
Link Layer Support for Streaming MPEG Video over Wireless Links
Rohit Kapoor, Matteo Cesana, Mario Gerla

Abstract: Streaming video as a form of media is becoming
increasing popular on the Internet. Real-time media such as
video requires delay constraints from the network to ensure
good quality at the receiver. While watching a video stream
on his portable device connected to the Internet through the
last-hop wireless link, the mobile user of tomorrow will
expect a good experience. But, the time-varying nature of
the wireless link can cause video frames to be
dropped/delayed, which can affect the quality of video at
the receiver. In this paper, we propose a link layer scheme
to improve the quality of MPEG video streaming over a
wireless link. We use Bluetooth as the wireless technology
on which to test our scheme. Our results show that the
quality of streaming video can be substantially improved
with our scheme, particularly in bad channel conditions.

1. INTRODUCTION

The goal of wireless networks is to replicate the

user experience in a wired environment, in terms of
connectivity and traffic support. Future wireless
technologies need to be able to handle multimedia
traffic in an effective way. The scenario we address
here is shown in Fig 1 where a user with a wireless
(802.11b [1] or Bluetooth [2])-enabled device is
streaming video to the device. The access point may
be either 802.11 or Bluetooth [3] or both [4] (some
companies are developing hybrid 802.11/Bluetooth
access points to support both kinds of users).
Providing good multimedia support in such wireless
systems is a tricky problem since wireless channels
are characterized by extreme variability and
transmissions can be impaired by phenomena like
multipath fading and shadowing.

Fig 1: Streaming multimedia through the access point

Streaming video is one media that is becoming
increasingly popular on the Internet. For a good user
experience, it is required that video packets reach the
user at regular intervals. Video packets have delay
constraints, and honoring these delay constraints is
generally considered more important than whether
the data reaches “uncorrupted” or not. Of the various
video codecs, the emerging MPEG-4 [6] video
standard is gaining a lot of acceptance for use on the
Internet. MPEG-4 uses an inter-frame [5]
compression algorithm that exploits temporal
correlation between frames to achieve high levels of
compression. This algorithm represents most of the

frames as differences from reference frames. Though
it achieves good compression, it suffers from the
‘propagation of errors’ [7] effect in which errors in a
reference frame propagate to other frames. Thus, a
single loss of a reference frame can cause a big drop
in the quality of the perceived video. It is also
obvious that a loss or error in a reference frame is
much more significant than a loss or error of a
dependent frame. This points towards the need to
protect these reference frames with a higher priority
of some kind.

 In this paper, we present a simple link layer
technique to counter the effects of wireless errors
while streaming MPEG-4. We make the link layer
application-header aware which enables it to
distinguish important video frames from other not so
important frames. Armed with this information, the
link layer increases the retransmission count of the
important frames compared to the less important
ones. Note that the technique of differentiating
between video frames on the basis of their semantic
importance has been explored before [8] [9] [10], but
to the best of our knowledge, never at the link layer.
The advantage of doing this at the link layer is that
the delay of a whole round trip time resulting from
retransmitting a packet at the application layer is
avoided. We also address how this scheme may be
practically implemented. We show that this technique
is very effective and increases the PSNR (Peak
Signal to Noise Ratio) [11] quality of MPEG video
significantly, especially in high error conditions.

 Various techniques have been proposed to
enhance the support of video over both wired and
wireless links. Techniques based on retransmissions
[8], FEC [12] [13], layered coding [14] etc have been
proposed. The idea of exploiting the information on
the type of the video frame to improve video quality
has also been proposed in the literature [8][9][10],
but only at the application layer. The related work is
discussed in more detail later. The novelty of our
approach lies in the fact that we apply this
differentiation of video frames at the link layer and
show its advantage over wireless links.

The wireless technology that we use to evaluate
our scheme is Bluetooth, which is being included in
more and different kinds of devices. We compare a
Bluetooth stack enabled with our scheme with a
regular Bluetooth stack. Note that the current
Bluetooth specification does not provide any special
support for video, though, as we describe later, some
API calls are provided to support streaming. The
scenario here could be a user with a Bluetooth-
enabled PDA, streaming video through his 3G
cellphone or a Bluetooth access point. Note that the

Access Point

scheme is wireless technology agnostic and could be
as well applied to other technologies such as 802.11.

The paper is organized as follows. Section 2
gives a brief overview of the MPEG4 video flow
structure that we exploit in our scheme. In Section 3,
we introduce our scheme of frame differentiation and
discuss implementation issues. Section 4 contains a
performance analysis of the scheme and in Section 5
we give the conclusions of our work.

2. MPEG Basics

In this section, we briefly describe the basics of

the video compression used in MPEG and discuss the
measure of video quality called PSNR.

2.1 MPEG

The MPEG compression standard (1, 2 and 4)
for video makes use of temporal and spatial
redundancies in video to achieve substantial
compression. Temporal redundancy exists due to a
lot of similarity between consecutive video frames.
To exploit this redundancy, I (intra-coded) frames are
coded independently of other frames, whereas P and
B frames are coded using other frames as a reference
(P frames are coded from the previous closest frame
whereas B frames are coded bi-directionally from the
preceding and succeeding frames). Thus, for frames
other than I frames, the amount of information to be
coded reduces to differences between frames. Fig 2
shows an example of this in which a sequence of I
frames followed by P and B frames repeats itself.

Fig 2: Frame dependencies in MPEG

Note that this differential coding means that I
frames are very important since all future frames till
the next I frame are coded (directly or indirectly)
using this I frame. If an I frame is lost (or too
delayed), the next few frames effectively carry no
semantic information.

P and B frames, on the other hand, have lesser
importance. The loss of a P frame typically shows up
as blobs in the video image. This typically affects
some part of the image with the rest of the image still
being visible. These blobs propagate till the next I
frame in the sequence. Thus, the loss of P frames
causes a portion of the image to be affected, whereas
the loss of I frames renders all P and B frames after it
(till the next I frame) completely useless. In [7],
Feamster et al have shown that loss of I frames is

much worse than that of P frames; our experiments
have resulted in similar conclusions.

2.2 PSNR

Though the quality of video can in reality only
be judged perceptually, quantifiable measures such as
PSNR are widely used. PSNR (Peak Signal to Noise
Ratio) is a coarse indicator of video quality that is
derived from the Root Mean Square Error. PSNR is
expressed mathematically as:

where f’ is the degraded image of the N1*N2 8-bit
original image f.

Though some other measures such as [15] [16]
are supposedly better indicators of video quality since
they take into account the behavior of the human
visual system, we make use of PSNR in our
experiments for its simplicity. Moreover, studies [17]
by the VQEG (Visual Quality Experts Group) have
shown that PSNR is not really much worse than any
other sophisticated measures (particularly for higher
bit rates).

3. Our Scheme

Packet errors on wireless links necessitate that

the link layer perform some kind of ARQ to protect
packets. In wireless technologies such as 802.11b and
Bluetooth, in fact, it is possible to specify the
retransmission limit (the number of times a packet
should be retransmitted before being dropped). In
802.11 b, the retransmission limit1 can be specified
explicitly, whereas in Bluetooth, this can be specified
using the Flush Timeout command (we describe this
in detail later). These features can be used to provide
support for real-time traffic.

As described earlier, I frames in MPEG video are
much more important than P and B frames since a
number of future frames depend on them. Our
scheme prioritizes the transmission of I frames by
increasing their retransmission limit (compared to
that of P/B frames) at the link layer. Since increasing
the retransmission limit of I frames can lead to other
frames being delayed at the receiver, which can be as
bad as dropping frames, we reduce the retransmission
limit of other (P and B) frames. The basic principle
behind the scheme is the following:

“If the bandwidth reserved for a video flow
allows each frame to be retransmitted ‘x’ number of
times (on the average), then the quality of video can
be increased by increasing the number of times I
frames are retransmitted and decreasing the number

1 Retransmission limit is the maximum number of times a
packet can be retransmitted.

PSNR = 20 log10 255 .
 �[f(i, j) – f’(i, j)]2/ (N1 * N2)

of times the ‘dependent’ P/B frames are retransmitted
(keeping the total bandwidth the same)”. Note the use
of the term ‘dependent’ which means that P/B frames
whose reference I frames have been dropped have no
chance of being decoded and constitute wasted
bandwidth. For such P/B frames, it is better to
retransmit the reference I frames a larger number of
times at the cost of dropping some of the P/B frames.

In a sense, we are trading off the increase in
reliable reception of I frames with a decrease in
reliable reception of P/B frames. The increased
importance of I frames justifies the use of this
technique. In Section 4, we give a simulation result to
support this argument.

Fig 3 (a) illustrates the technique used in our
scheme. The figure shows packets from a video flow
arriving at a link layer. A certain amount of
bandwidth is reserved for the video flow. The first I
frame is corrupted in transmission and is
retransmitted twice. This causes the last four P/B
frames to be dropped. For comparison purposes, Fig
3 (b) shows the situation without our scheme, in
which the I frame is dropped after one retransmission
but more P/B frames are transmitted than in Fig 3 (a).

Fig 3: Illustration of the scheme

3.1 Related Work

Previous work has addressed support of video
over the Internet. Various techniques based on
retransmissions, FEC, layered coding etc have been
proposed. FEC techniques add redundant data which
is used by the receiver to reconstruct the original data
in case of network losses. In [18,17], the authors have
shown that FEC bandwidth overhead required to
support burst losses may be as much as 30%. Layered
coding techniques have also been used by various
authors. QAL (quality assurance layering), in which
each frame is temporally dependent only on essential
parts of previous frames, has been studied in [19]
[20]. The video-conferencing tool vic [21] encodes
each frame as an intra-frame, at the cost of a smaller
compression ratio.

Since our work falls in the retransmission
techniques category, we now describe such related
work. Retransmission techniques can provide error
resilience for video traffic without incurring too
much bandwidth overhead. Yet, such techniques, in
general, have been considered unsuitable for real-

time applications since retransmission will require at
least one additional round-trip delay, which may be
unacceptable. Wah et al argued that error recovery
via retransmission schemes are not suitable for real-
time video due to the imposed delay [22]. On the
other hand, various techniques have been proposed
which can potentially make retransmission work.
Papadopolous et al [23] discussed techniques such as
playout buffering, gap-based loss detection etc and
showed that retransmission-based techniques can be
applied to scenarios where round-trip delay is not too
large. Kleinrock et al [10] proposed a scheduling
scheme that decides which packets to transmit based
on predictions about how layers in future frames may
be delivered. Note that this list of references is in no
way exhaustive.

Our scheme is inspired by some of the
retransmissions-based schemes proposed in the
literature. The biggest criticism of these techniques is
the extra round-trip delay involved; we offset this
disadvantage by applying such techniques at the link
layer. Giving different priorities to I, P and B frames
has been studied before, but to the best of our
knowledge, never at the link layer.

3.2 Reading the Application Header

One question that arises is: how does the Link
Layer identify whether the received packet received
contains an I, P or B frame? There could be two
approaches for this:
a) Interaction between Application and Lower layers:
Cross-layer optimization for wireless networks has
been proposed earlier [24]; future systems could have
API calls between applications and lower layers.
b) Reading Application Header Information: The
Link Layer could be provided with the information
required to read and understand application layer
headers. We adopt this second approach in our
experiments.

3.3 Feasibility

In traditional wired networks, packet losses are
mostly due to congestion. Thus, retransmissions at
the link layer are not beneficial. Also, “core” routers
will need to perform high-speed routing functions,
and such a link layer scheme could add huge
processing overhead. The feasibility of our scheme
arises from the fact that it is specifically applicable to
wireless networks, which exist at the edge of the
Internet, where high-speed 'routing' functions are not
necessary. The scenario we address is like the one
shown in Fig 1, where the wireless access point (base
station) performs such simple functions to improve
video quality over the last wireless hop.

Another objection to our scheme could be the
breaking of the layering protocol, i.e., the link layer
needs to have knowledge of application layer
headers. Use of cross-layer optimization has been

 I I Retxed I Retxed B B P B B

 I I Retxed B B P B B P B

 (a)

 (b)

proposed before in the context of wireless networks
[24] [25]. We believe that such techniques can prove
to be very useful for wireless links and in fact, may
be the only way to counter their highly unpredictable
nature.

3.4 Implementation of the Scheme

We used Bluetooth as the wireless technology on
which to test our scheme. We have a detailed
simulator of Bluetooth (described in the next
section). Fig 4 shows the layers of the Bluetooth
stack. Note that the baseband and radio layers are
hardware, whereas the other layers are usually
software. The Bluetooth specification [2] defines a
set of API commands to get/set state in the baseband.
One set of these API commands is related to
‘flushing’ an L2CAP (L2CAP is the link layer of
Bluetooth) packet from the Baseband (flushing
means that the packet is flushed from the baseband
queue, i.e., dropped). There are three commands in
the set of ‘Flush’ API:

Flush: This command is used to discard all data that
is currently pending for transmission in the Baseband
for the specified connection handle, even if there are
currently chunks of data that belong to more than one
L2CAP packet in the Baseband.
Write Flush Timeout: This commands is used to write
the value for the Flush_Timeout parameter for the
specified connection handle. The Flush_Timeout
parameter defines the amount of time before all
chunks of the L2CAP packet, of which a baseband
packet is currently being transmitted, are
automatically flushed by the Host Controller. The
timeout period starts when a transmission attempt is
made for the first baseband packet of an L2CAP
packet. This allows packets to be automatically
flushed without the Host issuing a Flush command.
The Flush Occurred event occurs when the
Flush_Timeout for an L2CAP packet has expired and
the packet is flushed.
Read Flush Timeout: This command is used to read
the value of the Flush_Timeout parameter.

For our purposes, we use the Write Flush
Timeout command to assign different Flush Timeouts
to different video frames (I, P and B). Note that the
Flush command can also be used but this would
entail maintaining state regarding the arrival time of
each packet at the L2CAP/HCI layers.

Fig 4: Layers of the Bluetooth stack

4. Simulation Results

In this section, we evaluate the improvement
achieved by our scheme over the Bluetooth wireless
link (the scheme could work in a similar manner over
802.11 b). We have a detailed simulator of Bluetooth
that contains most of the standard features of
Bluetooth like Frequency Hopping, Multi-Slot
Packets, Fast ARQ (Automatic Retransmission
Query). The Bluetooth model also defines a channel
model, which is defined below. We also enhanced the
Bluetooth link layer (L2CAP/HCI) to incorporate our
scheme.

4.1 Channel Model

In order to evaluate the performance of the
proposed scheme we developed a channel error
model based on a three-state Markov chain. Each
state in the chain is characterized by a certain Packet
Error Probability (PER): the Good state has
PER=0.028, the Medium state with PER=0.13 and a
Bad state with PER=0.32. By setting appropriate
transition probabilities among the states, we are able
to simulate different channel conditions. We report in
Fig 5 the transition matrices used to simulate a Fair,
Medium and Poor channel respectively, where the
first row/column represents the Fair state, the second
the Medium state and the third the Bad state.

�
�
�

�

�

�
�
�

�

�

=
65.025.01.0
07.07.023.0
002.0008.099.0

FairH
�
�
�

�

�

�
�
�

�

�

=
65.025.01.0
07.07.023.0
002.0008.099.0

MediumH

�
�
�

�

�

�
�
�

�

�

=
8.011.009.0
07.085.008.0
02.008.09.0

PoorH

Fig 4: Transition probabilities for Fair, Medium and Bad

states

Table 1 reports the average PER in the three
simulated wireless channels.

IP

BNEP – IP support

L2CAP –Link Layer

Bluetooth Baseband

Bluetooth Radio

HCI –Hardware Interface

Software
Stack

Hardware
Chipset

IPIP

BNEP – IP support

L2CAP –Link Layer

Bluetooth Baseband

Bluetooth Radio

HCI –Hardware Interface

Software
Stack

Hardware
Chipset

Table 1: Packet Error Rates

4.2 Simulations

In order to model MPEG 4 traffic, we used traces
of Starship Troopers from [26]. These traces contain
information about the frame number, frame type (I, P
or B), time of generation and size of each video
frame. The traces are coded from the video source at
different bitrates, ranging from about 40Kbps to
about 3Mbps. We fed these traces into our Bluetooth
simulator.

The simulation topology consisted of a Bluetooth
piconet consisting of a master and a variable number
of slaves (equal to the number of video flows). We
considered different MPEG4 flows with bitrates
varying from 64Kbps to 512Kbps.

We first performed a simple experiment to
validate our scheme. We considered a 256 Kbps
video stream being streamed from a Bluetooth master
to a slave. The video stream was allowed to use a
fixed reserved bandwidth of about 170 Kbps. The
size of an I frame in the video was approximately
equal to 1/3 of the size of a complete GOP; the I
frames, thus, needed a bandwidth of about 85 Kbps
and the rest was needed by P/B frames. We gave a
certain percentage of the bandwidth to I frames and
distributed the rest randomly among P and B frames.
Frames that did not receive any bandwidth were
dropped at the link layer. We increased the
bandwidth given to I frames; this decreased the
bandwidth given to P/B frames. Fig 6 shows the
PSNR values of the video quality as the percentage of
video frames accepted for transmission is varied. The
increase in video quality as I frames are given a
higher percentage of the bandwidth is clearly visible.
This validates the basic premise of our scheme of
supporting I frames with higher ‘priority’ at the link
layer.

Fig 5: PSNR values versus percentage of I frames

In the next experiment, four 128 Kbps video
flows were downloaded (streamed) by four slaves
from the master (access point) and the channel
quality was varied as good, medium and bad. The

ratio of the maximum number of retransmissions for I
frames compared to that for other frames was varied,
keeping the total bandwidth used the same (some P/B
frames needed to be dropped for this). Fig 7 shows
the PSNR quality of the video flows. As I packets are
given a higher priority (higher ratio of
retransmissions), the PSNR value increases. In fact,
the increase is very significant for medium and low
quality channels, being almost equal to 5dB. Note
that a simple scheme like ours leads to significant
increase in quality of video flows, especially as
channel conditions become bad. This clearly points to
the usefulness of cross-layer optimization schemes to
support real-time traffic in wireless environments.

Fig 6: PSNR values for four 128Kbps video flows

Finally, one 512 Kbps flow was downloaded by

a slave from the access point. The PSNR values for
video quality are shown in Fig 8. Again, the increase
in video quality can be seen.

Fig 7: PSNR values for one 512Kbps video flow

5. Conclusions and Future Work

We presented a simple, yet effective Link Layer
scheme to improve the quality of MPEG video flows
over wireless links. We discussed implementation
issues of the scheme and gave arguments to support
its feasibility in last-hop wireless links. We used the
Bluetooth technology as the wireless technology to
test our scheme, enhancing the L2CAP/HCI layers of
Bluetooth with our scheme. Simulation results
showed a significant improvement in video quality
when using a Bluetooth L2CAP/HCI layer enhanced
with our scheme compared to a standard Bluetooth
stack. In bad channel links, in particular, the
improvement in video quality was appreciable.

Fair 0.028
Medium 0.13
Poor 0.32

12

13
14

15
16
17

18

19

20

2 4 6 8 10 20 40 60 80 100

Percentage of I frames transmitted

P
S

N
R

 (
in

 d
B

)

18

23

28

33

38

43

48

poor medium fair
Channel Quality

PS
N

R
 (

in
 d

B
)

Priority Ratio 1:1
Priority Ratio 2:1
Priority Ratio 3:1

18

23

28

33

38

43

48

poor medium fair
Channel Quality

P
S

N
R

 (
in

 d
B

)

Priority Ratio 1:1
Priority Ratio 2:1
Priority Ratio 3:1

The improvements obtained by using this
scheme have encouraged our belief that cross-layer
optimizations can be useful in wireless environments.
The quick response time at the Link Layer make it an
ideal place to incorporate such techniques. Moreover,
as we argued earlier, such a technique could easily be
deployed in wireless base stations (access points)
operating at the edge of the network since, unlike
core routers, these are not constrained by needing to
perform high-speed functions.

Our simulations have shown that quality of video
flows can be improved significantly with our scheme.
Work is now on to implement this scheme in a Linux
Bluetooth testbed. Our testbed uses the Bluez [27]
open-source Bluetooth stack and consists of various
Bluetooth PCMCIA and Compact Flash cards.

In addition to video, another useful medium that
could benefit from such Link Layer support is audio
streaming. For example, consider a user with a
Bluetooth-enabled MP3 player and headset. If good
quality MP3 streaming could be supported over the
MP3 player-headset Bluetooth link, it could enable
the user to listen to songs without being constrained
to be in proximity of the MP3 Player. Work is on to
identify techniques that can be used at the Link Layer
to enhance support of MP3 streaming audio in an
error-prone wireless environment.

References
[1] The Working Group for Wireless LANs,

http://grouper.ieee.org/groups/802/11/
[2] Bluetooth Specifications, www.bluetooth.org
[3] Axis Communications - AXIS 9010 Bluetooth Access

Point, www.axis.com/products/axis_9010/
[4] Combo Bluetooth-802.11b Access Point,

www.pico.net
[5] http://www.mpeg.org/MPEG/index.html
[6] MPEG4 home page, http://www.mpeg4.net/
[7] N. Feamster, H. Balakrishnan, Packet Loss Recovery

for Streaming Video, in Proceedings of 12th
International Packet Video Workshop, April 2002.

[8] Injong Rhee, Error control techniques for interactive
low-bit rate video transmission over the Internet,
SIGCOMM 1998.

[9] W. Tan and A. Zakhor, Packet Classification Schemes
for Streaming MPEG Video over Delay and Loss
Differentiated Networks, Proc. Packet Video
Workshop, 2001.

[10] Zhimei Jiang, Leonard Kleinrock, A Packet Selection
Algorithm for Adaptive Transmission of Smoothed
Video Over a Wireless Channel, Journal of Parallel
and Distributed Computing.

[11] Video Quality Experts Group,
http://www.its.bldrdoc.gov/vqeg/results-psnr.html

[12] J-C. Bolot, T. Turletti, Adaptive error control for
packet video in the Internet, Proc. ICIP '96.

[13] J-C. Bolot, T. Turletti, Experience with rate control
mechanisms for packet video in the Internet, Computer
Communication Review, January 1998.

[14] M. Normura, T. Fujii, N. Ohta, Layered Packet- Loss
Protection for Variable Rate Coding Using DCT,

Proceedings of InteTnational Workshop on Packet
Video, 1988.

[15] S. Wolf, M. Pinson, S. Voran, and A. Webster,
Objective Quality Assessment of Digitally Transmitted
Video, in Proceedings of IEEE Pacific Rim
Conference on Communications, Computers, and
Signal Processing, 1991.

[16] S. Voran, The development of objective video quality
measures that emulate human perception,
GLOBECOM 1991.

[17] The Video Quality Experts Group,
http://www.its.bldrdoc.gov/vqeg/

[18] N.C. Oguz, E. Ayanoglu, Performance analysis of
two-level forward error correction for lost cell
recovery in ATM networks, Infocom 1995.

[19] Andres Albanese, Johannes Blömer, Jeff Edmonds,
Michael Luby, Madhu Sudan, Priority Encoding
Transmission, IEEE Symposium on Foundations of
Computer Science 1994.

[20] K. Shinamura, Y. Hayashi, and F. Kishino. Variable
bitrate coding capable of compensating for packet
loss, in Prou. SPIE Cortf Visual Commun. and Image
Processing, Nov. 1988.

[21] Video Conferencing Tool, vic, http://www-
nrg.ee.lbl.gov/vic/

[22] B. W. Wah, X. Su, and D. Lin. A survey of error-
concealment schemes for real-time audio and video
transmissions over the internet. In Proc. Int'l
Symposium on Multimedia Software Engineering,
December 2000.

[23] C. Papadopoulos and G. Parulkar, Retransmission-
based error control for continuous media
applications, In Proceedings of the Sixth International
Workshop on Network and Operating System Support
for Digital Audio and Video, 1996.

[24] Bhaskaran Raman, Pravin Bhagwat, and Srinivasan
Seshan, Arguments for cross-layer optimizations in
Bluetooth scatternets, In Proceedings of Symposium
on Applications and the Internet 2001.

[25] Hari Balakrishnan, Srinivasan Seshan, and Randy H.
Katz, Improving reliable transport and handoff
performance in cellular wireless networks, ACM
Wireless Networks, December 1995.

[26] Video Traces, Starship Troopers,
http://www.acticom.info/1466.html

[27] Bluez Linux Bluetooth Protocol Stack,
bluez.sourceforge.net

