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Abstract— Mobile clients often need to operate while discon-
nected from the network due to limited battery life and network
coverage. Hoarding supports this by fetching frequently accessed
data into clients’ local caches prior to disconnection. Existing
work on hoarding have focused on improving data accessibility for
individual mobile clients. However, due to storage limitations, mo-
bile clients may not be able to hoard every data object they need.
This leads to cache misses and disruption to clients’ operations.

In this paper, a new concept called Cooperative Hoarding is in-
troduced to reduce the risks of cache misses for mobile clients. Co-
operative hoarding takes advantage of group mobility behaviour,
combined with peer cooperation in ad-hoc mode, to improve hoard
performance. Two cooperative hoarding approaches are proposed
that take into account access frequency, connection probability,
and cache size of mobile clients so that hoarding can be performed
cooperatively. Simulation results show that the proposed methods
significantly improve cache hit ratio and provides better support
for disconnected operations compared to existing schemes.

I. INTRODUCTION

Due to limited network coverage, signal interference and
scarce battery power, mobile users are often disconnected from
the rest of the network [1], [22]. Disconnected operation re-
duces the effect of intermittent connectivity by pre-load fre-
quently accessed data objects into clients’ caches, so that they
can continue to access the data locally even when a connection
is unavailable. However, as mobile devices have limited stor-
age capacity, it is impossible for them to cache every data ob-
ject available. This leads to the problem of critical cache misses
during disconnection. To reduce the likelihood of cache misses
and improve data accessibility for mobile clients, Hoarding and
Cooperative Caching techniques have been proposed.

The goal of hoarding is to find the best set of objects to cache
so that the probability of cache misses during disconnection is
minimised. Existing hoarding techniques [9], [13], [20] rely
on access order and frequency when making hoard selections.
In these approaches, each client performs hoarding separately
and only consider their own needs. As a result, when a cache
miss occurs, a client must wait for a connection to be available
before the required data can be accessed.

Cooperative caching reduces the chance of cache misses by
allowing clients to contact their peers when a data object is not
available locally. If a peer has cached the object, it can send
the object back and prevent a cache miss. Existing work on
cooperative caching [4], [18] have focused on reducing access

delay and network traffic for wired networks. More recent stud-
ies ([3], [6], [15]) have addressed the issue of improving data
accessibility, however, in these approaches, clients still perform
hoarding separately and only consider cooperation after they
have become disconnected. This reduces the effectiveness of
their cooperative caches.

In this paper, we introduce a new concept called Cooperative
Hoarding which combines the benefits of hoarding and cooper-
ative caching to improve data accessibility for clients. Recent
research have shown that mobile clients often move in groups
[16], [21]. Examples of group mobility behaviour include sol-
diers travelling together on a battle field, rescue workers work-
ing at the scene of a disaster, students on a university campus
etc. We refer to a group of clients travelling together as a mobil-
ity group. Cooperative hoarding takes advantage of the fact that
even when disconnected from the rest of the network, clients in
a mobility group may still be able to communicate with each
other. By performing hoarding cooperatively, they can help
each other during disconnected operation to improve the groups
overall performance.

In this paper, two cooperative hoarding methods, Greedy
Global Hoard (GGH) and Cooperative Access Probability-
based hoarding (CAP), are proposed. In GGH, each client se-
lects data objects to hoard based on their own access probabili-
ties, the hoard content of its neighbour peers and the connection
probability and hop distance from its neighbours. These para-
meters allow each client to utilise its hoard space efficiently by
taking advantage of what its peers have already hoarded. In
CAP, the best location to hoard each object is determined by a
global cost function. This ensures access cost within the mo-
bility group is minimised, while accounting for the possibility
of partitioning within the group to reduce cache misses. Fur-
thermore, by limiting the number of duplicate objects hoarded,
more efficient use of the hoard space is achieved.

Extensive testing has been conducted to study the perfor-
mance of the proposed methods. Test results confirm that coop-
erative hoarding is effective in supporting mobile clients during
disconnected operations and significantly reduce the number of
cache misses for disconnected clients.

The rest of this paper is organised as follows. Section II
presents a survey of related work. The hoarding problem is
formally described in Section III. Section IV presents the pro-
posed methods, GGH and CAP. This is followed by the simu-
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lation results in Section V. Lastly, conclusion and future work
are discussed in Section VI.

II. RELATED WORK

The Coda file system[11] is one of the earliest work to ad-
dress the issue of hoarding. The hoarding mechanism relies on
the user to specify the set of files to hoard. While this ensures
accurate hoarding decisions are made, it is also very tedious for
the user. To deal with this, automated hoarding techniques have
been proposed [14], [19]. Automated hoarding techniques cap-
ture clients’ access behaviour by recording the order and fre-
quency in which data objects are accessed. Prior to disconnec-
tion, data mining techniques or graph analysis is used to predict
which objects should be hoarded.

Although existing hoarding techniques improve data acces-
sibility for individual clients, when an object cannot be found
locally, a client still suffers the penalty of a cache miss. To over-
come this, cooperative caching techniques (e.g. [8], [15], [23])
have been proposed to reduce the impact of local cache misses
by allowing mobile clients to contact their peers to request an
object when it cannot be found in its own cache.

Two cooperative caching schemes, CacheData and CacheP-
ath, designed for ad-hoc networks were proposed in [23]. In
CacheData, mobile clients selectively cache copies of passing-
by data objects when routing requests for other clients. This
method reduces the overhead of future requests by caching
frequently accessed objects near the requesting clients. The
CachePath scheme addresses the issue of reducing object search
overhead for cache cooperation. When a request is successfully
routed, intermediate nodes will store the path used by the re-
quest. This ensure the correct path will be discovered quickly
for future requests.

In [15], a peer-to-peer data sharing system called 7DS was
proposed. When a client cannot find an object in its own cache,
it will periodically broadcast requests to nearby peers until the
needed object is found. It is assumed that mobile clients are
willing to wait when a requested object cannot be found lo-
cally. But this assumption is often invalid because intuitively,
clients would expect answers to their queries within a short
time. 7DS also incurs high communication overhead due to
periodic broadcasting of unanswered requests.

A difficult issue faced by cooperative caching in mobile net-
works is the problem of network partitioning. Network parti-
tioning occurs because the movement of the clients often lead to
division of the topology. As a result, clients in one partition can-
not access information stored by clients in another partition. To
deal with this, three replica allocation techniques, namely SAF,
DAFN and DCG are proposed in [6]. In SAF, each client stores
replicas of the data objects it most frequently access. While this
incurs low replication overhead, multiple clients may cache du-
plicate objects, resulting in a waste in cache space. DAFN tries
to solve this problem by requiring mobile clients to check with
its neighbours before storing a replica. Although this eliminates
duplication between neighbours, duplication can still existing
between nodes that are more than one hop apart. Lastly, the
DCG method groups mobile clients into highly stable groups,
and performs replication based on this group structure. It is

TABLE I
Reference to symbols

Symbol Description
G A mobility group
M The number of clients in G

D The set of data objects available at the server
N The number of objects in D

mi A mobile client with ID=i

di A data object with ID=i

objSize The size of a data object
F Matrix representing the state clients’ caches

fi,j Flag to indicate if mi has cached dj

P Access probability matrix
pi,j Probability of client i accessing object j on any given query
L Single hop connection probability matrix

li,j Probability of mi directly connected to mj

ξi,j A connection between mi and mj

R Multi-hop connection probability matrix
ri,j Probability of mi connected to mj over multiple hops
H Hop count matrix

hi,j Number of hops between mi and mj

πi,j All possible paths between mi and mj

ρi,j The most reliable path between mi and mj

T Set of processed nodes in Dijkstra’s algorithm
cmiss Cost of a cache miss
chop Cost of transmitting an object over a single hop
ci,j,k Cost for mi to access dj from a peer mk

Costi Average access cost for mi

Si Cache size of client mi

V All possible hoard arrangements
τ Combined connection probability from all clients to mi

unclear how the stable/bi-connected groups are formed. Fur-
thermore, all three methods in [6] only consider the access fre-
quency when allocating replicas. The cost of retrieving the
replicas and the connection probability between clients have not
been accounted for in the models.

III. PROBLEM FORMULATION

In this section, the cooperative hoarding problem and our
system model are described. To help the reader follow our dis-
cussion, Table I lists all the symbols used in this section.

We consider a mobility group G that consists of M mobile
clients. A client is denoted mi where i ∈ [1..M ]. Each client is
equipped with a cache capable of storing Si data objects. The
set of data objects available for access from a central server is
denoted D. There are N data objects in total, and a data object
is denoted dj where j ∈ [1..N ]. For simplicity, we assume ob-
jects in D have the same size, objSize. Hoarding takes place
prior to the clients disconnecting from the network and is per-
formed with the help of the central server.

Let Fi = {fi,j |∀dj ∈ D} represent the state of client mi’s
cache where:

fi,j =
{

1 if dj is cached by mi

0 if dj is not found in mi

The access probability of each client is denoted:

P =




p1,1 p1,2 . . . p1..N

p2,1 p2,2 . . . p2,N

...
...

. . .
...

pM,1 pM,2 . . . pM,N
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where pi,j is the probability of client mi accessing objects dj .
The values in P can be obtained by keeping track of the number
of previous accesses over time.

The connection probability matrix, L = {li,k|∀mi,mk ∈
G}, stores the probability of a connection existing between two
clients. li,k denotes the probability that mi and mk are con-
nected over a single hop ξi,k. To obtain L, each client peri-
odically broadcasts a beacon signal containing its ID number.
It also listens for beacons from other clients. By counting the
number of beacons received from each peer over time, a client
can estimate the probability that at any given time it will be
connected to a particular peer.

Apart from single hop connections, connections over multi-
ple hops are also considered. The multi-hop connectivity ma-
trix is defined as R = {ri,k|∀mi,mk ∈ G}, where ri,k denotes
the probability that a connection of one or more hops exists be-
tween client mi and mk. Connection symmetry is assumed,
therefore, ri,k = rk,i. The hop distance between two clients is
represented by H = {hi,k|∀mi,mk ∈ G}, where hi,k is the
expected number of hops between mi and mk.

In order to obtain R and H, it is necessary to traverse through
all possible paths between every pair of clients within the mo-
bility group. While this is possible for mobility groups with
only a few clients, its computation overhead is very high for
larger groups. To deal with this problem, we relax the defini-
tion of R and H, and propose a modified version of Dijkstra’s
shortest path algorithm to obtain their values. The relaxed defi-
nitions are given as follows:

Given two client, mi and mk and the set of possible paths be-
tween them, πi,k, the most reliable path between the two clients
is denoted as ρi,k. The connection probability of ρi,k is equal
to:

Pr(ρi,k) =
∏

∀ξx,y∈ρi,k

(lx,y) (1)

such that,

Pr(ρi,k) = max


 ∏

∀ξx,y∈π

(lx,y)


 ∀π ∈ πi,k (2)

Based on Equations 1 and 2, we redefine ri,k = Pr(ρi,k). So
now R stores the probability of two clients mi and mk being
connected via ρi,k. We also redefine the hop count matrix, H,
so that hi,k is the number of hops in ρi,k.

With R and H redefined, we can use a modified version of
Dijkstra’s algorithm to obtain their values. The original Dijk-
stra’s algorithm [5] was designed to find the shortest paths con-
necting every source-destination pair in a network. It is chosen
for our model because it is simple to implement and has a low
complexity. The modified algorithm is performed as follows.
First, a graph is constructed from L. For example, given:

L =

2
6664

1.0 0.9 0.8 0.1 0.0
0.9 1.0 0.15 0.0 0.0
0.8 0.15 1.0 0.8 0.0
0.1 0.0 0.8 1.0 0.2
0.0 0.0 0.0 0.2 1.0

3
7775

Figure 1 shows the equivalent network graph.
The modified Dijkstra’s algorithm as shown in Algorithm 1

is applied to each node in the graph to obtain R and H. This

1

32

4

5

0.1

0.15

0.80.9 0.8

0.2

Fig. 1. A connection probability graph

algorithm is different to Dijkstra’s algorithm because it does
not maintain the hop count of the shortest path from the source
node. Instead, in each iteration of this algorithm, ri,j and hi,j

are used to maintain the connection probability and hop count
of the most reliable path from the source node mi to each of
the unprocessed nodes (mx /∈ T ). Table II shows the result of
applying the algorithm on node 1.

Algorithm 1 Modified Dijkstra’s Algorithm
Let :

G = {m0, m1, .., mM} denote the set of mobile clients
T denote the set of clients already processed
li,j probability of direct connection between mi to mj

ri,j denotes probability of the most likely path from mi to mj

hi,j denotes number of hops of the most likely path from mi to mj

Repeat for each mi ∈ G :
Let T = {mi}
ri,j =


0 if i = j
li,j otherwise

hi,j =

8<
:

0 if i = j
1 if i �= j and li,j > 0
∞ if i �= j and li,j = 0

Repeat until T = G :
Find mx /∈ T such that ri,x = max(ri,k) ∀k /∈ T
T = T ∪ mx

hi,j =


hi,j if ri,j ≥ ri,x ∗ lx,j ∀j /∈ T
hi,x + 1 otherwise

ri,j = max[ri,j , ri,x ∗ lx,j ] ∀j /∈ T

Given R and H, the cost for each client to access an object
in D can be represented as, C:

C = {ci,j,k|∀mi,mk ∈ G, dj ∈ D} (3)

where ci,j,k is the cost for client mi to access an object dj from
the cache of a peer mk. ci,j,k is calculated as follows:

ci,j,k =

8>>>>><
>>>>>:

cmiss if fk,j = 0

0 if i = k and fk,j = 1

chop × hi,k × ri,k+
cmiss × (1 − ri,k)

if i �= k and fk,j = 1

(4)
where chop represents the cost of transmitting an object over
one hop, and cmiss represent the cost of a cache miss. It is as-
sumed the cost of accessing an object from local cache is negli-
gible and the cost of accessing an object from a peer is propor-
tional to the hop distance to the peer (hi,k) and the connection
probability (ri,k). Based on Equation 4, the mean access cost
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TABLE II
APPLICATION OF ALGORITHM 1 FOR i = 1

Iteration x T Path ri,2 hi,2 Path ri,3 hi,3 Path ri,4 hi,4 Path ri,5 hi,5

Iinitialisation 1 {1} 1-2 0.9 1 1-3 0.8 1 1-4 0.1 1 - 0 ∞
1 2 {1,2} 1-2 0.9 1 1-3 0.8 1 1-4 0.1 1 - 0 ∞
2 3 {1,2,3} 1-2 0.9 1 1-3 0.8 1 1-3-4 0.64 2 - 0 ∞
3 4 {1,2,3,4} 1-2 0.9 1 1-3 0.8 1 1-3-4 0.64 2 1-3-4-5 0.128 3
4 5 {1,2,3,4,5} 1-2 0.9 1 1-3 0.8 1 1-3-4 0.64 2 1-3-4-5 0.128 3

0.9 1 0.8 1 0.64 2 0.128 3

for a client without using cache cooperation is equal to:

Costi =
N∑

j=1

pi,j × ci,j,i (5)

If cache cooperation is used, the mean access cost is:

Costi =
N∑

j=1

pi,j × min(ci,j,k|∀mk ∈ G) (6)

Finally, based on Equation 5 and 6, the goal of the coopera-
tive hoarding algorithm is to find the best hoard arrangement in
order to optimise the following objective function :

min

(
M∑
i=1

(Costi)

)
(7)

subject to :
N∑

j=1

(fi,j) ≤ Si ∀mi ∈ G (8)

where Si is the cache size of client mi.
If cache cooperation is not applied, Equation 7 is minimised

if each client caches the objects it most frequently accesses.
That is, find the set of objects which maximises

∑N
j=0(pi,j) for

i ∈ [1..M ].
For the case where cache cooperation is used, one can at-

tempt to exhaustively search through all possible hoard arrange-
ments. However, let V denote the set of all possible hoard
arrangements, the size of V is equal to:

|V| =
M∑
i=1

(
N

Si

)
(9)

Clearly, even for very small values of N , M and Si, the number
of possible hoard arrangements is extremely large (as an exam-
ple, given N=100, M=5, Si = 10, we have |V | = 1.73× 1013).
As a result, a solution based on exhaustive search is infeasible.

IV. PROPOSED METHODS

This section describes two cooperative hoarding algorithms,
namely GGH (The Greedy Global Hoard method) and CAP
(Cooperative Access Probability-based method), to solve the
cooperative hoarding problem presented in the previous section.

In GGH and CAP, hoarding is performed while clients are
strongly connected to the network. A more powerful node (e.g.
the information server or base station) performs the calculations

in the algorithm and informs the clients on which objects to
hoard. This is especially beneficial if the number of clients in
the mobility group is large as it reduces the computational load
on the clients. Another advantage of performing the hoarding
algorithm with the help of server is that the server can record
which objects have been hoarded by a mobility group. If a new
client wishes to join the group later on, the server can use this
information to help select a suitable hoard arrangements.

A. The Greedy Global Hoard method (GGH)

The GGH method improves the effectiveness of hoarding by
providing each client with the knowledge of what their peers
have already hoarded. The algorithm is outlined below:

1) Calculate the global connection probability τi of each
client mi, where τi is defined as :

τi =
M∑

j=0

(ri,j) (10)

A client ms is chosen as the starting node such that :

τs = max(τi) ∀mi ∈ G (11)

That is, the client with the highest connection probability
with all other nodes in the group is chosen.

2) ms calculates a cost value costs,j for each object in D.
This cost value represents the average penalty paid per
query if dj is not cached by ms and is calculated as:

costs,j = ps,j × cmiss (12)

3) Given {costs,j |∀dj ∈ D}, ms fills its cache with objects
starting from those with the highest costs,j to the lowest
costs,j until its cache is full.

4) ms then constructs an M × N matrix, F = {fi,j |∀i ∈
[1..M ],∀j ∈ [1..N ]} to indicate which objects it has
hoarded, where :

fs,j =
{

1 if dj is cached by ms

0 if dj is not cached by ms

5) F is sent to the next client in a breadth first traversal of the
mobility group based on the network graph constructed
from L (similar to the one shown in Figure 1).

6) When a client (say mi) receives F, it recalculates costi,j
for all objects with the help of F as follows:

costi,j =

8<
:

pi,j × cmiss, if � ∃mk ∈ G where fk,j = 1

pi,j × min
`
ci,j,k|∀mk ∈ G

´
, otherwise

(13)
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7) The objects with the highest costi,j are cached by mi

until its cache is full.
8) Once mi has finished filling its cache, it updates F and

passes it to the next client in the breadth first traversal
order. The process is repeated from step 6 for the newly
selected client. This continues until every client in the
group has filled their caches.

The use of F allows clients to take into account which objects
have already been cached by others in the group. The algorithm
is greedy because each client attempts to maximises the effec-
tiveness of its own hoard by caching objects which gives the
best cost value for itself without considering the access proba-
bility of others. However, because each client takes advantage
of objects already hoarded by its peers, the overall hoard per-
formance of the group is improved.

B. The Cooperative Access Probability-based method (CAP)

Unlike the GGH method, CAP is non-greedy. The idea is
to find the best location to cache each object so that the global
access cost within the group is minimised. The CAP algorithm
is outlined below:

1) First, the average access probability of each object within
D is calculated. The average access probability of an ob-
ject dj is defined as :

gj =
∑M

i=1(pi,j)
M

(14)

We denote the set of objects which have an average access
probability greater than 0, B (i.e. B = {dj |gj > 0}).

2) Let vk,j denote the global access cost if object dj is
cached by a client mk:

vk,j =
M∑
i=1

pi,j × ci,j,k (15)

where ci,j,k is the access cost for client mi to access ob-
ject dj from a peer mk (as defined in Equation 4).

3) For each object dj ∈ B, starting from the one with the
highest gj value, a client mi is identified such that :

vi,j = min (vx,j) ∀mx ∈ G (16)

4) The selected client (mi) represents the best location to
store dj , which minimises the total cost to access dj for
the whole group. A copy of dj is placed in the cache of
mi. If the cache of mi is full, then dj is given to the node
with the next lowest vi,j value as defined in Equation 16.

5) Steps 3 and 4 are repeated for all dj ∈ B in order of
their average access probability until the caches of all the
clients in the mobility group are filled.

6) If the number of objects in B is less than the total client
cache size |S| (where |S| =

∑M
i=1 Si), then after every

object has been cached once, the process starts again from
the most frequently accessed to the least frequently ac-
cessed object. This time however, each object is stored at
the best remaining location.

The CAP algorithms finds the best location to cache each ob-
ject based on its global access probability. Since the function
for selecting the location to hoard each object (i.e. Equation 16)
also accounts for the access cost and connection probability be-
tween the clients in the group, CAP is able to reduce the overall
distance objects need to be transferred when clients fetch ob-
jects from their peers. Furthermore, since no replication takes
place until every object is cached at least once, the CAP method
is likely to store more unique objects than the GGH method.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed meth-
ods, extensive testing has been performed. The following
schemes are tested in our simulation:

• noCoop - Clients hoard random objects and do not share
their caches during disconnected operations.

• Coop - Clients hoard random objects, but cache coopera-
tion is used once disconnected.

• Dynamic Access Frequency and Neighbourhood
(DAFN)[6] - each client hoards the most frequently
accessed objects while taking into account what its direct
neighbours have cached.

• The proposed methods - GGH and CAP
The simulation model consists of N mobile clients travelling

in a mobility group. At the start of the simulation, the group is
connected to a central server. Clients perform hoarding accord-
ing to the algorithm being tested. Once hoarding is completed,
the group is disconnected from the server. During disconnected
operations, a client mi has a probability of li,j of being directly
connected to another client mj . The value of li,j is uniformly
distributed between 0 and a parameter Pconnect. Pconnect repre-
sents the level of connectivity in the group. AODV [17] is used
as the routing protocol for communication between clients.
Each simulation run is composed of 1000 queries randomly
distributed among the clients. Queries are generated based on
the Zipf distribution [2] distributed among data objects on the
server. A random offset is applied to the Zipf distribution for
each client to model variation in their access patterns. The sim-
ulation parameters and their default values are listed in Table
III.

TABLE III
Simulation Parameters

Parameter Value Range
Number of simulation runs per data
point

30

Simulation duration 1000 queries
Number of clients (M ) 10 1 - 30
Client Cache size (Si) 50 objects 10 - 100
Number of objects (N ) 1000
Cost of transmitting an object over a
single hop

1

Cost of a cache miss 100
Pconnect 0.7 0.05 - 1.0
Zipf parameter(α) 0.7 0.4 - 1.6

The schemes tested are compared in terms of the average
cache hit ratio and the average time of operation before the
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Fig. 2. Cache Hit Ratio vs. Number of clients

occurrence of the first cache miss. These two metrics are im-
portant because the goal of hoarding is to reduce the impact of
disconnection on mobile clients’ operations. Therefore a good
hoarding algorithm should achieving high cache hit ratio and
ensure clients can operate for long period before the occurrence
of any cache miss.

A. The effect of the number of clients

The average cache hit ratio is plotted against the number of
clients in Figure 2. When the number of clients in the mobil-
ity group equals 1, DAFN, GGH and CAP have similar perfor-
mance which is much higher compared to Coop and NoCoop.
This is because Coop and NoCoop hoard data objects ran-
domly without considering access probability. As the number
of clients increases, all the simulated approaches, except for
NoCoop achieve increasing cache hit ratio. The reason for this
is that as the number of clients increases, clients are likely to
be connected to more peers, which gives them better chances of
finding the object they need from a peer. This reduces the num-
ber of cache misses experienced by the clients. We found that in
nearly all cases, CAP and GGH perform much better compared
to the other approaches.

Figure 3 shows the average number of queries before cache
miss against the number of clients. As expected, the number of
clients has no effect on the performance of NoCoop because
in this scheme, clients do not cooperate with each other. On
the other hand, as the number of clients increases, the proposed
schemes CAP and GGH are able to extend the time until first
cache miss significantly. While DAFN and Coop also perform
well, their increase is not as great as CAP and GGH.

B. The effect of client cache size

Figure 4 shows the effect of different client cache size on
average cache hit ratio. Client cache size is expressed as a per-
centage of the number of objects on the server in this graph.
As expected, cache hit ratio increases as client cache size in-
creases. The increase is not linear however, because clients’
access patterns are skewed due to the Zipf distribution. The
graph shows that even with simple cache cooperation (Coop),
cache hit ratio can be improved significantly compared to the
case where clients do not cooperate (NoCoop). This is be-
cause in the event of a cache miss, clients are able to contact
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Fig. 4. Cache Hit Ratio vs. Cache Size

their peers to request the needed object when cooperation is ap-
plied. Furthermore, by using hoarding cooperatively, the aver-
age cache hit ratio achieved by the group is improved as hoard
spaced are shared by the clients to maximise the number of ob-
jects hoarded. The proposed methods, GGH and CAP, both
performed better than existing methods. This is especially the
case for CAP where the improvement ranges from 9% to 22%
compared to DAFN.

In Figure 5, the average number of queries before clients ex-
perience their first cache miss is plotted against client cache
size. This is an important performance measure because if a
client can process more queries before the first cache miss oc-
curs, it is likely to be able to operate for longer before a criti-
cal cache miss. It can be seen from the graph that while most
approaches have similar performances, CAP’s performance im-
proves the most as client cache size increases. This is because
in the CAP scheme, duplicate copies of data objects are only
cached when there is at least one copy of every object avail-
able. As a result, it maximises the number of unique objects
hoarded in the limited hoard space. Furthermore, by allowing
clients to contact their peers when a cache miss occurs, the co-
operative methods extend the time clients can operate before
cache misses occur compared to the non-cooperative methods.
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C. The effect of connection probability

Next, the effect of different connection probability on hoard
performance is studied. Higher connection probability repre-
sents scenarios where clients are strongly connected and are
travelling within close proximity of each other. While, low
connection probability may represent cases where connections
are poor due to interference or where clients operate in “doze”
mode frequently to preserve energy.

As can be seen from Figure 6, cache hit ratio is much lower
when connection probability is low. This is because with a low
connection probability, clients are often disconnected from each
other. This results in network partitioning which leads to a drop
in the effectiveness of cooperative caching. While CAP pro-
vides the best performance overall, in the case where connec-
tion probability is very low (less than 0.15 in our experiment),
the performance of CAP drops slightly. This is because the
CAP approach relies heavily on mobile clients helping each
other. When connection probability is low, clients are unable
to assist each other, resulting in a drop in cache hit ratio.

Figure 7 shows the average number of queries before cache
miss against the connection probability. Again, a drop in con-
nection probability lead to earlier cache misses because with
weak connectivity between clients, they are unable to help each
other in the event of local cache misses. In all cases, CAP is
able to provide the best performance.
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D. The effect of access skewness

The graphs in this section illustrate how well the proposed
methods adapt to access patterns with different degree of local-
ity. It is important because depending on the application, the
proposed methods may need to work in scenarios with high ac-
cess skewness or a uniformly spread access pattern. We model
access locality using the Zipf distribution which has an α pa-
rameter which determines the skewness of the distribution. A
high α value (i.e. α = 1.6) means that client queries are con-
centrated on a small number of data objects. On the other hand,
a small α (α < 0.5) means client queries are distributed over a
wide range of objects.

Figure 8 shows the average client cache hit ratio against α.
It can be seen that at lower α values, the cache hit ratio of all
schemes is significantly lower than when α is large. this is be-
cause when α is small, client queries are distributed over many
different objects, making caching less effective. For large α val-
ues, very high cache hit ratio can be achieved as most queries
concentrated on a few objects cached locally by each client.

The average number of queries before cache miss is plot-
ted against α in Figure 9. The graphs shows that because the
proposed methods takes into account access probability when
performing hoarding, an increase in α leads to a better cache
hit ratio, which in turn defers the occurrence of the first cache
miss for clients.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the concept of coopera-
tive hoarding to improve data accessibility for group of mobile
clients travelling together. Two cooperative hoarding schemes,
GGH and CAP, are proposed. In GGH, each client performs
hoarding based on its own access probabilities and the knowl-
edge of which objects have already been hoarded by its peers.
Depending on whether it is more beneficial to cache an object
locally or to access it remotely from a peer, GGH allows each
client to make hoarding decisions which improves its own hoard
performance. CAP is a non-greedy method where clients at-
tempt to perform hoarding as a group by maximising a global
access probability measure. Replicas of objects are only cached
when every object is cached at least once. This maximises the
number of unique objects hoarded within the group, thus im-
proving the groups cache hit ratio.

Extensive simulation has been performed to compare GGH
and CAP to existing schemes. It is found that while both pro-
posed schemes are able to improve cache hit ratio and delay the
occurrence of the first cache miss, CAP performs better than
GGH by also providing lower average access cost.

As part of our future work, we intend to collect real work
traces and test the proposed schemes under a more realistic en-
vironment instead of using workloads generated from mathe-
matical distributions.
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