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Abstract – Most studies on TCP over multi-hop wireless ad hoc 
networks have only addressed the issue of performance 
degradation due to temporarily broken routes, which results in 
TCP inability to distinguish between losses due to link failures or 
congestion. This problem tends to become more serious as 
network mobility increases. In this work, we tackle the equally 
important capture problem to which there has been little or no 
solution, and is present mostly in static and low mobility multi-
hop wireless networks. This is a result of the interplay between the 
MAC layer and TCP backoff policies, which causes nodes to 
unfairly capture the wireless shared medium, hence preventing 
neighboring nodes to access the channel. This has been shown to 
have major negative effects on TCP performance comparable to 
the impact of mobility. We propose a novel algorithm, called 
COPAS (COntention-based PAth Selection), which incorporates 
two mechanisms to enhance TCP performance by avoiding 
capture conditions. First, it uses disjoint forward (sender to 
receiver for TCP data) and reverse (receiver to sender for TCP 
ACKs) paths in order to minimize the conflicts of TCP data and 
ACK packets. Second, COPAS employs a dynamic contention-
balancing scheme where it continuously monitors and changes 
forward and reverse paths according to the level of MAC layer 
contention, hence minimizing the likelihood of capture. Through 
extensive simulation, COPAS is shown to improve TCP 
throughput by up to 90% while keeping routing overhead low. 

I. INTRODUCTION 
 A mobile ad hoc network (MANET) is a network in which a group 
of mobile computing devices communicate among themselves 
wirelessly, without the aid of any fixed infrastructure. Here, nodes 
within radio range of each other are capable of talking directly via 
wireless links, while those that are far apart use other nodes as relays 
in a multi-hop fashion. 
 The majority of applications in the Internet today make use of the 
TCP (Transmission Control Protocol) for reliable communication. 
TCP has been designed for and fine-tuned to wired environments; 
recent studies have shown that current TCP control mechanisms are 
inadequate for wireless networks, such as traditional one-hop wireless 
cellular system [1, 2]. TCP in multi-hop wireless networks has been 
shown to perform even worse [3, 4], since, in addition to all links 
being wireless and thus causing a high packet error rate, mobility 
causes frequent link breakages and this leads TCP to normally invoke 
its congestion control mechanisms even though congestion may not 
occur. This problem has been the objective of recent research [3, 5, 6, 
7, 10], where highly mobile networks have been considered. 
 An equally important problem is the severe unfairness and capture 
conditions due to the interplay of the MAC (Medium Access Control) 
layer and TCP backoff policies [4, 8, 9] which result in a single node 
in its radio range being able to access the medium at all times, while 
others in its neighborhood starve. To the same extent as mobility 

related effects over TCP, the capture problem has been shown to 
drastically affect TCP performance [4, 8, 9] and is stressed in wireless 
MAC protocols that employ exponential backoff schemes such as 
IEEE 802.11 [14] and FAMA (Floor Acquisition Multiple Access) 
[15] as their backoff mechanisms always favor the last successful 
station [8, 9].  
 Contrary to mobility related TCP issues, the capture problem is 
mostly present when network nodes are static or possess small 
mobility since nodes stay longer within radio range of each other, 
while in high mobility networks nodes are often moving out of range 
of each other and, as a result, nodes rarely have the chance to capture 
or be captured. As we shall see later, the capture problem is severe 
enough that when nodes cannot access the medium for some amount 
of time they generate route error packets even though the network is 
completely static. For TCP traffic, this causes retransmission timers to 
go off and throughput to drastically degrade. Capture conditions are 
very likely in current generation routing protocols as the same route is 
used for forward and reverse traffic given a <source, destination> pair 
[11, 12, 13]. For TCP, this implies that data packets in the forwarding 
direction and ACK packets in the reverse direction compete to access 
the same shared medium, frequently causing ACK packets to be 
unable to reach the source and, thus, TCP executing its congestion 
control algorithms. It has been shown that TCP data packets often 
capture the medium preventing ACK packets from reaching their 
destination [8, 9]. As we show later, this problem is worsened by the 
presence of multiple TCP flows.  
 In this paper, we propose an algorithm called COPAS (COntention-
based PAth Selection) to address TCP performance drop due to the 
capture problem. COPAS implements two novel routing techniques in 
order to contention-balance the network, namely, the use of disjoint 
forward (for TCP data) and reverse (for TCP ACK) paths to reduce 
the conflicts between TCP packets traveling in opposite directions, as 
well as a dynamic contention-balancing technique that continuously 
monitors network contention and selects routes with minimum 
contention to avoid capture conditions. Unlike recent research that 
either evaluates a single TCP session [3, 5, 6, 10], or when multiple 
TCP sessions are considered the network is fully mobile [7], or the 
connections mostly cover one hop employing unrealistic topologies 
such as ring and string [4, 8, 9], in this work we have performed 
extensive simulations where we consider multiple TCP connections 
under several scenarios, and where the network is comprised of only 
static hosts. This is the worst case scenario where capture conditions 
are mostly severe since nodes remain within radio range of each other 
continuously, and where multiple TCP flows compete to have access 
to the shared medium. The algorithm we propose here could cooperate 
with any of the other proposed schemes in [3, 5, 6, 7, 10], since we 
tackle TCP degradation in a static to low mobility network while they 
cope up with mobility related issues.  
 The rest of this paper is organized as follows. Section II precisely 
defines and gives the motivation for the problems attacked in this 



paper as well as points out the related work, while section III 
elaborates on our novel COPAS algorithm. Next, sections IV and V 
present the simulation model and extensive results of our scheme. 
Finally, this paper is concluded in section VI. 

II. PROBLEM DEFINITION, MOTIVATION AND RELATED WORK 
 By far, TCP is the most widely used transport protocol over the 
Internet today, and every application which requires reliability 
eventually runs on top of TCP. Therefore, its use over MANETs is a 
certainty. We can identify two main problems to the large 
performance detriment of TCP over wireless multi-hop ad hoc 
networks, where these problems reveal themselves in opposite 
mobility patterns. The first is the so-called link breakage problem 
which becomes increasingly worse as nodes become highly mobile. 
The second is called capture problem and is mostly severe when the 
network is static or with little mobility.  
 While current research has dedicated most of its effort to tackle the 
link breakage problem [3, 5, 6, 7, 10], no effective solution has been 
proposed to tackle the capture problem. The capture problem is due to 
the interplay of the MAC layer and TCP backoff policies, which 
causes nodes to unfairly capture the wireless shared medium and 
always favor the last successful station [4, 8, 9]. Also behind this 
problem is the fact that proposed routing protocols for mobile ad hoc 
networks often employ the very same route for forward and reverse 
traffic, and as these protocol evaluations have been made using of 
UDP traffic only, capture conditions have passed unnoticed. Only a 
partial MAC layer solution to the problem has been suggested in [16], 
where a yield time scheme is proposed to address the unfairness 
problem in the specific case of IEEE 802.11. However, this causes the 
aggregate throughput to degrade even more, and conflicts of TCP 
packets flowing in opposite directions still remain. In [23, 24] the 
issue of fairness is addressed, but they to not cope up with the 
problems we discuss here. Nevertheless, we see our proposed solution 
and the ones in [16, 23, 24] to be complementary rather than 
competing since we employ network layer strategies while they 
suggest MAC layer techniques. 
 As an example of the conflict of TCP data and ACK packets 
traveling in opposite directions, consider Figure 1 where a TCP 
connection exists between nodes S and D. Now let us assume that at 
the time node S is sending a TCP data packet to node A destined to D, 
node D itself senses the medium in order to forward an ACK packet to 
node B destined to S. Surprisingly, node D will detect node’s S 
transmission to node A and will backoff. This is because in carrier 
sense wireless networks, the interfering range – and sensing range – is 
typically larger than the communication range [18]. As a matter of 
fact, WaveLAN wireless systems [22] are engineered in such a way 
that the interfering and sensing range are more than two times the size 
of the communication range [8]. Therefore, larger sensing and 
interfering ranges will severely degrade the network performance in 
wireless multi-hop networks [8, 18]. The larger interfering range 
makes the hidden terminal problem worse, while the larger sensing 
range intensifies the exposed terminal problem. In particular for TCP 
which relies on traffic in both forward and reverse direction, this is a 
serious detriment to performance. This problem can be aggravated in 
such a way that, in Figure 1, some nodes along the forward traffic 
completely capture the shared medium and totally prevent TCP ACK 
packets from flowing back and reaching the source node, hence 
resulting in TCP timeouts and consequent performance degradation. 
This is exaggerated when multiple TCP connections use nearby nodes 
as they tend to capture each other, hence badly degrading the overall 
throughput.  
 Our approach, elaborated in the next section, tackles this problem 
by finding two disjoint paths with minimum “contention” during route 
construction phase, and monitoring these paths while they are still 

valid. We accomplish to find minimum contention paths by 
monitoring MAC layer behavior. TCP data and ACK packets travel 
through the two disjoint paths. Since the traffic pattern may change in 
the network, we also dynamically monitor the network contention to 
alter routes if needed. 
 
 
  
 
 
 

Figure 1 – TCP connection between nodes S and D 
 
 Note that here, we distinguish between load and contention. Load is 
indicated by the number of data packets flowing through a node, while 
contention is indicated by radio interference seen by the MAC layer of 
a node. A node with low load can still experience high contention. Our 
goal here is to focus on minimum contention path rather than 
minimum load path, as contention is seriously detrimental to TCP 
performance [4, 8, 9]. We also note here that routing over minimally 
loaded paths was previously reported in [17], but this work was done 
with UDP traffic. 

III. THE COPAS ALGORITHM 
 We propose a novel algorithm called COPAS (COntention-based 
PAth Selection) for building exactly two least contented routes to be 
used as forward and reverse paths between each source and 
destination pair. These routes are to be rebuilt as the contention along 
the path changes. COPAS builds routes on-demand and can be 
implemented in any on-demand routing protocol such as AODV [11] 
and DSR [12]. 

A. Route Establishment 
 In on-demand protocols, a route discovery process is initiated when 
a route to a destination is needed and none is available. The source 
floods the network with a ROUTE REQUEST (RREQ) packet to 
discover a route to the destination. When the destination receives the 
RREQ, it responds with a unicast ROUTE REPLY (RREP) packet 
back to the source. The details of how these procedures are done are 
protocol specific. For example, DSR uses source routing and stores 
routing information in the form of route caches, whereas AODV 
employs hop-by-hop routing and stores routing information in route 
table entries. 
 In COPAS, upon receipt of a non-duplicate RREQ packet, to this 
packet nodes append a weighted average ( BACKOFFµ ) of the number 
of times it has backed off in the last TBACKOFF seconds due to activity 
in the medium. The RREQ packet is then re-broadcast. By keeping 
track of the recent average number of times a node has backed off, we 
are actually determining how busy the wireless shared medium is in 
the neighborhood of a node. More times a node backs off, means that 
more busy is the medium around it. This gives us precise information 
on the contention experienced along the paths traveled by a RREQ. In 
order to calculate BACKOFFµ , every node determines how many 
times it has backed off (NBACKOFF) at each TBACKOFF seconds and 
computes the following: 

BACKOFFBACKOFFBACKOFF N×+×−= αµαµ )1(  
where α is a constant less than 1. We anticipate that contention will be 
better modeled by emphasizing more recent information. Thus, we 
recommend α > 0.5. 
 After receiving the first RREQ packet, the destination waits for an 
appropriate amount of time (TCOLLECT) to learn all possible routes. In 
order to learn all the routes and their contention information, the 
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destination node accepts duplicate RREQ received from different 
previous nodes. When the RREQ collection timer expires, COPAS 
employs two selection criteria in order to choose exactly two routes: 
path disjointness, and least contented routes. 
 Disjoint path routing has been explored before in connection with 
both DSR [20] and AODV [19] routing protocols. COPAS uses 
similar techniques to choose all possible node-disjoint routes (between 
source and destination) at the destination and selects the two least 
contented routes based on the information collected by the arriving 
RREQ packets. Least contented routes are computed by evaluating the 
sum of the contentions experienced by the RREQ packets on each 
node-disjoint route and then minimizing the sum over all disjoint 
routes available. Ties are resolved by favoring lower route lengths (in 
hops) and then by the arrival order of the RREQ packets. In the 
absence disjoint paths, COPAS behaves similarly to existing routing 
protocols with the difference that it can take advantage of network 
contention information. 
 The destination responds with two RREPs along the chosen paths. 
Along with the RREP, the destination also sets a direction flag in 
the packet header to indicate to the source node which path is to be 
used as forward (for TCP data packets) and reverse (for TCP ACK 
packets) traffic. This direction information is also kept in a node’s 
routing table. To illustrate this, consider the scenario of Figure 2(a) 
wherein the source node S sends a RREQ packet towards the 
destination node D. In this case and with the contention values as 
depicted in the Figure 2(a), the destination first applies the 
disjointness path rule and finds out routes i = <S-B-E-H-D>, j = < S-
C-J-D >, and k = < S-G-I-F-D> to be disjoint. Next, it applies the 
minimum contention sum rule and ends up selecting routes i and k to 
be used as reverse (for TCP ACK) and forward (for TCP data) paths 
respectively, as showed in Figure 2(b). 
 Employing disjoint forward and reverse paths is also desirable for 
robustness reasons. Capture conditions can be so severe that links 
appear to be broken even when there is no mobility. Therefore, to 
guarantee continuous operation even in link breakage situations we 
make use of previously established forward and reverse routes. In a 
capture scenario, it is usually the MAC layer which reports to the 
network layer the link breakage (the IEEE 802.11 standard has this 
capability [14]) since it is in this layer where the capture problem is 
rooted. When a route is disconnected, the immediate upstream node of 
the broken link sends a ROUTE ERROR (RERR) message to the 
source of the route notifying the route invalidation. Nodes along the 
path to the source remove the route entry upon receiving this message 
and relay it to the source. 
 In traditional on-demand routing protocols, the source reconstructs 
a new route by flooding a RREQ when informed of a route 
disconnection. In COPAS – in addition to flooding a RREQ to 
reconstruct the broken route – we redirect TCP packets using the 
second alternate path when available, hence providing uninterrupted 
communication. It is up to TCP to recover from potential lost packets 
due to link breakage, while we try to minimize the route disruption by 
rerouting data packets. In this case, COPAS behaves similar to 
existing approaches. 

B. Dynamic Contention-Balancing and Route Reconstruction 
 Traffic pattern across the network changes a lot with time and 
space. Therefore, routes that were optimal during the initial route 
construction process may not be good paths anymore as contention 
might have increased with the new traffic pattern. Therefore, we 
implement a scheme to dynamically monitor and change routes 
between any <source, destination> pair that have their contention 
noticeably increased. 
 While the data communication is active, intermediate nodes 
continuously piggyback their contention information, as given by 

equation (1), on packets flowing through the forward and reverse 
paths. Source and destination nodes can thus monitor the status of the 
reverse and forward routes respectively. If either route starts 
experiencing a contention exceeding a threshold (BACKOFFTHRES), a 
new and less contented route is selected to replace the high contented 
path. Routes are hence reconstructed dynamically in order to keep 
balanced the overall contention level in the network or, in other 
words, COPAS seeks to continuously contention-balance the network. 
The process of building new routes is similar to the initial route 
discovery process except that the source or destination floods a RREQ 
packet to each other, depending on which path is to be replaced 
(forward or reverse). The receiving end, upon receiving RREQ 
packets, proceeds in the same way as already described in order to 
select a disjoint and least contented route. However, in this case, we 
make two additional modifications. First, we try to find a new route 
with equal or similar path length as the previous one so that the round-
trip time perceived by TCP does not change much. Second, the 
receiving end does not need to send back a RREP packet and simply 
starts using the newly discovered route.  

C. Replies from Intermediate Nodes 
 On-demand routing protocols often make use of prior routing 
information (e.g., a route cache) in order to quickly establish paths 
between nodes [11, 12]. In case route caches are used, this can have a 
negative impact on the performance of COPAS since it would not be 
able to acquire up-to-date information of path contention. Therefore, 
in COPAS, intermediate nodes cannot send a RREP back to the source 
even when they have route information to the destination. To utilize 
the most up-to-date contention information when selecting routes and 
to minimize overlapped routes which might be suffering from capture 
problems, we strictly prohibit intermediate nodes from replying to 
RREQs. Intermediate nodes replying to RREQs has an advantage of 
reducing the propagation of flooded packets, but may result in 
increased contention and a RREP storm (as in the case of DSR), that 
is, too many nodes sending RREPs at the same time raising the levels 
of both contention and collisions. 

IV. SIMULATION ENVIRONMENT AND METHODOLOGY 
 We compare COPAS (implemented as a modified version of DSR) 
and the base DSR [12] routing protocol which uses shortest path, and 
compare their performance under TCP. The results of this paper are 
based on simulations using the ns-2 (Network Simulator) [21] which 
has support for simulating multi-hop wireless networks with features 
including physical and MAC protocols. Our network model consists 
of two simulation scenarios, for 50 and 100 nodes, in a 1000m x 
1000m flat rectangular area. To evaluate the worst case capture 
scenario, the nodes in the network are static for an entire simulation 
run that lasts for a total of 600 seconds. All nodes communicate with 
identical, half-duplex wireless radios that are modeled after the 
commercially available IEEE 802.11-based WaveLAN [22] radio 
interface, which possesses a bandwidth of 2 Mbps and nominal 
transmission range of 250m. 
 As for the traffic simulation, we have used the TCP-Reno 
implementation (also employed in [3, 8]) over which FTP file 
transfers have been conducted. TCP segment size is of 512 bytes, and 
the maximum window is of 32 packets. Additionally, we vary the 
number of TCP connections from 1, 3, 5, 10, and 15, where 
connections start randomly in the first 100 seconds and last for the rest 
of the simulation period. Unless otherwise noted, all of our simulation 
results are averaged over 25 scenarios. Each scenario, generated 
randomly, designates the initial placement of nodes in the considered 
area. 
 We use the following performance metrics to compare COPAS and 
base DSR protocol under the different number of TCP connections:



 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2(a) – Network contention perceived at node D 

   
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2(b) – Routes selected by node D 
 

• Throughput – This is the amount of data received by a TCP 
receiver per unit time; 

• Average number of backoffs per second – This is the number of 
MAC layer backoffs a node experiences per unit time; 

• Normalized routing overhead – This is a cost/benefit metric. It is 
the ratio of the number of bytes of routing packets transmitted 
per number of bytes of data packets delivered at the TCP 
receiver; 

• Average end-to-end delay of data packets – This includes all 
possible delays such as buffering during route discovery, 
queuing, retransmission at the MAC layer, propagation and 
transfer times. 

 Table 1 illustrates the parameter configuration used in our COPAS 
implementation available in ns-2. 
 

TABLE 1 – COPAS parameter setup 
Parameter Value 

TBACKOFF 1 second 
TCOLLECT 1.5 second 
α 0.75 
BACKOFFTHRES 6 backoffs per node 

V. SIMULATION RESULTS 

A. Throughput 
 Figure 3(a) compares the throughput achieved by COPAS and DSR 
in the 50 nodes configuration, and for an increasing number of TCP 
connections. As we can see from this figure, the aggregate throughput 
achieved by COPAS is much higher than that of DSR, and as we 
increase the number of TCP connections COPAS becomes even more 
effective at finding alternate least-contented paths, while DSR does 
not succeed in finding better routes. We observe that the aggregate 
throughput does not increase at the same pace with the number of 
connections, even on a static network, for two main reasons. Firstly, a 
given connection C1 going though, say, nodes A, B, C and D, might 
be capturing the medium around node A but might have been captured 
in the neighborhood of node C. That is, capturing is something 
random that TCP connections suffer along the path, hence degrading 
the overall throughput. The second reason is that capture changes with 
time. This is to say that a given node A could have been captured by 
another node B in time t1, while at time t2 it is node B which might 
have been captured by node A. Therefore, while a node is being 
captured by some other node the TCP retransmission timer goes off 
and it enters slow start. Eventually, some nodes carrying TCP traffic 
are captured and force TCP to enter slow start. As we increase the 
number of TCP connections, the probability of nodes being captured 
increases resulting in a sensible drop of TCP per connection 
throughput (Figures 4 and 5) and only a small increase in aggregate 
throughput (Figure 3). COPAS achieves a drastically higher 
throughput than DSR (an average of 90% improvement) by choosing 

distinct forward and reverse paths based on current network 
contention.  
 Similar to Figure 3(a), Figure 3(b) also shows the aggregate 
throughput but now for the 100 nodes scenario. Although COPAS still 
achieves higher throughput, the relative performance differential is 
lower. There are two main reasons. First, since now the network has 
many more nodes and hence previously emptied spots are now 
occupied, TCP data packets are sort of distributed in the network and 
TCP connections do not interfere as much as in the 50 nodes 
configuration. The second reason is that with a larger number of 
nodes, path lengths between a given source and destination gets 
longer, hence enabling TCP data packets to effectively achieve 
pipelining among nodes along the same route but out of radio range of 
each other. A similar pipelining effect has also been shown in [3, 4]. 
However, COPAS still achieves higher throughput as it avoids conflict 
by separating TCP data from ACKs, and for an increased number of 
TCP connections capture conditions eventually occur irrespective of 
how large the network is, revealing COPAS to have superior 
performance. 
 Besides analyzing the average throughput, it is also interesting to 
study the dynamic behavior of the throughput perceived by a given 
network node. Figures 4(a), 4(b), 4(c) and 4(d) depict the 
instantaneous TCP throughput experienced by a pre-selected node 
during 220 seconds of the connection lifetime, for DSR and COPAS 
with 1 and 5 TCP connections respectively, in the 50-nodes scenario. 
As we can see, DSR and COPAS throughputs are similar when there 
is only one connection in the network, with COPAS still having 
slightly higher performance due to its distribution of TCP data and 
ACK in different paths. However, for 5 TCP connections COPAS 
demonstrates a more stable performance than DSR since it 
continuously reevaluates routes and reconstructs them according to the 
shared medium contention. As we can see from Figure 4(c), the 
throughput of TCP over DSR remains zero or close to zero most of the 
time, while COPAS throughput bounces back from zero as COPAS 
reacts to capture conditions by finding alternate routes. Figures 5(a), 
5(b), 5(c), and 5(d) show similar results, but now for the 100-nodes 
scenario. 

B. Average Number of Backoffs 
 Here, we analyze the average number of times the 802.11 MAC 
layer backs off for increasing number of TCP connections. Figures 
6(a) and 6(b) depict such curves, comparing DSR and COPAS for the 
50 and 100 nodes scenarios respectively. Nodes using COPAS 
experience much less contention than those using DSR, especially in 
the 50 nodes scenario where many nodes are involved in TCP packet 
forwarding and hence COPAS can take advantage by finding routes 
other than always the shortest as in DSR. A direct consequence of this 
fact is that nodes running COPAS have a higher probability of 
successfully accessing the medium. 
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(a) – 50-nodes scenario 
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(b) – 100-nodes scenario 

Figure 3 – Average Aggregate throughput 

 

C. Normalized Routing Overhead 
 This is an important metric as it relates how much effort in terms of 
routing packets is necessary in order to obtain the increased TCP 
throughput. The normalized routing overhead for the 50 and 100 
nodes scenarios are shown in Figures 7(b) and 7(c). As we can see, 
although COPAS makes use of a new RREQ each time a route has to 
be rebuilt due to increased contention, it is still able to incur much less 
overhead per unit bandwidth. There are two reasons for that. Firstly, 
since COPAS balances the network according to contention, situations 
like the one described in section V.A where capture conditions trigger 
RERRs become infrequent and, as a result, much less RERR packets 
are generated in COPAS. The second reason comes directly from the 
implementation of DSR [21], where destination nodes respond to each 
and every RREQ they receive with a RREP so that nodes can learn all 
routes. On the other hand, COPAS replies to exactly two RREQs, 
hence incurring less overhead at the expense of less information. 
D. Average End-to-End Delay 
 Figure 8(a) and 8(b) show the end-to-end delay for both COPAS 
and DSR in the 50 and 100 nodes scenarios. As expected, COPAS 
experiences little higher delay than that of DSR. The reason for this 
fact is that COPAS ends up choosing paths that are eventually longer 
(in number of hops) than the shortest one in order to avoid contention. 

If we return back to Figure 2(b), we see that the trend of COPAS is to 
choose routes that somehow “go around” the shortest route because 
their nodes are likely to be out of radio range, and hence path 
contention is smaller. Therefore, end-to-end delay is slightly higher. 

VI. CONCLUSIONS 
 The capture problem of exponential backoff-based MAC protocols 
(e.g., IEEE 802.11 and FAMA) has been shown to have a negative 
influence on TCP performance over MANETs. Since TCP is by far 
the most widely used transport protocol today, techniques to mitigate 
such effects are necessary. We have proposed a novel algorithm, 
called COPAS, that achieves this using two techniques ─ choosing 
disjoint forward and reverse paths for TCP data and ACK packets and 
contention-balancing the whole network. Contention-balancing takes 
into consideration the number of MAC layer backoffs the nodes have 
experienced recently. COPAS can be deployed on top of any on-
demand routing protocol, such as DSR and AODV. Through extensive 
simulations, we have demonstrated that COPAS provides up to 90% 
improvement in TCP throughput than baseline DSR. 
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(a) – 1 TCP connection (DSR) 
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(b) – 1 TCP connection (COPAS) 
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(c) – 5 TCP connections (DSR) 
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(d) – 5 TCP connections (COPAS) 

Figure 4 – Throughput oscillation in the 50-nodes scenario 
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(a) – 1 TCP connection (DSR) 
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(b) – 1 TCP connection (COPAS) 
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(c) – 5 TCP connections (DSR) 
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(d) – 5 TCP connections (COPAS) 

Figure 5 – Throughput oscillation in the 100-nodes scenario 
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(a) – 50-nodes scenario 
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(b) – 100-nodes scenario 

Figure 6 – Average number of backoffs 
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(b) – 100-nodes scenario 

Figure 7 – Normalized routing overhead 
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(a) – 50-nodes scenario 
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(b) – 100-nodes scenario 

Figure 8 – Average end-to-end delay 


