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Load-Balanced Routing in Ad hoc Networks

Sudharsan Rangarajan*
Email: sudrang@soe.ucsc.edu
*Computer Engineering Department
University of California,Santa Cruz
Santa Cruz,CA 95064.

Abstract— Many multipath routing protocols proposed to date
have used destination sequence numbers to provide multiple
loop-free paths to destinations. We present the first on-demand
multipath routing protocol for ad hoc networks that uses source
sequence numbers to maintain loop-free routes. We propose
a novel load-balancing scheme that incurs very little control
overhead. Extensive simulations illustrate that the proposed
multipath protocol performs better than single-path approaches
and that the proposed load-balancing scheme performs better
than basic round-robin scheduling.

I. INTRODUCTION

Existing approaches to routing can be classified as on-
demand or proactive. Proactive routing protocols maintain
routing entries for all destinations. On-demand routing proto-
cols maintain routing information for only those destinations
for which there is traffic. The focus of this paper is on the
latter type of approach.

There has been considerable work on multipath routing,
with most work focusing on multipaths consisting of multiple
link- or node-disjoint paths [6] [4]. However, it has been
shown [2] that disjoint paths are not more reliable than non-
disjoint paths. To achieve disjoint paths, these protocols rely
on destination-only replies, which incurs more overhead by
forcing the destinations to respond to RREQs. Furthermore,
the protocols proposed to date are based on destination se-
quence numbers or source routes. The limitation with the way
in which destination sequence numbers have been used is that
the resulting protocols may incur loops if local repairs are
allowed and routing state is lost in relays [3]. The limitation
with source routes is that packet headers are much longer and
source routes become stale very quickly as nodes move.

In any on-demand routing scheme, each route request
(RREQ) is uniquely identified by the identifier of the source
and a sequence number assigned by the source, which we call
the source-sequenced label (SSL). Recently, is has been shown
that robust on-demand loop-free routing protocols can be
implemented based solely on SSLs [1], and that such protocols
can perform much better than those based on destination
sequence numbers or source routes. However, the loop-free
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conditions provided in this prior work apply only to single-
path routing. This motivates the need for a multipath loop-
freedom condition based entirely on SSLs. We present the first
on-demand multipath routing algorithm based on SSLs. Sec-
tion II provides an overview of destination-controlled, source-
sequenced labeling (DLSR) [1] proposed by Rangarajan and
Garcia-Luna-Aceves. We then introduce a new loop-freedom
condition for DLSR, and show how the loop-freedom of DLSR
can be extended to obtain multiple loop-free paths.

Section III reviews the labeled source-sequenced distance
label (LSR-D), which was first proposed in [1]. In DLSR,
only the destination can reply to RREQs, and LSR-D builds
on DLSR to allow intermediate nodes to reply to RREQs.
We extend the loop-freedom condition of LSR-D and present
MLSR-D, an on-demand multipath routing algorithm that
allows intermediate nodes to reply to RREQs. Section IV
illustrates the need for the new loop-freedom condition by
means of an example.

There are no prior on-demand routing schemes that monitor
the network state and change the multipaths used accordingly.
Existing protocols are concerned with the network state only
during route establishment [8] or incur excessive control traffic
to cope with changing network conditions [7]. Section V
presents a novel scheme for load-balancing multiple loop-free
paths. We utilize two kinds of information to schedule packets
over different next hops for a destination: path information
and link information. The metric we use is updated at the
rate that is necessary, and without introducing extra control
packets. Section VI presents simulation results indicating that
the multipath routing scheme we propose performs better than
single-path approaches. Table 1 summarized the terminology
and variables used in the rest of this paper.

II. ON-DEMAND MULTIPATH ROUTING WITH
DESTINATION-ONLY REPLIES

A. DLSR

In the Destination-controlled, Source-sequenced Labeling
(DLSR) algorithm, only the destination of a route request
(RREQ) is allowed to reply. DLSR makes every node associate
with every RREQ that it processes a unique tuple (node id,
sequence number) known as the relay-sequenced label (RSL).
For the source of the RREQ, the RSL and SSL are the
same. The RREPs traverse the reverse path to the source
built by the RREQ and cause nodes to switch successors



TABLE I
TERMINOLOGY

ID 4
ID*A
D
SIDg Is the same as ID*DA
CID3

rsl(x)
ssl(x)

The RSL contained in x
The SSL contained in x

A strictly increasing hardware counter that node A possesses
The value of ID 4 when node A last updated its routing table entry for destination D

The last known value of node A’s RSL when it updated its routing table for destination D
sS4 Node A’s successor for destination D

The id in RSL(B, id) from the RREP that A receives from or transmits to a neighbor B

SgL A unique [source, id] tuple associated with every RREQ by its source

RSL A unique [node, id] tuple associated with every RREQ a node processes

SSDL It is a tuple of [SSL, distance]

id(B)4

id(A)5p | The id in RSL(A,id) from the RREP for destination D sent by node B to node A
rtg The set of routes that node A has for destination D.

for the destination. If a node takes part in multiple route
computations at a time for a destination, the aggregate DAG is
not necessarily acyclic. Accordingly, a loop-freedom condition
(SSC) was proposed [1] taking this into account.

Each node A has a hardware clock that is used to derive a
strictly increasing 64 bit source sequence number 1D 4. STD4
is equal to 1D, which is the last known value of 1D 4(t)
when node A updated its routing table entry for D at time t.
If there is no routing state, STD4 is set to 1D 4(t), where ¢
is the time that A initiates or relays a RREQ for D. CID4#
is the last known value of node A’s RSL when it updated its
routing table for destination D. If there is no routing state, it
is set to invalid.

If node A contains a routing table entry for destination D,
it must maintain the successor S4, the start identifier STD7
and CI Dg, which are used to check if a certain neighbor is
a loop-free successor for D. If CID#(t) is invalid at time ¢,
where ¢ is the time that A initiates or relays a RREQ for D, it is
set to STDA(t). id(A)? ; represents the id in the RSL(A,id)
obtained from the RREP for destination D sent by node B
to node A. id(B)% represents the id in RSL(B, id) from the
RREP that A receives from or transmits to a neighbor. rt4 is
used to represent the routes node A has for destination D. The
operators 7sl(x) and ssl(z) are used to represent the RSL and
SSL of x, where x can be a routing table entry, a RREP or a
SSDL (will be explained later).

The following rules are required for the processing of
RREQs and RREPs at node A:

Rule 1: Node A must increment I D 4 every time it relays
or originates a RREQ.

Rule 2: If node A needs a route for destination D, it issues
a RREQ identified by SSL(A,ID,4). The RSL and the SSL
are the same if node A is the node originating the RREQ.

Rule 3: If node A receives a RREQ identified by SSL
(O, idy?) from neighbor C for which A is not the destination,
node A caches the RSL(C,id?) for this SSL. Node A
processes each RREQ only once, and forwards a RREQ to
its neighbors with SSL (O, id;?) and its own RSL(A, IDp).

Rule 4: If node A is the destination of a RREQ received
from neighbor I with SSL(A, id’y?), it sends a RREP carrying
the same SSL of the RREQ, and the RSL(Z, id}“?).

Rule 5: When node A receives a RREP for destination D
identified by SSL (O, id,") and carrying RSL(A,id;?), it
must use xSSC to determine if the reply can be accepted and
relayed. If the RREP can be relayed, node A must find the
pair (B, id;?) it cached for this (O, id;"), and send a RREP
to neighbor B with RSL(B, id“) and SSL(O, id;").

As we have stated, the original loop-freedom condition
based on SSLs [1] was meant for single-path routing. For
convenience, we restate it below.

Source sequence-number condition (SSC): Node A can
accept node B as a successor for destination D at time ¢ if
id(A)pg(t) > SIDA(t), where SID$(t) = ID5 (¢).

We refer the reader to [1] for a proof. To address loop-
freedom over multipaths, we modify SSC as follows, and
introduce conditions for relaying and updating.

Extended source sequence-number condition (xSSC): Node
A can accept node B as a successor for destination D at time
t if one of the following conditions hold:

Condition 1 : id(A)p 5 (t) > SID#(t), where SIDA(t) =
IDA(t).

Condition 2 : id(A)pg(t) = CIDA(t) < SIDA(t) .
SID#(t) is not updated to 1D 4(t).

Source sequence-number relay condition (xSRC): If condi-
tion 1 of xSSC is satisfied, node A must relay a RREP received
from neighbor B to neighbor C' and invoke the CID update
rule (stated below). If condition 2 of xSSC is satisfied, the node
A can relay the RREP. It is not necessary to do so though.

CID update rule:. If node A accepts node B as a successor
for destination D at time ¢, then node A must set C1D4(t)
to id(A) 35 (t).

The following two lemmas are taken from [1] and stated
without proof.

Lemma 1: SID$(t1) < SID#(t2), where t; < to.

Lemma 2: There exists a causal relation ~» between the
event of reporting the value of id(B)% at time ¢ to neighbor
B and the event that node A uses a value of id(A)g to update
its routing table at time ¢~, where ¢ = ¢~ +¢€ and € is the time
to update the route table.

We establish the following two lemmas when nodes follow
rules 1 to 5, and use xSSC to change successors.

Lemma 3: CIDS(tl) < SID]‘%(tQ) when t1 < t2.



Proof: Consider the case where t1 = t2 = ¢. Say that
node A receives a reply for destination D from node B at
time t~. If the RREP satisfies condition 1 of xSSC, then, by
lemma 2, id(A)p5z(t~) > SIDA(t™). By the CID update
rule, CID#A(t) = id(A)$5(t7). Note that id(A)p5(t~) <
SID#A(t). We therefore have CIDA(t) < SID#(t). If the
RREP satisfies condition 2 of xSSC, then it must be true that
id(A)4 5(t~) was processed before, and hence there exists a
time t1 < t at which SSC was satisfied, i.e., CIDf%(tl) =
id(A)p5(t~) < SIDA(t). The acceptance of this RREP
implies no change in the values of CID4 and SID4 since
t1 and hence CID#(t) < SIDA(t).

Let t1 < t2. We know that CIDA(t1) < SIDZ(t1) .
By Lemma 1, SID#(t1) < SID#A(¢2) and hence we have
CIDA(t1) < SIDA(t2). [ ]

Lemma 4: CID%(t1) < CIDA(t2) if t1 < t2.

Proof: If node A does not relay a RREP for D
after relaying a RREP for D at time ¢1 until time ¢2,
then by the CID update rule CID#(t1) = CIDH(t2).
If a RREP for D at some time t2 satisfies condition 1
of xSSC, by lemma 2 there exists a neighbor B such
that id(A)$5(t27) > SIDA(t27). Hence, by the CID
update rule, we have CIDA(t27) <= SIDp(#27) <
id(A)y5(t27) = CIDA(t2) , ie, CIDJ(127) <=
CID#(t2). Note that this is true even on reboots. [ |

Theorem 1: If nodes use xSSC to change successors, no
routing table loops can form.

Proof: Assume that a loop Lp(G) is formed at time ¢
and the directed successor graph for destination D, which we
denote by Sp(G), was loop-free at every prior instant. A loop
can be formed only if at least one node changes its successor
at time ¢ to its ancestor in Sp(G). When all the nodes follow
xSSC, we show by contradiction that a loop cannot be formed.

Let the loop be formed when node ¢ processes an input
event at time ¢ and makes node a its new successor s (),
where b = s%)(t,) # a and t, < t. Clearly P,p(t) must
include P,;(t). Let P,;(t) consist of the nodes {a= s[l,new],
s[2,new], ..., s[k,new],...,i}.

The notation s[k, new] indicates the k*" hop in the path
P,;(t) at time ¢, and s[k+1,new] its successor at time t.
The last time that node s[k,new] updates its routing ta-
ble entry up to time ¢ and sets sgk’"ew]zs[k + 1, new)| is
denoted by f(kt1,new)> Where typi1 new; < t. Therefore

‘gk’mw] (tsfbt1,new])= si)[k’"ew] (t). Because nodes joining
P,p do not switch to any new successors subsequently,
CIDi)[kmew](ts[k+1,new]) = CIDz)[kvnew](t) Let ts[k’-l—l,old]
denote the time at which node s[k,new] sent a reply that
constitutes the last reply from such a node that is processed
by node s[k-1, new] up to time ¢. We denote the successor
of node s[k, new] at time %;x41,01q) by s[k+1, old]. Note
thatt gx41,01d) < tsk+1,new] < t, and that s[k + 1, 0ld] is not
necessarily s[k + 1, new].

If node A accepts a reply from node B for destination D
at time t, then id(A)7% 5(t) > CID#(t). If the reply satisfies
condition 1, this is evident from lemma 3. If the reply satisfies
condition 2, then id(A)# 5(t) = CID#A(t). Also note that if

a reply satisfies condition 1, then by the CID update rule we
have id(A)4(t7) = CIDA(t). If it satisfies condition 2, this
is obviously true.

For a loop to be formed after time ¢, P,p(t) must exist. We
now derive the following inequality along the path P,;CFP,p
at time ¢, when nodes use xSSC to switch successors.

CIDp(t) < id(i)pa(t) = id(@)D (tsf2,01a) ~
CID%(ts_[Zold]) <id(a aD(ts_p,old]) = CIDD(ts[2,0141)
< CIDGD(ts[Q,new]) < id(a)%s[&new](t)

= id(a)glnew](ts[zs,ozd]) eIt CIng’new](ts_[k,ozd])

. slk,new —
< id(s[k, new)) 3 (t g o)

== CIng,new] (ts[k+1,old]) S CID‘;:)[k’new] (ts[k+1,neu7])

. slk,new
< zd(s[k,new])D[s[k-H}new](t)

= id(s[k, new]) 1" gy 1 o1a) v e~
CIDp(ty) < id(i)p(ty ) = CIDp(ts) < CIDp (1)

This leads us to the conclusion that CI D%, (t) < CID%(t).
If by the chain of inequalities we have CI1D% (t) = CID (),
then CIDJ "}t pi101a) = CIDE™" (ki1 mew)) =
C’ID;[kH’”ew] (tsikt2,01q)) for every node s[k,new] in the
loop. This implies that every node’s routing entries are from
the same RREQ. Because the RREQ establishes a DAG and
there exists a loop, it must be true that C1D% () < CID%(¢),
which is erroneous. Hence, no loops can be formed when
xSSC is applied. |

B. Multipath DLSR

1) Sufficient condition for loop-freedom: We add another
constraint to xSSC to obtain loop-freedom when nodes main-
tain multiple paths to a destination.

Same RSL condition (SRL): id(A)% (t) is the same for all
successors B that node A maintains for destination D at time
t.

Source Sequence-number condition (MxSSC): Node A must
satisfy SRL at every instant of time and can accept node B
as a successor for destination D at time ¢ if xSSC is satisfied.

Theorem 2: If a node uses MxSSC to choose successors no
loops can be formed

Proof: The proof is similar to the proof for xSSC and
hence is not presented here. We note that, because SRL must
be satisfied at every instant of time, all the paths are equivalent
and hence we can reason in terms of a single C'ID and SID
for every destination that a node has paths for. Observe that
setting C'ID to SID at every instant of time ¢ gives the proof
for SSC. |



2) An Algorithm for On-demand Multipath Routing: We
propose an algorithm that obtains a set of shortest paths for a
destination placing no restrictions on the nature of the paths.
Mosko and Garcia-Luna-Aceves [2] showed that having a
mesh structure (non-disjoint paths) improves path reliability
and we do the same.

Route Establishment : We say that node A is active for
destination D if it is currently taking part in a computation
to find a route for D. If Node A has packets for destination
D and it does not have a valid route for it, it initiates a route
request with SSL(A,id) and buffers data packets. If node A is
not currently active for destination D, it becomes active and
relays the RREQ. Node A, which is active for destination D
and initiated a RREQ for D, will perform a expanding ring
search and maintains a RREQ timer set to 2.ttl.latency, where
ttl is the time-to-live of the RREQ packet and latency is an
estimate of the per-hop latency of the network.

To get shortest paths, destination D can do one two things. It
can queue RREQs identified by a certain SSL for a predefined
period of time and reply to the RREQs that carry the shortest
hopcounts. Alternatively, it can reply to a RREQ identified a
certain SSL if the hopcounts associated with the RREQ are
monotonically decreasing. Intermediate nodes must relay an
RREP if it satisfies condition 2 of xSSC. We follow the second
approach for our simulations.

Route Maintenance: We use MAC-layer acknowledgments
to maintain paths. The precursor list of a node A for destina-
tion D is defined as the set of nodes that use node A to reach
D. On transmission of a data packet, if the intended recipient
does not acknowledge after a certain number of retries, a node
may assume that a link failure has occurred.

Node A performs two steps after detecting a link failure to
node B: (a) It removes node B from the precursors list of all
the routing entries it maintains; and (b) if it does not have any
valid routes for destination D other than via B, node A sends
a route error(RERR) for D to the precursors for destination
D.

After receiving a RERR for D, node A sends a RERR to
its precursors for D if it does not have any valid routes.

III. ON-DEMAND MULTIPATH ROUTING WITH
INTERMEDIATE NODE REPLIES

A. LSR-D

LSR-D allows RREQ’s to be answered by intermediate
nodes and can hence substantially reduce the control overhead
as compared to DLSR. This is done by combining SSL
with distances to the destination to create Source-sequenced
distance labels (SSDL). SSDL’s create a relative ordering of
nodes involved in the computation for a particular RREQ SSL.
We use ssdl(rt5) to represent the SSDL of 7¢4.

An SSDL is a tuple [SSL,distance]. The components of
an SSDL are referred to by d(SSDL) and SSL(SSDL).
We define the freshness operator (>-) between two SSDL’s as:

SSDL(srcl,idl),dl] = SSDL[(src2,id2),d2] if

(srcl = sre2 Nidl > id2)V

(srel = sre2 Aidl = id2 A dl > d2)

We restate the source sequenced distance labeling condition
(SSDLC) from [1] here: Let SSDLg p be the SSDL reported
to node A for destination D by node B. SSDL4% denotes
the SSDL node A has for destination D. Node A can switch
to node B for destination D at time ¢, if SSDL{5(t) >
SSDLA(t)

It should be noted that the only time the SSDL can be
changed is when a destination reset occurs. If there exists no
valid SSDL, then a destination reset has to be done.

B. Multipath LSR-D

We present a condition similar to what Marina and Das [4]
proposed for destination sequence numbers, to obtain multiple
loop-free paths for a destination.

MSSDLC: : Node A maintains a single SSDL for all
routes it has to destination D. On a RREP originated from the
destination, Node B is a potential successor for destination D
if xSSC is satisfied. If node A is the destination of the RREP
then

e If node A has a label for D and is the source of the

label,the label is not changed.

o Otherwise, SS DL% is

[ssl(ssdl(rt4)), hopcount prEP].
On the other hand, if node A is not the destination of the
RREP then

o If =3rtf s.t ssl(ssdl(rt}))>ssl(RREP), node A ac-
cepts node B as a successor.

o If Irt4 s.t ssi(ssdl(rtd))=ssl(RREP), node A accepts
node B as a successor if d(ssdl(rt$))>hopcountrrgp.

updated to

- If d(ssdl(rt})) > hopcountrrpp, then node
A must delete all route entries such that
d(ssdl(rt3)) > hopcountrrrp. Node A must relay
the RREP and set d(SSDL%) to hopcount prep-

— If d(ssdl(rt3)) = hopcount rrgp, node A does not
need to relay the RREP

On receiving a RREP not originated from the destination,
Node A can accept node B as a next hop for destination D
if SSDLC is satisfied.

Lemma 5: If nodes use MSSDLC to choose successors and
hence change labels, SSDL(t1) = SSDL(t2) if t1 < t2.

Proof: Assume that node A was engaged in two com-
putations for a destination from the same source at some
time. Let the SSLs associated with them be SSL(X, zidl)
and SSL(X, zid2). The RSLs associated with them have the
ids id1 and id2, where idl < id2. When node A accepts a
reply, i.e., must satisfy SSC, it sets SID5 > max(idl,id2).
Node A will change its SSDL only once per RSL, i.e., the
first time. Hence SID#(t1) <= SID#(t2). This is true even
after reboots as a result of 1. |

Theorem 3: If nodes use MSSDLC to change successors,
no routing table loops can form.

Proof: The proof of LSR-D applies here. By MSSDLC
we know that if node A has node B as a successor then
SSDL4 ~ SSDLB. We only need to prove that the label a
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node possesses for a destination increases monotonically when
we use XxSSC. We proved this in Lemma 5 |

1) Shortest Paths Multipath Routing: We now propose a
multipath routing protocol that uses MSSDLC to establish
paths.

Route Establishment : Each RREQ carries the freshest of
the SSDL’s stored at the nodes along the path traversed by
the RREQ, which is denoted by FSSDL. We define an in-
order operator (M) between two SSDLs, SSDL1 and SSDL2,
as follows:

if (SSDL2 = SSDL1)
SSDL2
else null

N(SSDL1,SSDL2) =

To get shortest paths, destination D can follow the same
approach as in MDLSR. Node B can accept node C as a
successor for destination D if it satisfies MSSLDC.

IV. EXAMPLES

We illustrate the need for xSSC with examples. Consider
Fig. 1. Assume that all sequence numbers are initially equal
to 1. Node A initiates a RREQ for destination D and the desti-
nation replies to all RREQs it receives (the intermediate nodes
will however discard duplicate RREQs). Assume that node A
receives the RREP via node B first. By SSC, node A sets its
accept sequence for destination D to the current value of 1D 4
and that is greater than the value of the id in the RSL that node
A has for D. SSC maintains a window of computations, but
once a reply is obtained for the window no more replies are
accepted from that window. Clearly, simply using SSC can
accept only a single RREP per sequence number. One way to
obtain multiple paths would be to delay relaying RREPs (and
hence not move the window immediately). With no constraints
on the path selection, all intermediate nodes have to delay
relaying RREPs, which would cause considerable delay in
obtaining routes.

Consider the example in Fig. 2. Node A initiates a RREQ
for destination D with SSL(A,18). Say the RREQ is queued
at node B and node C' did not receive the RREQ at all. Node
A will timeout and initiate another RREQ with SSL(A,19).
Say the RREQ with SSL(A,19) arrives before the RREQ

SEOL ;A ) infindy

SEOL - (a18)2
SE0L: (A 18,1

[u]
*S5C does not corse loops

Fig. 2. xSSC

with SSL(A,18) at node X. Node X will then assign the
RSLs(X,18) and (X,19) to the RREQs respectively. If node X
accepted the RREP with SSL(A,18), the only RREPs it can
accept are those with SSL(A,18) or whose SSL id is greater
than 19. In essence, if a node follows xSSC, it either follows
SSC or can choose successors from the computation it last
accepted.

V. LOAD BALANCING

We introduce a framework for the exchange of two kinds
of information between nodes to attain load balancing. Path
information is used to characterize the capability of nodes on
the path to a destination, and link information characterizes
the capability of the next hop. We first discuss how path and
link capability are measured. We then present a mechanism
to disseminate at a small cost, the information at the proper
rate (we define this term below). This section assumes that
MLSR-D is the underlying routing protocol.

A. Metric

We utilize the notion of instantaneous free-buffer space to
characterize the capabilities of nodes and hence paths. The
choice of this metric is based on the observation that the lesser
the free space, the higher the service time and more likely the
packet drops.

We assume that all nodes have the same buffer size F'. Let
N‘S:{nl,ng,...,nk} be the set of next hops node A has for
destination D. At time ¢, Let S;} (t) and Sp, (t) be values
stored at node A that represent the capability of node n; and
the path capability via node nq to destination D respectively.

V4 represents the value reported by node A of its own
capability. VP represents the value reported by node A that
characterizes the capability of the path to destination D. Let
F(t) be the instantaneous free buffer space at time ¢. Node A
computes Vi (t) = Fa(t )/F and VP(t) = min(Va(t), N(t)),

S n
where N(t) = ”ET;A‘D . Note that V4 and V{ take
values between 0 and 1. V7 and hence S4 , always takes the

value 1.



B. MAC Layer Acknowledgments

We investigated the use of Hellos to carry metrics that
can be utilized for load balancing. We chose to piggyback
information on MAC layer acknowledgments. Notice that at
node b, both V;P(t) and Vj(t) can be represented using 1
byte each. We also use a two byte sequence number field to
uniquely identify the destination. This information is present in
the original MAC frame and is just copied onto the acknowl-
edgment. The overhead is small and the rate of information
flow is as necessary.

C. Scheduling

Each node attempts to schedule a group of k packets (a
predefined constant). For node A, let PP (t) denote the
goodness of utilizing node nl to reach destination D and let
PP, (t). Let NY, (t) denote the number of packets (out of
k) scheduled for destination D via n;. We then have:

(1= B) * S, (t) + B * Sp, (t)

D —

N2, (t) = P, () x k

where [ is the inverse of the hop count to D.

When the hop count is 1, node capability of the next hop
(or destination) is completely ignored. The idea is to penalize
other flows via the destination. It is important that we weight
the information because path information takes a longer time
to propagate than link information. A good weighting function
will make unnecessary the need to deal with congestion. The
current weighting function is bad because it penalizes all path
information equally.

D. Dealing with Congestion

Nodes can utilize the value of link information to agree on
a notion of congestion. When node A perceives all its next
hops to D being congested, it tends to delay packets to D to
relieve spots of congestion and performs a local repair. This
local repair can only be answered by nodes having sufficient
free buffer space(50%). Inability to clear congestion will result
in the queuing of packets getting noticed by predecessors of
A for D and if necessary they can perform the same set
of actions. Path information will be utilized to send lesser
packets over this path. If necessary, the source can perform a
route discovery process, although we did not check out this
possibility. We delay packets exponentially as j * 2™, where j
is a predefined constant and m starts with 0 and is incremented
by 1 for every schedule of packets sent.

VI. PERFORMANCE COMPARISON

We present results over varying loads and mobility for
AODV [5], DLSR, MDLSR, LSR-D and MLSR-D. Simu-
lations were carried out in Qualnet 3.5.2 [9]. The network
consists of 50 nodes and the terrain has dimensions of 1500m x
300m. Traffic is generated by CBR sources with a data packet
size of 512 bytes. The number of flows at any instant of time
in the network is either 10 or 30, with each flow generating 4
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packets per second. We used 802.11 as the MAC layer with
a transmission range of 275m and throughput 2 Mbps. Each
simulation was run for 900 seconds for a total of 9 seeds. We
present results for MLSR-D using round-robin (MLSR-D-RR)
only for the 30 flows case. The AODV protocol can perform
local repair if necessary.

We used four metrics as the basis for comparison. Delivery
ratio is defined as the ratio of packets delivered to the packets
to be delivered. Latency is the end to end delay measured for
data packets that reach the destination. Network Load is the
ratio of control packets to data packets delivered. Data hops is
the ratio of the total number of data transmissions made to the
number of data packets received. The last three metrics are to
be minimized while we expect to maximize the first metric.

With multipath routing, the number of destination replies
and local replies (in the case of MLSR-D) can be large. This
could lead to excessive control traffic and hence have adverse
effects on the E2E delay. We believe that broadcasting RREPs
is a good solution and do so for simulation purposes.

Table II summarizes the results for different metrics by
averaging across all pause times. The columns show the mean
value and the 95 confidence interval. The packet delivery,
control overhead, E2E delay and Data Hops for the 30 flows
scenario is shown in 3, 4, and 5. The vertical bars represent
the confidence intervals.

Under very light loads, all the protocols perform similarly.
This is because the network is not saturated with enough traffic



TABLE 11
PERFORMANCE AVERAGE OVER ALL PAUSE TIMES FOR 50 NODES NETWORK FOR 10-FLOWS AND 30-FLOWS

Protocol Flows | Delivery Ratio | Latency (sec) | Net Load Data Hops

AODV 10 0.966+0.013 0.068+0.024 | 0.474+£0.167 | 2.767+£0.107
DLSR 10 0.961+0.016 0.078+0.027 | 0.556£0.187 | 2.784+0.111
MDLSR 10 0.951£0.017 0.110£0.036 | 0.599+£0.173 | 2.839+£0.114
LSR-D 10 0.971£0.010 0.056+0.013 | 0.275£0.073 | 2.682+£0.097
MLSR-D 10 0.966+0.012 0.08040.052 | 0.256£0.069 | 2.749+£0.115
AODV 30 0.63.940.083 1.8124+0.618 | 5.786%1.797 | 3.550£0.319
DLSR 30 0.637£0.037 2.279+0.373 | 7.357+0.970 | 3.778+0.211
MDLSR 30 0.748+0.032 1.231+0.265 | 4.100£0.636 | 3.315+0.148
LSR-D 30 0.758+0.040 1.118+£0.264 | 3.262+0.600 | 3.282+0.178
MLSR-D-RR 30 0.791+£0.031 1.102£0.259 | 2.339+0.387 | 3.2161+0.148
MLSR-D 30 0.823+0.028 1.071£0.308 | 1.814+0.329 | 3.077+0.127
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for the control traffic introduced by the single path routing
protocols to cause substantial performance degradation.

As the number of flows increase, we see that the variations
of LSR-D have significantly better performance than the
variations of DLSR. With the constraint of destination-only
replies, DLSR introduces substantial control traffic. Notice
that MDLSR convincingly outperforms DLSR. When more
routes are obtained in a RREQ computation, the necessity to
flood RREQs becomes lesser. Introducing control traffic in a
network on a contention based MAC protocol has significant
effects. They compete with data packets, causing them to be
queued increasing E2E delay and broadcast packets can collide
with unicast transmissions causing loss of packets.

MLSR-D has the best performance of the set of protocols
proposed. It has excellent packet delivery ratio and as a
consequence, the lowest control overhead. However, there is
no significant improvement in the end-to-end delay. However,
the delays in the case of LSR-D and MLSR-D are of different
nature. LSR-D needs to frequently recompute paths. MLSR-
D queues packets in the case of congestion. MLSR-D-RR
performs better than LSR-D as expected. However, it does
not take into account the node characteristics while scheduling
packets and hence does not perform as well as MLSR-D.

VII. CONCLUSION

We have shown how loop-freedom conditions previously
introduced for single-path routing using source sequence num-
bers [1] can be extended to provide multiple loop-free paths.
We proposed a load-balancing scheme that utilizes path and
link information and a novel approach to disseminate such
information with minimal control overhead. The results of
simulation experiments illustrate that the proposed multipath
approach outperforms single-path schemes.
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