
1

Effective Network Monitoring
Yuri Breitbart, Feodor Dragan, Hassan Gobjuka

Department of Computer Science
Kent State University

Kent, OH 44242
{yuri,dragan,hgobjuka }@cs.kent.edu

Abstract— Various network monitoring and performance evaluation
schemes generate considerable amount of traffic, which affects network
performance. In this paper we describe a method for minimizing network
monitoring overhead based on Shortest Path Tree (SPT) protocol. We
describe two different variations of the problem: the A-Problem and the
E-Problem, and show that there is a significant difference between them.
We prove that finding optimal solutions isNP -hard for both variations,
and propose a theoretically best possible heuristic for the A-Problem and
three different heuristics for the E-Problem, one of them being also theo-
retically best possible. We show that one can compute in polynomial time
an O(ln|V |)-approximate solution for each of these problems. Then,
we analyze the performance of our heuristics on large graphs generated
using Waxman and Power-Law models as well as on real ISP topology
maps. Experiment results show more than 80% improvement when us-
ing our heuristics on real topologies over the naive approaches.

Classification: Algorithms, BFS-tree, Network Monitoring

I. I NTRODUCTION

Knowledge of the up-to-date network bandwidth utilization
as well as network topology is crucial for numerous important
network management tasks, including traffic engineering and
verifying QoS guarantees for end-user applications. Deploy-
ing network measurement and topology tools at key network
locations emerged as a main strategy in gathering such infor-
mation.

However, this approach causes the generation of a signifi-
cant amount of traffic which shares the same network infras-
tructure with user applications. From the point of view of
these other services this traffic is an overhead since it is of
no immediate interest at the user level. Furthermore, plac-
ing a monitoring tool at a certain node would only guarantee
measurements along the edges of the Shortest Path Tree (SPT)
rooted at that node. For the purposes of this paper we assume
that each network edge has a weight one and thus, every SPT
becomes Breadth-First-Search tree (BFS). Thus, to monitor
all active paths in the network, the monitoring tools should be
placed at a set of network nodes such that the SPTs rooted at
these nodes cover all edges of the network. To reduce the net-
work overhead caused by network monitoring and/or topology
traffic, one needs to find minimum number of network nodes
such that their BFS-trees cover all network edges. The prob-
lem has several interesting variations. One approach is to find
minimum set of nodes such that regardless which BFS-trees
are selected rooted at these nodes every network edge will be
covered. Such an approach makes a good sense, when we do
not want any coordination between the selection of BFS-trees
at these nodes. Furthermore, in a practical network, the net-
work BFS-tree periodically changes due to the changes in the

traffic patterns and network link failures. Consequently, the
selection of nodes whose union of arbitrary BFS-trees rooted
at these nodes cover every network edge reduces the amount
of network management but may increase the network man-
agement traffic. Alternatively, we consider minimum number
of nodes such that there is a set of BFS-trees selected at these
nodes that cover all network edges. In the latter case, network
manager should be able to coordinate the selection of BFS-
trees at each of the selected nodes, which in turn may cause
an additional network traffic. On the other hand, one would
expect that the number of selected nodes should be smaller
than in the former case.

In this paper we investigate these two approaches and the
tradeoff between the amount of network traffic and the mini-
mum number of nodes to place the network management and
network topology tools. We prove that both variations of the
problem are NP-hard in the number of network nodes. We
generate several heuristic algorithms for each of the problems
and prove that these heuristics are the best approximation for
a selection of minimum number of BFS-trees that cover ev-
ery edge of the network regardless what variation of the cover
problem is being considered. We also conduct extensive sim-
ulation study and demonstrate that the number of nodes re-
quired for the first variation of network edge cover problem
is about 40% more than the number of nodes required for the
second variation of this problem. We also run our algorithms
on actual ISP providers networks (ATT, Level 3, and Sprint).
We demonstrate that using our algorithms, the network man-
ager may significantly reduce the number of BFS-trees com-
paratively with the current methods used by network managers
to select the nodes for placing the network management tools.

The rest of the paper is organized as follows. Section II de-
scribes the prior work done in this area. Section III formulates
the basic model and the problem statement as well as com-
plexity of the stated problem and their variations. In Section
IV, we propose heuristic algorithms and analyze their perfor-
mance. Section V describes experimental results for networks
generated using Waxman and Power-Law models and for real
ISP networks. Section VI concludes the paper.

II. RELATED WORK

There is a significant body of literature in the area of de-
ploying measurement points and studying their characteris-
tics. However, only few projects focused on minimizing the
overhead of such deployment.

IDMaps [11] studies distance monitoring and estimation
by finding distance between Tracers, which are monitoring
boxes, placed at various network nodes. The distance maps
form the virtual topology of the Internet. However, IDMaps
does not assume that each tracer monitors a shortest path tree
as it is assumed here.

[8] and [17] study link monitoring and delays in IP net-
works based on a single point-of-control. PingTV [16] and
Atlas [18] uses ICMP to generate a logical map of the net-
work from a single probing host. PingTV monitors the traffic
condition and network outages of networks with hierarchical
structure by pinging hosts in hierarchical order. Atlas captures
the topology of IPv6 networks by probing from an initial set
of seeds that grows whenever new routers discovered. Either
of these methods is proactive. That is, it sends network probes
whereas in our methods we do not require any network probes.

In [12] and [13], the authors develop techniques to infer the
performance of all of the links (or specified subset of links)
that are contained by the trees.

[15] was the first study to show that the concept of ”more
measurement points is better” is not accurate by showing that
the topology can obtained using few measurement points.

[14] studies deploying minimum number of beacons on a
network of known topology and BGP-like routing policy so
that every link is monitored by messages originating from at
least one beacon.

In [1], the authors propose a model to minimize the over-
head of monitoring all links of a given network. However, this
approach is different from ours as it considers weighted net-
works and shortest path trees rooted at these nodes are fixed.

III. M ODEL

A network is a graphG = (V, E), whereV is the set of
nodes andE is the set of direct communication lines between
nodes, callededges. The number of nodes and edges are re-
spectively denoted by|V | and |E|. A shortest path between
nodess and t is denoted byPs,t and the length of this path
is denoted byd(s, t). Clearly, between any two nodes there
exist possibly more than one shortest path. However, as the
name suggest all these paths have the same lengthd(s, t). For
the purposes of our discussion we assume that graphG rep-
resenting the network is connected. That is, there is a path
between any two nodes inV . Consider a nodev. For every
nodevi ∈ V we select a shortest path betweenv andvi. The
union of all these paths is a shortest path treeTv rooted atv.
We call such a treeTv a breadth-first search tree (BFS-tree)
if graphG is not weighted. Clearly, for each nodev there are
many BFS-treesTv. We denote bySv the set of all BFS-trees
rooted at nodev.

Let G be a graph andv ∈ V . We call an edgee = (a, b) ∈
E horizontalwith respect tov if d(v, a) = d(v, b) in G. The
following observation states that a BFS-tree rooted at a node
v cannot cover any edge that is horizontal with respect tov.

Observation 1:Let G = (V,E) be a graph andv be a node
of G. Any edge ofG which is horizontal with respect tov
cannot belong to any BFS-treeTv rooted atv.

We call an edgee = (a, b) ∈ E verticalwith respect tov if
d(v, a) = d(v, b) + 1 or d(v, b) = d(v, a) + 1. Let e = (a, b)
be a vertical edge with respect tov and assume thatd(v, a) =
d(v, b) + 1 holds. Then,e is called anedge unavoidable by
v if any shortest path betweenv anda includes nodeb. The
following observation holds.

Observation 2:Let G = (V, E) be a graph andv be a node
of G. Edgee of G is unavoidable byv if and only if any tree
Tv ∈ Sv containse.
We are interested in the following two problems.
• E-Problem (”Exist”-Problem): Given a graphG = (V, E),
select a minimum set of nodesR ⊆ V and for each node
v ∈ R a treeTv ∈ Sv such that the union of selected trees
covers all edges ofG.
• A-Problem (”Any”-Problem): Given a graphG = (V, E),
select a minimum set of nodesR ⊆ V such that, regardless
which treeTv ∈ Sv is selected for a nodev ∈ R, the union of
those trees cover all edges ofG.

First we demonstrate that optimal solutions for each of
these problems are considerably different. Consider, for ex-
ample a rectilinear grid of size

√
n × √n depicted on Figure

1. We number nodes of the grid from 1 ton row-wise (ith row
nodes are(i− 1)

√
n + 1, (i− 1)

√
n + 2, . . . , i

√
n).

Fig. 1. A-Problem vsE-Problem. On the rectilinear grid of size
√

n×√n,
optimal solution to theE-Problem consists of two trees while optimal
solution to theA-Problem consists of

√
n trees.

One can select two BFS-trees, one rooted at node 1 and
another rooted at noden, such that their union covers all the
edges ofG. Indeed, one can consider a tree rooted at node 1
which is formed by edges((i−1)

√
n+1, i

√
n+1), (j, j +1)

and(i
√

n + j, i
√

n + j + 1) (so called ”first column and all
rows”-tree) and a tree rooted at noden which is formed by
edges(n − √

n + j, n − √
n + j + 1), (i

√
n, (i + 1)

√
n)

and ((i − 1)
√

n + j, i
√

n + j) (so called ”last row and all
columns”-tree), where1 ≤ i ≤ √

n− 1, 1 ≤ j ≤ √
n− 1. It

is easy to see that both trees are BFS-trees. Thus, a solution
to theE-problem consists of only two BFS-trees. In view of
Observation 2, it is rather simple to show also that an optimal
solution to theA-problem consists of

√
n roots (BFS-trees). It

is easy to see that selecting the nodes on a diagonal of the grid
generates a set of BFS-trees that completely cover all edges of
the grid.

Using the technique developed in [1], one can easily show
that theE-Problem is NP -hard even for unweighted graphs.

2

It appears that theA-Problem is NP -hard too. It is proven
by reducing the set cover problem to it. As a byproduct we get
also theNP -hardness of the problem considered in [1] even
on unweighted graphs.

As we mentioned above, theNP -hardness of theE-
problem on unweighted graphs immediately follows from the
construction given in [1]. This result can be directly derived
also from theNP -hardness of theA-problem. Thus, the fol-
lowing theorem holds.

Theorem III.1: Both theA-Problem and theE-Problem
areNP -hard even for unweighted graphs.

IV. H EURISTIC ALGORITHMS

First we provide a heuristic for theA-problem and point
out that our heuristic is the best possible polynomial time ap-
proximation algorithm for the problem.

For each nodev of graphG = (V,E) we construct a set
Uv of unavoidable byv edges inG. It is easy to see that for a
givenv, the setUv can be obtained in timeO(|E|). Consider
now an instance of the set cover problem(E, {Uv : v ∈ V }),
whereE is the universe of elements and{Uv : v ∈ V } is the
collection of subsets. We have the following lemma.

Lemma IV.1:A setR ⊆ V is an optimal solution to theA-
Problem on a graphG = (V, E) if and only if {Uv : v ∈ R}
is an optimal solution to the corresponding set cover problem.

The well-known greedy heuristic for the set cover problem
translates into a greedy heuristic, depicted in Figure 2, for
the A-Problem. According to [2], the greedy algorithm is a
(ln(∆) + 1)-approximation algorithm for the set cover prob-
lem, where∆ is the size of the biggest subset. Since in our
case, for anyv ∈ V , Uv cannot contain more edges than a
BFS-tree rooted atv has, we have the following result.

Theorem IV.1:TheGreedy algorithm computes a(ln(|V |)+
1)-approximation for theA-Problem.

Note that the worst-case time complexity of theGreedy
algorithm can be shown to beO(|V ||E|).

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots

set R := ∅
for each v ∈ V compute set Uv of edges unavoidable by v
while E 6= ∅ do

choose a node v ∈ V \R such that |Uv

⋂
E| is maximum

(break ties randomly)
set R := R ∪ {v}, E := E \ Uv

return R

Fig. 2. A formal description of theGreedy algorithm for theA-Problem.

The reduction from the set cover problem to theA-problem,
can be extended to derive a lower bound for the best approx-
imation ratio achievable by any polynomial time algorithm.
Using the idea from [1], one can prove the following result.

Theorem IV.2:The lower bound of any polynomial time
approximation algorithm for theA-Problem as well as for the
E-Problem is ln(|V |).

In the rest of section we provide several heuristics to find
a solution to theE-problem. A natural greedy heuristic for
the E-Problem would be a procedure where at each step a
BFS-tree (and hence a root) is chosen which covers the max-
imum number of not yet covered edges ofG. We call this
tree acurrent best BFS-tree. To find a currentbest BFS-tree,
one should not iterate over all possible BFS-trees (the num-
ber of which could be exponential). Instead, one can do the
following. Iterate over all not considered yet nodes ofG, say
nodes ofS ⊆ V , building for each nodev of S a best possible
BFS-tree rooted atv, i.e., a BFS-treeTv which contains the
maximum number of uncovered yet edges ofG (a so called
current best BFS-tree rooted atv). And then, among those
trees{Tx : x ∈ S}, choose a treeTv which covers the maxi-
mum number of uncovered edges. To find a currentbest BFS-
tree rooted at a nodev one can use a function given in Figure
3. Clearly, this function works in linear time.

Input: A graph G = (V, E), a node v of G, and a subset E′ ⊂ E
of uncovered yet edges
Output: A current best BFS-tree Tv rooted at v

set U := ∅ and q := max{d(u, v) : u ∈ V }
compute the layers Li(v) := {u ∈ V : d(u, v) = i}, i = 1, . . . , q,
of G with respect to v

for each u ∈ V \ {v} do
let u belong to the layer Li(v)
if there exists an edge (u, x) in E′ such that x ∈ Li−1(v)
then add such an edge (u, x) to U
else add to U an arbitrary edge (u, x) with x ∈ Li−1(v)

return tree Tv := (V, U)

Fig. 3. A functioncurrent best BFS-tree(G, v, E′) which, given a graph
G = (V, E), a nodev and a set of uncovered yet edgesE′ ⊂ E, returns
a BFS-treeTv rooted atv which contains the maximum number of edges
from E′.

Now we can give a formal description of the greedy strategy
described above for theE-Problem (see Figure 4). We call it
Max New Edges heuristic. It is easy to see that the runtime
of this heuristic isO(|R||V ||E|).

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots and a family T = {Tv : v ∈ R} of
|R| BFS-trees

set R := ∅, T := ∅ and E′ := E
while E′ 6= ∅ do

for each v ∈ V \R compute
Tv :=current best BFS-tree(G, v, E′)
among the trees {Tv : v ∈ V \R} computed, choose a tree
Tx which contains the maximum number of edges from E′
(break ties randomly)
set R := R ∪ {x}, E′ := E′ \ {the edge set of Tx} and
T := T ∪ {Tx}

return R and T

Fig. 4. A formal description of theMax New Edges heuristic for theE-
Problem.

A rather standard technique can be used to show that the
Max New Edges heuristic is anO(ln|V |)-approximating al-
gorithm for theE-Problem.

3

Theorem IV.3:TheMax New Edges heuristic computes a
O(ln|V |)-approximation for theE-Problem.

Our next heuristic makes use of the notion of unavoidable
edges. In this method, the number of unavoidable edges is
calculated with respect to each node in the graph. Then, a node
v with the maximum number of uncovered unavoidable edges
is selected. If there are more than one such nodes, we break
ties by selecting a node arbitrarily. Finally, using a function
given in Figure 3, a currentbest BFS-tree rooted at nodev is
calculated, and the edges of this tree are declared covered. The
process is repeated until all edges of the graph are covered. We
call this heuristicMax Unavoidables. Its formal description
is given in Figure 5. Clearly, it runs also in timeO(|R||V ||E|).

Input: A graph G = (V, E)
Output: A set R ⊆ V of roots and a family T = {Tv : v ∈ R} of
|R| BFS-trees

set R := ∅ and T := ∅
for each v ∈ V compute the set Uv of edges unavoidable by v;
while E 6= ∅ do

choose a node v ∈ V \R such that |Uv

⋂
E| is maximum

(break ties randomly);
set Tv :=current best BFS-tree(G, v, E)
set R := R ∪ {v}, E := E \ {the edge set of Tv} and
T := T ∪ {Tv}

return R and T

Fig. 5. A formal description of theMax Unavoidables heuristic for the
E-Problem.

Each of our two next heuristics selects a new rootv us-
ing different strategy but both of them construct a currentbest
BFS-tree rooted at nodev using functioncurrent best BFS-
tree. HeuristicMax Degree choosesv to be a node from
V \ R with the maximum number of uncovered incident
edges, while heuristicRandom Root choosesv randomly
from V \ R. In the next section we will experimentally com-
pare the described above four heuristics for theE-Problem
against each other and against a very naive heuristicRan-
dom Trees. In this heuristic, at each iteration a rootv is
selected randomly and a random BFS-tree rooted atv is con-
structed, and this is repeated until the constructed trees cover
all edges ofG.

In the remaining part of this section we demonstrate that the
difference between the optimal solution and the one returned
by Max Degree heuristic can be significantly different for a
given graphG. As an example, we construct a (5n+4)-node
graph as follows. We consider two sets ofn nodes labeleda1,
a2, ...,an, e1, e2, ...,en, two sets ofn+1 nodes labeledb1, b2,
..., bn, bn+1, d1, d2, ...,dn+1, and a set ofn+2 nodes labeled
c0, c1, c2, ..., cn+1. We connect these nodes as follows. Each
nodeai (i < n) is connected to nodesci andai+1. Similarly,
each nodeei (i < n) is connected to nodesci andei+1. Each
nodebi (i ≤ n) is connected to nodesbi+1, ci−1, andci. Sim-
ilarly, each nodedi (i ≤ n) is connected to nodesdi+1, ci−1,
andci. An example of such a graph with 5*5+4 nodes is de-
picted in Figure 6. HeuristicMax Degree will return O(|V |)
BFS-trees rooted at black nodesc1, c2, ...,cn, while it is easy

to see that there are three BFS-trees rooted at grey nodesb1,
d1 ande1 which cover all edges of the graph.

Fig. 6. A graphG for which there are three BFS-trees covering all edges of
G, but heuristicMax Degree will return O(|V |) BFS-trees.

V. EXPERIMENTAL RESULTS

In this section, we describe our experiment environment
and results we obtained from various algorithms that we have
developed. Our experiments are based on simulations as
well as realistic scenarios. Simulations are based on network
topologies generated using Waxman [4] and Power-Law [3]
models. The realistic scenarios are based on ISP topology
maps which are obtained from [6]. The results show the per-
formance advantage of our heuristics when comparing them
with theRandom Root andRandom Trees heuristics.

A. Waxman model

We generate 300-node network topologies using the Wax-
man model, which is a popular topology model for network-
ing research. Different network topologies can be generated
by varying three parameters: (1)n, the number of nodes in
the network graph; (2)α, a parameter that controls the den-
sity of short edges in the network; and (3)β , a parameter that
controls the average node degree.

For our experimental purposes, we start with the values
α=0.15 andβ=0.2 (i.e. average degree = 6), we fix the value
of α and increase the value ofβ gradually to simulate dense
network with average low degree. Then, we repeat the same
process but by fixing the value ofβ and increasing the value
of α to simulate networks with short links and average high
degree (i.e. average degree = 59). The reason for increas-
ing values ofα andβ instead of keeping them fixed is that
real ISP topology maps can be completely different from each
other as shown in Figure 9. Figure 7 shows the results we
got running the heuristic of the A-problem as well as differ-
ent heuristics for the E-problem on networks generated using
Waxman model.

B. Power-Law model

Power-Law model can be used to generate router-level
topologies [3]. For our experimental purposes, we generate
300-node flat (i.e. non hierarchical) power-law topologies
using BRITE [5], which is the best known power-law-based
topology generator. BRITE generates different topologies by
changing the values of the following parameters: (1)HS, Size

4

Fig. 7. Number of BFS-trees constructed by different heuristics for a 300-
node graph generated by (a) Waxman model and (b) Power-Law model.

of one side of the plane; (2)LS, Size of one side of a high-
level square; (3)NP , Node Placement; (4)m, Number of
links added per new node; and (5)IG, Incremental Growth.

We start with average degreem=2 (i.e. tree topology) and
increase the degree gradually untilm = 10 (i.e. average degree
of 10). Figure 7 shows the results we got running the heuristics
of the A-problem as well as E-problem on networks generated
using Power-Law model.

C. ISP map topologies

We run our heuristics on ten diverse ISP topologies
(See Figure 8). We obtain the topology maps from [6] and

convert them from Rocketfuel format to adjacency list graph
format after removing all inter-AS links. Figure 9 shows three
sample backbones overlaid on a map of the United States. The
sample backbone maps were obtained from [7]. We see that
the size of these networks range from about three hundreds to
more than twelve thousands as shown in Table I. Also, we
see that topologies could be completely different. For exam-
ple, we see that the AT&T’s backbone network topology in-
cludes hubs in major cities and spokes that fan out to smaller
per-city satellite POPs. In contrast, Sprint’s network has few
more POPs than 40 in the USA, all in major cities, and well
connected to each other, implying that their smaller city cus-
tomers are back hauled into these major hubs. Level3 repre-
sents yet another paradigm in backbone design. It has a highly
connected backbone which is most likely the result of using a
circuit technology, such as ATM or frame relay private virtual
circuits, to tunnel between POPs.

D. Discussion

Our experiments show changing results as the topology
changes. In the results obtained from Power-Law model,
all the proposed non-trivial E-Problem heuristics return sim-
ilar results when the average degree is low (i.e. less
than five). However, when increasing the average degree,
Max New Edges covers all edges with less number of trees
than other heuristics becauseMax New Edges takes a global

AS Name Routers Links
1221 Telstra (Australia) 3,726 9,014
1239 Sprint (USA) 10,332 25,841
1755 Ebone (Europe) 291 1,097
2914 Verio (USA) 6,523 19,289
3257 Tiscali (Europe) 506 1500
3356 Level3 (USA) 1,786 13,838
3967 Exodus (USA) 447 1,842
4755 VSNL (India) 292 669
6461 Abovenet (USA) 654 2,675
7018 AT&T (USA) 11,800 22,309

TABLE I

THE NUMBER OF ROUTERS AND LINKS FOR ALL TENISPS.

Fig. 8. Number of BFS-trees constructed by all heuristics for the ten selected
ISP topologies.

view of the graph before making the next root selection while
Max Unavoidables takes into account only the number of
unavoidable edges.Max Degree and Max Unavoidables
cover all edges with almost the same number of trees when-
ever the number of unavoidable edges and the degree are sim-
ilar. The improvement with respect to the naive approaches is
very huge (about 80% when the average degree is 6) as shown
in Figure 8.

Results obtained from Waxman model show noticeable dif-
ference among the E-Problem heuristics as shown in Figure 7.
Max New Edges heuristic covers all edges with less num-
ber of trees than other heuristics. Also, we notice the unex-
pected situation whenMax Degree heuristic covers all edges
with less number of trees thanMax Unavoidables heuris-
tic in some graphs. The reason behind that is the number
of unavoidable edges and the maximum degree are equal and
there are more than one node to select from in the next it-
eration. Since heuristics break the tie of selecting the next
node randomly in such case,Max Unavoidables may select
a node which is different from whatMax Degree selects.
Then,Max Unavoidables may need more roots to cover all
edges as a consequence of that selection. In general, the im-
provement of our heuristics over the naive heuristics is more
than 50%. The improvement on graphs generated using Wax-
man and Power-Law model differs because Power-Law model
tends to generate tree-like topologies which is not the case
with Waxman model.

5

In the case of tree-like topologies,Max New Edges,
Max Unavoidables, and Max Degree tend to select the
same node at each iteration. However, selecting roots ran-
domly in such topologies returns very high number of roots as
the heuristic may select a leaf node at each iteration and hence,
the tree can cover only very few new edges. Also, bothRan-
dom Root andRandom Trees tend to return similar results
as number of unavoidable edges are large comparing to avoid-
ables. However, in the topologies generated using Waxman
model, the difference is big between results obtained from
Random Root andRandom Trees as the options varies at
each iteration.

In real topologies, we see that number of edges
and connectivity are proportional to the number of
roots. Again, Max New Edges heuristic outperforms
Max Unavoidables, which in turn outperformsMax Degree.
Also, when number of links decreases, the performance of
Random Root andRandom Trees becomes closer. In net-
works that have tree-like topologies like AT&T, the improve-
ment with respect to naive approaches goes to almost 100%.
In highly connected networks such as Level3, we see more
than 90% improvement. In relatively small networks such as
VSNL, the improvement is about 80%.

VI. CONCLUSION

In this paper, we considered the problem of minimizing the
overhead of network monitoring. We defined the optimization
problem and showed hardness of finding an optimal solution
for that problem. We proposed the best possible heuristic for
one variation and several heuristics for the other variation, and
presented theoretical analysis of these heuristics. We ran ex-
tensive experiments using simulations as well as real network
topology maps to study the performance in different scenar-
ios. We compared the results that we obtained with two naive
approaches and showed the drastic improvement using our
heuristics.

REFERENCES

[1] Y. BEJERANOandR. RASTOGI, Robust Monitoring of link delays and
faults in IP networks,In Proceedings of IEEE INFOCOM,(2003).

[2] C. CHVATAL , A greedy heuristic for the set-covering problem,Math. of
Operation Research,4 (1979), 233–235.

[3] M. FALOUTSOS, P. FALOUTSOS, and C. FALOUTSOS, On Power-
Law Relationships of the Internet,In Proceedings of ACM SIGCOMM,
(1999).

[4] B. M. WAXMAN , Routing of multipoint connections,IEEE Journal on
Selected Areas in Communications,6(9):1671–1622 (1988).

[5] A. M EDINA , A. LAKHINA , I. MATTA , J. BYERS,
http://www.cs.bu.edu/brite/,Boston University,(2002).

[6] N. SPRING, R. MAHAJAN , andD. WETHERALL, Measuring ISP Net-
work Topologies with Rocketfuel,In Proceedings of ACM SIGCOMM,
(2002).

[7] R. STERNER, Color landform atlas of the United States,
http://fermi.jhuapl.edu/states/.

[8] Y. BREITBART, C. Y. CHAN , M. GAROFALAKIS , R. RASTOGI, and
A. SILBERSCHATZ, Efficiently Monitoring Bandwidth and Latency in
IP Networks,In Proceedings of IEEE INFOCOM,(2000).

[9] D. BREITGAND, D. RAZ , Y. SHAVITT , The Travelling Miser Problem,
In Proceedings of IEEE INFOCOM,(2002).

[10] Cooperative Association for Internet Data Analysis (CAIDA),
http://www.caida.org/.

[11] S. JAMIN , C. JIN , Y. JIN , D. RAZ , Y. SHAVITT , andL. ZHANG, On
the Placement of Internet Instrumentation,In Proceedings of IEEE IN-
FOCOM,(2000).

[12] M. A DLER, T. BU, R. SITARAMAN , andD. TOWSLEY, Tree Layout
for Internal Network Characterizations in Multicast Networks,In Pro-
ceedings of NGC’01,(2001).

[13] T. BU, N. DUFFIELD, F. LO PRESTI, Network Tomography on General
Topologies,In Proceedings of ACM SIGMETRICS,(2002).

[14] J. HORTON, A. LOPEZ-ORTIZ, On the Number of Distributed Mea-
surement Points for Network Tomography,In Proceedings of the Con-
ference on Internet Measurement Conference,(2003).

[15] P. BAR-FORD, A. BESTAVROS, J. BYERS, M. CROVELLA , On the
Marginal Utility of Network Topology Measurements,In Proceedings
of the First ACM SIGCOMM Workshop on Internet Measurement
Workshop,(2001).

[16] A. GUBIN , W. YURCIK, L. BRUMBAUGH, PingTV: A Case Study in
Visual Network Monitoring,In Proceedings of the Conference on Visu-
alization,(2001).

[17] J. WALZ , B. LEVINE, A Hierarchical Multicast Mmonitoring Scheme,
In Proceedings of NGC on Networked Group Communication,(2000).

[18] D. WADDINGTON, F. CHANG, R. VISWANATHAN , and B. YAO,
Topology discovery for public IPv6 networks,ACM SIGCOMM Com-
puter Communication Review,(2003).

Fig. 9. Backbone (POP level) topologies for AT&T (top), Level3 (middle),
and Sprint (bottom). Shaded relief background image Ray Sterner, Johns
Hopkins University Applied Physics Laboratory, used with permission.

6

