nodes
continuously piggyback their contention information, as given by

equation (1), on packets flowing through the forward and reverse
paths. Source and destination nodes can thus monitor the status of the
reverse and forward routes respectively. If either route starts
experiencing a contention exceeding a threshold (BACKOFFTHRES), a
new and less contented route is selected to replace the high contented
path. Routes are hence reconstructed dynamically in order to keep
balanced the overall contention level in the network or, in other
words, COPAS seeks to continuously contention-balance the network.
The process of building new routes is similar to the initial route
discovery process except that the source or destination floods a RREQ
packet to each other, depending on which path is to be replaced
(forward or reverse). The receiving end, upon receiving RREQ
packets, proceeds in the same way as already described in order to
select a disjoint and least contented route. However, in this case, we
make two additional modifications. First, we try to find a new route
with equal or similar path length as the previous one so that the round-
trip time perceived by TCP does not change much. Second, the
receiving end does not need to send back a RREP packet and simply
starts using the newly discovered route.

C. Replies from Intermediate Nodes
 On-demand routing protocols often make use of prior routing
information (e.g., a route cache) in order to quickly establish paths
between nodes [11, 12]. In case route caches are used, this can have a
negative impact on the performance of COPAS since it would not be
able to acquire up-to-date information of path contention. Therefore,
in COPAS, intermediate nodes cannot send a RREP back to the source
even when they have route information to the destination. To utilize
the most up-to-date contention information when selecting routes and
to minimize overlapped routes which might be suffering from capture
problems, we strictly prohibit intermediate nodes from replying to
RREQs. Intermediate nodes replying to RREQs has an advantage of
reducing the propagation of flooded packets, but may result in
increased contention and a RREP storm (as in the case of DSR), that
is, too many nodes sending RREPs at the same time raising the levels
of both contention and collisions.

IV. SIMULATION ENVIRONMENT AND METHODOLOGY
 We compare COPAS (implemented as a modified version of DSR)
and the base DSR [12] routing protocol which uses shortest path, and
compare their performance under TCP. The results of this paper are
based on simulations using the ns-2 (Network Simulator) [21] which
has support for simulating multi-hop wireless networks with features
including physical and MAC protocols. Our network model consists
of two simulation scenarios, for 50 and 100 nodes, in a 1000m x
1000m flat rectangular area. To evaluate the worst case capture
scenario, the nodes in the network are static for an entire simulation
run that lasts for a total of 600 seconds. All nodes communicate with
identical, half-duplex wireless radios that are modeled after the
commercially available IEEE 802.11-based WaveLAN [22] radio
interface, which possesses a bandwidth of 2 Mbps and nominal
transmission range of 250m.
 As for the traffic simulation, we have used the TCP-Reno
implementation (also employed in [3, 8]) over which FTP file
transfers have been conducted. TCP segment size is of 512 bytes, and
the maximum window is of 32 packets. Additionally, we vary the
number of TCP connections from 1, 3, 5, 10, and 15, where
connections start randomly in the first 100 seconds and last for the rest
of the simulation period. Unless otherwise noted, all of our simulation
results are averaged over 25 scenarios. Each scenario, generated
randomly, designates the initial placement of nodes in the considered
area.
 We use the following performance metrics to compare COPAS and
base DSR protocol under the different number of TCP connections:

Figure 2(a) – Network contention perceived at node D

Figure 2(b) – Routes selected by node D

• Throughput – This is the amount of data received by a TCP
receiver per unit time;

• Average number of backoffs per second – This is the number of
MAC layer backoffs a node experiences per unit time;

• Normalized routing overhead – This is a cost/benefit metric. It is
the ratio of the number of bytes of routing packets transmitted
per number of bytes of data packets delivered at the TCP
receiver;

• Average end-to-end delay of data packets – This includes all
possible delays such as buffering during route discovery,
queuing, retransmission at the MAC layer, propagation and
transfer times.

 Table 1 illustrates the parameter configuration used in our COPAS
implementation available in ns-2.

TABLE 1 – COPAS parameter setup
Parameter Value

TBACKOFF 1 second
TCOLLECT 1.5 second
α 0.75
BACKOFFTHRES 6 backoffs per node

V. SIMULATION RESULTS

A. Throughput
 Figure 3(a) compares the throughput achieved by COPAS and DSR
in the 50 nodes configuration, and for an increasing number of TCP
connections. As we can see from this figure, the aggregate throughput
achieved by COPAS is much higher than that of DSR, and as we
increase the number of TCP connections COPAS becomes even more
effective at finding alternate least-contented paths, while DSR does
not succeed in finding better routes. We observe that the aggregate
throughput does not increase at the same pace with the number of
connections, even on a static network, for two main reasons. Firstly, a
given connection C1 going though, say, nodes A, B, C and D, might
be capturing the medium around node A but might have been captured
in the neighborhood of node C. That is, capturing is something
random that TCP connections suffer along the path, hence degrading
the overall throughput. The second reason is that capture changes with
time. This is to say that a given node A could have been captured by
another node B in time t1, while at time t2 it is node B which might
have been captured by node A. Therefore, while a node is being
captured by some other node the TCP retransmission timer goes off
and it enters slow start. Eventually, some nodes carrying TCP traffic
are captured and force TCP to enter slow start. As we increase the
number of TCP connections, the probability of nodes being captured
increases resulting in a sensible drop of TCP per connection
throughput (Figures 4 and 5) and only a small increase in aggregate
throughput (Figure 3). COPAS achieves a drastically higher
throughput than DSR (an average of 90% improvement) by choosing

distinct forward and reverse paths based on current network
contention.
 Similar to Figure 3(a), Figure 3(b) also shows the aggregate
throughput but now for the 100 nodes scenario. Although COPAS still
achieves higher throughput, the relative performance differential is
lower. There are two main reasons. First, since now the network has
many more nodes and hence previously emptied spots are now
occupied, TCP data packets are sort of distributed in the network and
TCP connections do not interfere as much as in the 50 nodes
configuration. The second reason is that with a larger number of
nodes, path lengths between a given source and destination gets
longer, hence enabling TCP data packets to effectively achieve
pipelining among nodes along the same route but out of radio range of
each other. A similar pipelining effect has also been shown in [3, 4].
However, COPAS still achieves higher throughput as it avoids conflict
by separating TCP data from ACKs, and for an increased number of
TCP connections capture conditions eventually occur irrespective of
how large the network is, revealing COPAS to have superior
performance.
 Besides analyzing the average throughput, it is also interesting to
study the dynamic behavior of the throughput perceived by a given
network node. Figures 4(a), 4(b), 4(c) and 4(d) depict the
instantaneous TCP throughput experienced by a pre-selected node
during 220 seconds of the connection lifetime, for DSR and COPAS
with 1 and 5 TCP connections respectively, in the 50-nodes scenario.
As we can see, DSR and COPAS throughputs are similar when there
is only one connection in the network, with COPAS still having
slightly higher performance due to its distribution of TCP data and
ACK in different paths. However, for 5 TCP connections COPAS
demonstrates a more stable performance than DSR since it
continuously reevaluates routes and reconstructs them according to the
shared medium contention. As we can see from Figure 4(c), the
throughput of TCP over DSR remains zero or close to zero most of the
time, while COPAS throughput bounces back from zero as COPAS
reacts to capture conditions by finding alternate routes. Figures 5(a),
5(b), 5(c), and 5(d) show similar results, but now for the 100-nodes
scenario.

B. Average Number of Backoffs
 Here, we analyze the average number of times the 802.11 MAC
layer backs off for increasing number of TCP connections. Figures
6(a) and 6(b) depict such curves, comparing DSR and COPAS for the
50 and 100 nodes scenarios respectively. Nodes using COPAS
experience much less contention than those using DSR, especially in
the 50 nodes scenario where many nodes are involved in TCP packet
forwarding and hence COPAS can take advantage by finding routes
other than always the shortest as in DSR. A direct consequence of this
fact is that nodes running COPAS have a higher probability of
successfully accessing the medium.

C D

E

F

S

B

G

H

I

J

4

4 2 5

3 1

8 7

TCP ACK

TCP Data

C D

E

F

S

B

G

H

I

J

4

4 2 5

3 1

8 7

 0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

Ag
gre

gat
e T

hro
ugh

put
 (K

byt
es/

sec
)

Number of TCP Connections

DSR
COPAS

(a) – 50-nodes scenario

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

Ag
gre

gat
e T

hro
ugh

put
 (K

byt
es/

sec
)

Number of TCP Connections

DSR
COPAS

(b) – 100-nodes scenario

Figure 3 – Average Aggregate throughput

C. Normalized Routing Overhead
 This is an important metric as it relates how much effort in terms of
routing packets is necessary in order to obtain the increased TCP
throughput. The normalized routing overhead for the 50 and 100
nodes scenarios are shown in Figures 7(b) and 7(c). As we can see,
although COPAS makes use of a new RREQ each time a route has to
be rebuilt due to increased contention, it is still able to incur much less
overhead per unit bandwidth. There are two reasons for that. Firstly,
since COPAS balances the network according to contention, situations
like the one described in section V.A where capture conditions trigger
RERRs become infrequent and, as a result, much less RERR packets
are generated in COPAS. The second reason comes directly from the
implementation of DSR [21], where destination nodes respond to each
and every RREQ they receive with a RREP so that nodes can learn all
routes. On the other hand, COPAS replies to exactly two RREQs,
hence incurring less overhead at the expense of less information.
D. Average End-to-End Delay
 Figure 8(a) and 8(b) show the end-to-end delay for both COPAS
and DSR in the 50 and 100 nodes scenarios. As expected, COPAS
experiences little higher delay than that of DSR. The reason for this
fact is that COPAS ends up choosing paths that are eventually longer
(in number of hops) than the shortest one in order to avoid contention.

If we return back to Figure 2(b), we see that the trend of COPAS is to
choose routes that somehow “go around” the shortest route because
their nodes are likely to be out of radio range, and hence path
contention is smaller. Therefore, end-to-end delay is slightly higher.

VI. CONCLUSIONS
 The capture problem of exponential backoff-based MAC protocols
(e.g., IEEE 802.11 and FAMA) has been shown to have a negative
influence on TCP performance over MANETs. Since TCP is by far
the most widely used transport protocol today, techniques to mitigate
such effects are necessary. We have proposed a novel algorithm,
called COPAS, that achieves this using two techniques ─ choosing
disjoint forward and reverse paths for TCP data and ACK packets and
contention-balancing the whole network. Contention-balancing takes
into consideration the number of MAC layer backoffs the nodes have
experienced recently. COPAS can be deployed on top of any on-
demand routing protocol, such as DSR and AODV. Through extensive
simulations, we have demonstrated that COPAS provides up to 90%
improvement in TCP throughput than baseline DSR.

REFERENCES
[1] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A comparison of

mechanisms for improving TCP performance over wireless links,” in
Proceedings of ACM SIGCOMM’96, August 1996.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

DSR

(a) – 1 TCP connection (DSR)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

COPAS

(b) – 1 TCP connection (COPAS)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

DSR

(c) – 5 TCP connections (DSR)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

COPAS

(d) – 5 TCP connections (COPAS)

Figure 4 – Throughput oscillation in the 50-nodes scenario

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

DSR

(a) – 1 TCP connection (DSR)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

COPAS

(b) – 1 TCP connection (COPAS)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

DSR

(c) – 5 TCP connections (DSR)

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

Th
rou

gh
pu

t (b
yte

s/s
ec

)

Time (sec)

COPAS

(d) – 5 TCP connections (COPAS)

Figure 5 – Throughput oscillation in the 100-nodes scenario

[2] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless web
performance,” in Proceedings of IEEE Globecom, October 1998.

[3] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc
networks,” in Proceedings of ACM MobiCom’99, August 1999.

[4] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless Multi-hop
Networks,” in IEEE WMCSA’99, February 1999.

[5] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE J-SAC,
vol. 19, no. 7, pp. 1300–1315, July 2001.

[6] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feedback-
based scheme for improving TCP performance in ad hoc wireless networks,”
IEEE Pers. Comm. Mag., vol. 8, no. 1, Feb. 2001.

[7] T. Dyer and R. Boppana, “A comparison of TCP performance over three routing
protocols for mobile ad hoc networks,” in Proceedings of ACM MobiHoc’01,
October 2000.

[8] S. Xu, and T. Saadawi, “Does IEEE 802.11 MAC Protocol Work Well in Multi-
hop Wireless Networks?,” in IEEE Communications, June 2001.

[9] S. Xu, and T. Saadawi, “Revealing the Problems with 802.11 MAC Protocol in
Multi-hop Wireless Ad Hoc Networks,” Journal of Computer Networks, Vol.
38, No. 4, March 2002.

[10] F. Wang, and Y. Zhang, “Improving TCP Performance over Mobile Ad-Hoc
Networks with Out-of-Order Detection and Response,” in Proceedings of
ACM MobiHoc’02, June 2002.

[11] C. Perkins, E. Royer, and S. Das, “Ad Hoc On Demand Distance Vector
Routing (AODV),” Internet Draft, March 2001 (work in Progress).

[12] D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva, “The dynamic source routing
protocol for mobile ad hoc networks (DSR),” Internet Draft, Nov. 2001 (work
in progress).

[13] Y.-B. Ko, and N. Vaidya, “Location-aided Routing (LAR) in mobile ad hoc
networks,” in ACM/IEEE MobiCom’98, October 1998.

[14] IEEE Std. 802-11. “IEEE Standard for Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification,” June 1997.

[15] C. Fullmer, and J.J. Garcia-Luna-Aceves, “Floor Acquisition Multiple Access
(FAMA) for packet radio networks,” Computer Communication Review,
October 1995.

[16] K. Tang, and M. Gerla, “Fair Sharing of MAC under TCP in Wireless Ad Hoc
Networks,” in Proceedings of IEEE MMT'99, October 1999.

[17] S.-Ju Lee, and M. Gerla, “Dynamic Load-Aware Routing in Ad Hoc
Networks,” in Proceedings of IEEE ICC’01, June 2001.

[18] J. Sobrinho, and A. Krishnakumar, “Quality-of-Service in Ad Hoc Carrier
Sense Multiple Access Wireless Networks,” IEEE J-SAC, 17(8): 1353-1368,
1999.

[19] M. Marina and S. Das, “On-demand Multipath Distance Vector Routing in Ad
Hoc Networks,” in the Proceedings of ICNP, November 2001.

[20] A. Nasipuri, R. Casteneda, and S. Das, “Performance of Multipath Routing for
On-Demand Protocols in Mobile Ad Hoc Networks,” in ACM/Kluwer MONET
Journal, Vol. 6, No. 4, 2001, pp. 339-349.

[21] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns/index.html.
[22] B. Tuch, “Development of WaveLAN, an ISM Band Wireless LAN,” AT&T

Tech. Journal, vol. 72, no. 4, July 1993.
[23] B. Bensaou, Y. Wang and C. C. Ko, “Fair Media Access in 802.11 based

wireless ad-hoc Networks,” Proceedings of Mobihoc’2000, Aug. 2000.
[24] N. H. Vaidya, P. Bahl and S. Gupta, “Distributed Fair Scheduling in a Wireless

LAN,” Proceedings of Mobicom’2000, Aug. 2000.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

Ave
rag

e N
um

ber
 of

Ba
cko

ffs
(ba

cko
ffs/

sec
)

Number of TCP Connections

DSR
COPAS

(a) – 50-nodes scenario

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

Ave
rag

e N
um

ber
 of

Ba
cko

ffs
(ba

cko
ffs/

sec
)

Number of TCP Connections

DSR
COPAS

(b) – 100-nodes scenario

Figure 6 – Average number of backoffs

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14

No
rma

lize
d R

out
ing

 Ov
erh

ead

Number of TCP Connections

DSR
COPAS

(a) – 50-nodes scenario

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14

No
rma

lize
d R

out
ing

 Ov
erh

ead

Number of TCP Connections

DSR
COPAS

(b) – 100-nodes scenario

Figure 7 – Normalized routing overhead

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14

Ave
rag

e D
ela

y (s
ec)

Number of TCP Connections

DSR
COPAS

(a) – 50-nodes scenario

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14

Ave
rag

e D
ela

y (s
ec)

Number of TCP Connections

DSR
COPAS

(b) – 100-nodes scenario

Figure 8 – Average end-to-end delay

