
Formal Specification and Verification of a Micropayment Protocol

Mohamed G. Gouda and Alex X. Liu∗

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188, U.S.A.

{gouda, alex}@cs.utexas.edu

Abstract

In this paper, we investigate the security of micropay-

ment protocols that support low-value transactions. We

focus on one type of such protocols that are based on hash

chains.Wepresent a formal specification of a typical hash

chain basedmicropayment protocol usingAbstract Proto-

col notation, and discuss howanadversary canattack this

protocol usingmessage loss,modification, and replay.We

use convergence theory to show that this protocol is secure

against these attacks. The specification and verification

techniques used in this paper can be applied to other mi-

cropayment protocols as well.

1. Introduction

As online businesses grow, there is an increasing de-
mand for micropayment protocols that facilitate mi-
crocommerce, namely selling content and services for
small amounts of money (possibly less than one cent
per transaction), which cannot be handled efficiently
by credit cards due to substantial per transaction fee
and delay. Examples of such content and services are
web pages and online games. Many micropayment pro-
tocols have been proposed for microcommerce, such
as [1,3,6,7,10–12]. These protocols need to be regarded
as “secure” before they can win the approval of cus-
tomers and vendors alike. However, none of these pro-
tocols have been formally specified and verified.

In this paper, we address this issue by formally speci-
fying a micropayment protocol, which is based on Lam-
port’s idea of hash chains [9], using the Abstract Pro-
tocol notation presented in [4], and formally verifying
the security of this protocol using the convergence the-
ory in [5]. We choose such a hash chain based micropay-

1 Alex X. Liu is the corresponding author of this paper.

ment protocol because it is a typical micropayment pro-
tocol and the techniques that we use in specifying and
verifying this protocol can be applied to other micro-
payment protocols as well. There are many hash chain
based micropayment protocols, such as Anderson’s et
al. NetCard [1], Hauser’s et al. Micro-iKP [6], Jutla and
Yung’s Paytree [7], Pedersen’s Scheme [10], Rivest and
Shamir’s PayWord [11], and W3C’s MPTP [12].

The rest of this paper is organized as follows. In Sec-
tion 2, we present a brief introduction to Abstract Pro-
tocol notation, while in Section 3, we formally specify
the hash chain based micropayment protocol using this
notation. In Section 4, we give an introduction to the
convergence theory. In Section 5, we verify the secu-
rity of the protocol. We give conclusions in Section 6.

2. Abstract Protocol Notation

In this section, we give a brief introduction to the
Abstract Protocol notation [4]. In this notation, each
process in a protocol is defined by sets of constants,
variables, parameters, and actions. For instance, in a
protocol consisting of two processes p and q and two
opposite-direction channels, one from p to q and one
from q to p, process p can be defined as follows:

process p
const 〈name of constant〉 : 〈type of constant〉

· · ·
〈name of constant〉 : 〈type of constant〉

inp 〈name of input〉 : 〈type of input〉
· · ·
〈name of input〉 : 〈type of input〉

var 〈name of constant〉 : 〈type of constant〉
· · ·
〈name of constant〉 : 〈type of constant〉

par 〈name of constant〉 : 〈type of constant〉
· · ·
〈name of constant〉 : 〈type of constant〉

begin

〈action〉
2 〈action〉
2 · · ·
2 〈action〉
end

The constants of process p have fixed values. Inputs
of process p can be read, but not updated, by the ac-
tions of process p. Variables of process p can be both
read and updated by the actions of process p. Com-
ments can be added anywhere in process p; every com-
ment is placed between the two brackets { and }.

Each 〈action〉 of process p is of the form:

〈guard〉 → 〈statement〉

The guard of an action of process p is of one of the fol-
lowing three forms: (1) a boolean expression over the
constants and variables of p, (2) a receive guard of the
form “rcv 〈message〉 from q”, (3) a timeout guard that
contains a boolean expression over the constants and
variables of every process and the contents of all chan-
nels in the protocol. A parameter declared in a process
is used to write a finite set of actions as one action,
with one action for each possible value of the parame-
ter.

Executing an action consists of executing the state-
ment of the action. Executing the actions of different
processes in a protocol proceeds according to the fol-
lowing three rules. First, an action is executed only
when its guard is true. Second, the actions in a proto-
col are executed one at a time. Third, an action whose
guard is continuously true is eventually executed.

The 〈statement〉 of an action of process p is a se-
quence of 〈skip〉, 〈send〉, 〈assignment〉, 〈selection〉, or
〈iteration〉 statements of the following forms:

〈skip〉 : skip

〈send〉 : send 〈message〉 to q

〈assignment〉 : 〈variable in p〉 := 〈expression〉
〈selection〉 : if 〈boolean expression〉 → 〈statement〉

· · ·
2 〈boolean expression〉 → 〈statement〉
fi

〈iteration〉 : do 〈boolean expression〉 → 〈statement〉
od

There are two channels between the two processes:
one is from p to q, and the other is from q to p. Each
message sent from p to q remains in the channel from
p to q until it is eventually received by process q. Mes-
sages that reside simultaneously in a channel form a se-
quence and are received, one at a time, in the same or-
der in which they were sent.

3. Formal Specification

There are many hash chain based micropayment
protocols such as Rivest and Shamir’s PayWord [11],
W3C’s MPTP [12], Hauser’s et al. Micro-iKP [6], and
Anderson’s et al. NetCard [1]. The basic ideas of these
protocols are quite similar. Here we take PayWord as
an example to explain this type of protocols.

There are three types of parties in PayWord pro-
tocol: users, vendors, and banks. Each user has a pri-
vate key, a public key, and a certificate. The certifi-
cate contains the bank’s name, the user’s name, the
user’s public key and the expiration date. Each vendor
knows each bank’s public key and therefore can ver-
ify each user’s certificate. All parties, including users,
vendors, and banks, know a one-way hash function h.

Each day, when a user u needs to pay a vendor
v for the first time, u at first conjectures the most
likely maximum number of “coins” that she might
need to pay the vendor that day, which is denoted n.
Second, u picks a random number, which is denoted
c[n]. Third, u computes a hash chain c[0], c[1], · · · , c[n],
where c[i − 1] = h(c[i]) for each i (1 ≤ i ≤ n). The in-
teger c[0] is called the root of the hash chain and the
rest n integers from c[1] to c[n] then serve as n coins.
Before making payments using these coins, u needs to
send c[0], u’s signature of c[0], and u’s certificate to the
vendor v in order for v to know c[0], which enables v

to verify the payment from u. After the above prepa-
ration steps, u starts to make payments to v. There
are two types of payments: fixed-size payments and
variable-size payments. In fixed-size payments, the i-
th payment from u to v contains the integer c[i]. The
vendor v verifies this payment by applying the hash
function h to c[i] and compare it with the coin c[i− 1]
that v has received in the previous payment from u.
In variable-size payments, the value of each payment
varies from 1 to n. A payment from u to v contains a
tuple (c[i], m), where m is the value of this payment
and the coins from c[1] to c[i − m] have been spent.
This single payment is equivalent to m fixed-size pay-
ments from c[i − m + 1] to c[i]. The vendor v verifies
this payment by applying the hash function h to c[i]
for m times and compares the resulting number with
the coin c[i − m] that v received in the previous pay-
ment from u.

The above PayWord protocol has two security holes.
First, it is vulnerable to message loss attack. An at-
tacker can discard a payment message from u and v.
When this happens, u should retransmit the lost pay-
ment. However, due to the lack of an acknowledgement
mechanism in the PayWord protocol, u does not know
whether a payment was actually received by v or not.

Second, the PayWord protocol is vulnerable to message
modification attack. An attacker can modify a valid
variable-size payment message (c[i],m) (m ≥ 2) to a
different yet valid payment (h(c[i]),m − 1). When this
happens, v should discard the modified payment. How-
ever, in PayWord protocol, such a modified payment is
deemed as a valid one by v. Similar to the PayWord
protocol, W3C’s MPTP, Micro-iKP and NetCard also
suffer from the above two vulnerabilities (Note that in
Micro-iKP and NetCard, the effect of a message mod-
ification attack is the same as a message loss attack
because these two micropayment protocols do not sup-
port variable-size payments.)

The above two security holes of the PayWord proto-
col were previously discovered in [8]. However, the so-
lutions proposed in [8] are inefficient. In [8], to counter
message loss attacks, a vendor is also required to com-
pute and store a different hash chain c′ of length n and
each element c′[i] is used to acknowledge the coin c[i] re-
ceived from a user u. This solution is inefficient because
it is possible that u only spends a few coins with v al-
though u computes a hash chain of length n. Therefore,
v wastes both time and space in computing and storing
a hash chain of length n because she only needs to send
a few acknowledgements. The solution to counter mes-
sage modification attacks in [8] fails to enable a ven-
dor to detect whether a variable-size payment has been
modified or not when she receives it.

Our solution to these two security holes are much
more efficient than the solutions proposed in [8]. First,
we use a securely salted one-way hash function h(ss, ·),
where ss is not known to attackers, instead of a nor-
mal one-way hash function h(·). Due to use of this se-
curely salted hash function h(ss, ·), an attacker cannot
modify a valid variable-size payment message to a dif-
ferent yet valid payment message. Using this hash func-
tion h(ss, ·), a user computes a hash chain of length n

by c[i − 1] = h(ss, c[i]) for each i (1 ≤ i ≤ n). Sec-
ond, for each payment (c[i],m) received by a vendor,
the vendor sends back an acknowledgement h(c[i], ss)
to the sender. Note that an attacker might know
h(ss, c[i]) since h(ss, c[i]) = c[i − 1], but she cannot
forge h(c[i], ss).

Next, we present a hash chain based micropayment
protocol that uses our above solutions to fix these two
security holes. For simplicity and elaboration of the
above two security fixes, we only present the proto-
col between a user u and a vendor v. We also assume
there is a shared key sk between u and v, which can be
achieved by public key cryptography. Each hash chain
created by u has a sequence number that starts at
0. There are two phases in this hash chain based mi-
cropayment protocol: request-reply phase and pay-ack

phase.
In request-reply phase, u first picks two ran-

dom numbers for c[n] and ss, then computes a hash
chain c[0], c[1], · · · , c[n], where c[i − 1] = h(ss, c[i])
for each i (1 ≤ i ≤ n), and sends a request
message rqst(NCR(sk , (c[0]|seq |ss)) to v. Here
NCR(sk , (c[0]|seq |ss) is the encrypted message
(c[0]|seq|ss) by the shared key sk , where “|” de-
notes concatenation. The variable “seq” is the se-
quence number of the current hash chain. When v re-
ceives the request message rqst(NCR(sk , (c[0]|seq |ss))
from u, she decrypts it using the shared key sk

and checks whether “seq” is the one that she ex-
pects. If so, v sends reply message rply(c[0]) to u;
otherwise v discards the request message. When u re-
ceives this reply message, u knows that v received the
request message correctly and u starts sending pay-
ments.

In the pay-ack phase, u sends a payment mes-
sage pay(c[i], m) to v. The value of this payment
pay(c[i], m) is m coins. When v receives this payment
message, she applies the hash function h to c[i] for m

times and then checks whether the result is the coin
that v received previously from u. If so, then v sends ac-
knowledgement message ack(h(c[i], ss)) back to u; oth-
erwise v discards the payment message. When u re-
ceives the acknowledgement message, she knows that
v received the payment message correctly and she con-
tinues to send other payments.

The time chart that shows the message flow of this
hash chain based micropayment protocol is shown in
Figure 1. The two processes u and v are specified in Fig-
ure 2 using the Abstract Protocol notation. Note that
“any” represents an arbitrary number chosen by a hu-
man being, and “random” represents a random num-
ber generated by a computer. Here, #ch.u.v denotes
the number of messages in the channel from u to v. We
use NCR and DCR to denote encryption and decryp-
tion functions respectively.

rqst(NCR(sk, (c[0]|seq|ss)))

pay(c[i], m)

pay(c[i’], m’)

rply(c[0])

ack(h(c[i], ss))

ack(h(c[i’], ss))

…

Figure 1. Time Chart

process u
const sk : integer {shared key between processes u and v}
var c : array integer of integer, {current hash chain}

n : integer, {length of current hash chain}
t : integer, {c[t+1] is the next unspent coin}
seq : integer, {sequence number of current hash chain}
ss : integer, {session secret}
st : 0..3, {state indicator whose initial value is 0}
m, x: integer

begin
st = 0 → st := 1; n := any; t := n;

c[n] := random; ss := random;
do (t > 0) → c[t − 1] := h(ss, c[t]); t := t − 1 od;
send rqst(NCR(sk , (c[0]|seq |ss))) to v

2 rcv rply(x) from v →
if st = 1 ∧ x = c[0]→ st:=2; seq:=seq+1
2 st 6= 1 ∨ x 6= c[0]→ skip
fi

2 st = 2 → st := 3; m := any; t := t + m

if t ≤ n→ send pay(c[t], m) to v
2 true → st:=0
fi

2 rcv ack(x) from v →
if st = 3 ∧ x = h(c[t], ss)→ st:=2;
2 st 6= 3 ∨ x 6= h(c[t], ss)→ skip
fi

2 timeout (#ch.u.v + #ch.v.u = 0) ∧ (st = 1 ∨ st = 3)
if st = 1→ send rqst(NCR(sk , (c[0]|seq |ss))) to v
2 st = 3→ send pay(c[t], m) to v
2 st 6= 1 ∧ st 6= 3 →skip
fi

end

process v
const sk : integer {shared key between processes u and v}
var lastc : integer, {last coin received}

seq : integer, {index of sticks}
ss : integer, {session secret}
lastc′, seq ′, ss′, x, c, m, j : integer,

begin
rcv rqst(x) from u →

lastc′, seq ′, ss′ := DCR(sk , x);
if seq ′ = seq → lastc = lastc′; ss = ss ′; seq = seq + 1;

send rply(lastc) to u;
2 seq ′ = seq − 1→ send rply(lastc) to u;
2 seq ′ 6= seq ∧ seq ′ 6= seq − 1 →skip
fi

2 rcv pay(c, m) from u →
if c 6= lastc → j := m; x := c;

do (j > 0) → x := h(ss, x); j := j − 1 od;
if x = lastc → send ack(h(c, ss)) to u;

lastc := c;
2 x 6= lastc → skip
fi

2 c = lastc → send ack(h(c, ss)) to u;
fi

end

Figure 2. Formal Specification

4. Convergence Theory

In this section, we outline a verification method,
which is based on the three concepts from convergence
theory [2, 5], namely closure, convergence, and protec-
tion, for verifying the security of protocols that are

specified using the Abstract Protocol notation. Later
in Section 5, we use this method to verify the secu-
rity of the PayWord micropayment protocol. This ver-
ification method is based on the following definitions.

A state of a protocol is an assignment of a value to
each variable of each process in the protocol and an as-
signment of a sequence of messages to each channel
in the protocol. The value assigned to each variable is
from the domain of that variable. If the guard of an ac-
tion of a process in a protocol has the value true at some
state of the protocol, then the action is said to be en-

abled at that state. For simplicity, we assume that at
each state of a system, at least one action of that sys-
tem is enabled.

Some states of a protocol are called the initial states

of that protocol.

A transition of a protocol is a pair (p, q) of states of
the protocol such that some process in the protocol has
an action whose guard is true at state p and execution
of that action when the protocol is at state p yields the
protocol at state q.

A computation of a protocol is an infinite sequence
(p.0, p.1, p.2, · · ·) of protocol states such that each pair
(p.i, p.(i + 1)) of successive states in the sequence is a
protocol transition.

A state of a protocol is called a safe state if it occurs
in any protocol computation (p.0, p.1, p.2, · · ·) where
p.0 is an initial state of the protocol.

A state of a protocol is called an error state if the
protocol can reach this state by an adversary execut-
ing one of its actions starting from a safe state of the
protocol.

A state of a protocol that is not safe is called an un-

safe state if it is an error state of the protocol or if
it occurs in any protocol computation (p.0, p.1, p.2, · · ·)
where p.0 is an error state of the protocol.

A protocol is called secure if it satisfies the following
three conditions:

1. Closure: In each protocol computation whose first
state is safe, every state is safe.

2. Convergence: In each protocol computa-
tion whose first state is unsafe, there is a safe
state.

3. Protection: In each protocol transition, whose
first state is unsafe, the critical variables of the
protocol do not change their values.

According to the above definitions, every protocol
satisfies the closure condition. Thus, to prove that a
protocol is secure, it is sufficient to show that the pro-
tocol satisfies both the convergence and protection con-
ditions.

5. Formal Verification

In this section, we formally verify that the hash
chain based micropayment protocol specified in Sec-
tion 3 is secure against message loss, modification and
replay attacks.

First, we examine the state transition diagram of
this protocol without adversary actions, which is shown
in Figure 3. The six safe states, S.1 through S.6, are de-
fined in Figure 4. Here seq

u
denotes the variable seq in

process u, similarly for seq
v
, ssu, etc. Note that the ac-

tion u.i denotes the i-th action in process u and the
action v.i denotes the i-th action in process v.

S.1

S.2

S.3

S.4

S.5

S.6

u.1

v.1

u.2

u.3

u.3

u.4

v.2

Figure 3. State Transition Diagram without Ad-

versary Actions

S.1 : st = 0 ∧ seq
u

= seq
v
∧ #ch.u.v = 0 ∧ #ch.v.u = 0

S.2 : st = 1 ∧ seq
u

= seq
v

∧ch.u.v = {rqst(NCR(sk , (c[0]|seq
u
|ssu)))} ∧ #ch.v.u = 0

∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))
S.3 : st = 1 ∧ seq

u
= seq

v
− 1 ∧ ssu = ssv ∧ lastc = c[0]

∧#ch.u.v = 0 ∧ ch.v.u = {rply(c[0])}
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.4 : st = 2 ∧ seq
u

= seq
v
∧ ssu = ssv ∧ #ch.u.v = 0

∧#ch.v.u = 0 ∧ (∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))
S.5 : st = 3 ∧ seq

u
= seq

v
∧ ssu = ssv ∧ ch.u.v = {pay(c[t], m)}

∧#ch.v.u = 0 ∧ lastc = hm(ssv , c[t])
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.6 : st = 3 ∧ seq
u

= seq
v
∧ ssu = ssv ∧ lastc = c[t]

∧#ch.u.v = 0 ∧ ch.v.u = {ack(h(c[t], ssv))}
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

Figure 4. States S.1 through S.6

Second, we examine the state transition diagram of
this protocol with adversary actions. Figure 5 and 6
show the state transition diagrams of the request-reply
phase and pay-ack phase of the protocol respectively

with adversary actions. The adversary actions are la-
belled L (for message loss), M (for message modifi-
cation), and R (for message replay). The additional
states that result from the adversary actions, labelled
L.1 through L.6, M.1 through M.4, and R.1 through
R.6, are all unsafe states. Note that action T denotes
the timeout action in process u.

S.1

S.2

S.3

R.1

R.2

R

M

L

R

M

L

M.1

L.1

R.3

M.2

L.2 L.3

v.1v.1

u.2

T

T v.1

S.4

u.1

v.1

u.2

u.2

v.1

u.3

u.2

Figure 5. State Transition Diagram of Request-

Reply Phase with Adversary Actions

As an example, we examine the four unsafe states
(namely L.1, M.1, R.1, and R.2) that result from ad-
versary actions when the protocol is in state S.2. In
state S.2, there is one request message in the chan-
nel from u to v. If an adversary launches a message
loss attack, i.e., discards the request message from u to
v, then the protocol moves to an unsafe state L.1. In
state L.1, only the timeout action T of process u is en-
abled and eventually executed, and henceforth brings
the protocol back to the safe state S.2. If an adver-
sary launches a message modification attack, i.e., mod-
ifies the request message in the channel from u to v, the
protocol moves to unsafe state M.1. In state M.1, only
action v.1 is enabled and eventually executed. In ac-
tion v.1, v decrypts the message using the shared key
sk. By checking the sequence number in the request
message, v detects that the modified message is not a
valid one, and therefore discards the modified message,
which brings the protocol back to the unsafe state L.1.
If an adversary launches a message replay attack, i.e.,
replaces the original request message with one of pre-
vious request messages, the protocol moves to an un-

safe state R.1. There are two possible cases for the re-
played message. If it is the most recent request mes-
sage from u to v, then v sends back to u the most re-
cent reply message. In this case, the protocol moves to
another unsafe state R.2. But when u receives this re-
ply message, u discards it because st 6= 1, which moves
the protocol to state L.1. If the replayed message is
not the most recent request message from u to v, v dis-
cards the message and henceforth moves the protocol
to state L.1.

Figure 6 shows the state transition diagram of the
pay-ack phase of the protocol with adversary actions.
From Figure 5 and 6, we conclude that the proto-
col does satisfy the convergence condition because any
computation whose first state is an unsafe state has a
safe state.

S.4

S.5

S.6

u.3

v.2

R.4

M.3 R.5

L.4

R.6

M.4

L.5L.6

v.2v.2

v.2

T

R

M

L

R

M

L u.4

v.2 T

u.4
u.4

u.4

Figure 6. State Transition Diagram of Pay-Ack

Phase with Adversary Actions

Next we prove that the protocol satisfies the protec-
tion condition by showing that no critical variables are
updated when the protocol is in an unsafe state. The
protocol has nine critical variables, namely c, n, t, seq ,
ss and st of process u, and lastc, seq and ss of pro-
cess v. By examining the unsafe states in Figure 5 and
6, we see that any of the above nine critical variables
is updated only in safe states. For example, the vari-
able lastc in process v is updated only when v receives
a valid request message or a valid payment message.

In conclusion, the hash chain based micropayment
protocol is secure against message loss, modification
and replay attacks.

6. Conclusions

Our contributions in this paper are three-fold. First,
we present two security fixes to the previous hash chain
based micropayment protocols. Second, we formally
specify a hash-chain based micropayment protocol us-
ing Abstract Protocol notation. Third, we formally ver-
ify that this protocol is secure against message loss,
modification, and replay attacks using convergence the-
ory. The specification and verification techniques used
in this paper can be applied to other micropayment
protocols as well.

References

[1] R. Anderson, H. Manifavas, and C. Sutherland. Net-
card: A practical electronic cash system. In Proc. of

the 4th International Workshop on Security Protocols,

LNCS 1189, 1996.

[2] A. Arora and M. G. Gouda. Closure and convergence: A
foundation for fault-tolerant computing. IEEE Trans-

actions on Software Engineering, Special Issue on Soft-

ware Reliability, 19(3):1015–1027, 1993.

[3] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and
P. Sobalvarro. The millicent protocol for inexpensive
electronic commerce. In Proc. of the 4th International

World Wide Web Conference Proceedings, pages 603–
618, 1995.

[4] M. G. Gouda. Elements of Network Protocol Design.
John Wiley & Sons, New York, New York, 1th edition,
1998.

[5] M. G. Gouda. Elements of security: Closure, conver-
gence, and protection. Information Processing Letters,
77:109–114, 2001.

[6] R. Hauser, M. Steiner, and M. Waidner. Micro-
payments based on ikp. InWorldwideCongress onCom-

puter and Communications Security Protocol, 1996.

[7] C. Jutla and M. Yung. Paytree: “amortised-signature”
for flexible micropayments. In Proc. of the 2nd USENIX

Association Workshop on Electronic Commerce, pages
213–221, 1996.

[8] A. Lakhia. Specification and verification of payword
protocols. Bachelor’s thesis, The University of Texas
at Austin, 1998.

[9] L. Lamport. Password authentication with inse-
cure communication. Communications of the ACM,
24(11):770–771, 1981.

[10] T. P. Pedersen. Electronic payments of small amounts.
In Proc. of the 5th International Workshop on Security

Protocols, LNCS 1361, pages 59–68, 1997.

[11] R. L. Rivest and A. Shamir. Payword and micromint:
Two simple micropayment schemes. In Proc. of the

Fourth International Workshop on Security Protocols,

LNCS 1189, pages 69–87, 1996.

[12] W3C. Micro payment transfer protocol (mptp) version
0.1. http://www.w3.org/tr/wd-mptp-951122.

