
 1

Interplay of Security and Reliability using Non-uniform Checkpoints

Kiranmai Bellam†, Raghava K. Vudata‡, Xiao Qin†*, Ziliang Zong†, Xiaojun Ruan†, Mais Nijim§

Department of Computer Science and Software Engineering
Auburn University, Auburn, AL 36849†

{kbellam, xqin, zzong, xruan}@ eng.auburn.edu
Department of Computer Science

New Mexico Institute of Mining and Technology, Socorro, NM 87801‡
Department of Computer Science

University of Southern Mississippi, Hattiesburg, MS 39406§

* Corresponding author. http://www.eng.auburn.edu/~xqin

Abstract

Real time applications such as military aircraft flight
control systems and online banking are critical with
respect to security and reliability. In this paper we
presented a way to integrate both by considering
confidentiality and integrity services for security and non-
uniform checkpoint strategy for reliability. The slack
exploitation interacts in subtle ways for security in
regards to the placement of checkpoint. The checkpoints
are placed in to the task at low frequency in the beginning
because the slack available can accommodate a large
amount of work at risk and the frequency is increased
there after considering the slack available. The security is
applied to the data in two ways. First method introduces
the security for the entire data at once whereas in the
second method the data is divided into n uneven sections
and each section is separately secured .That is at the start
of the task basic security services are considered
depending on the slack available. The security is
increased gradually for the rest of the task but if there
exist a fault, then at that point the security is maintained
at the steady rate because of the limited slack. Compared
to the first method the second method can provide up to a
32.3 percent higher security. While compared to the
traditional checkpoint strategy, the non-uniform
checkpointing makes more efficient use of slack while
increasing the overall security levels by 34.4 percent for
the second method.

1. Introduction

True in the realm of computers, the need for developing
systems with fault tolerance and security is ever

increasing. The systems have to be developed such that
they can operate successfully and securely even with any
fault occurrence in the execution. It is to be noted here
that the task has to be completed within the given
deadline. In any system when a fault occurs, it has to be
detected and recovered before the time limit. The Slack
that exists in the schedule of a task is utilized for the
purpose of implanting the security and reliability.
Achieving fault tolerance and security at the same time
demands efficient exploitation of the total slack available
in the system. This paper presents the study on the same
issue showing how this slack can be exploited in
developing a secured and reliable real-time system. We
implement Checkpoint placement strategy to recover real
time systems from the failures during the task’s execution.
These checkpoints can be inserted in a uniform or Non-
uniform pattern. We already proved that the security can
be increased by 385% while achieving the tasks reliability
using uniform checkpoint strategy [2].

To further increase the security, in this paper, we adopt
the non- uniform checkpoint strategy to develop a highly
efficient fault tolerant and secure system. Here, the
security can be achieved in two ways, either by providing
the security over head for the entire task at once or by
providing the security overhead after each checkpoint.
The later method provides a higher security by up to a
32.3 percent than the former method and 34.4 percent
than the uniform checkpointing. Either ways the strategies
proposed here ensure more security than the ones
achieved by the uniform checkpoint strategy. In our study,
for simplification, we assume that only one fault can occur
during the execution of any task. Once the fault is
detected, we can eliminate further placement of
checkpoints. This process aids us in saving the slack for

This paper appeared in the Proceedings of the 16th IEEE International Conference on
Computer Communications and Networks (ICCCN), Honolulu, Hawaii, Aug. 2007.

 2

the implementation of security. It is to be noted that in our
study, we assume all deadlines for the tasks are soft and
hence our algorithm is applicable for Soft-real time
systems. The results we obtained are compared to the
results from the uniform checkpoint approach. It is
observed that our method could improve the fault-
tolerance and security up to 34.4 percent.
 The rest of the paper is organized as follows. Section 2
describes the related work and section 3 details the real
time application followed by a fault tolerant model.
Section 4 briefs the security methods that are used in this
work. Section 5 gives a detailed explanation of how
security and reliability can be integrated when non
uniform checkpoint placement strategy is used. It also
explains the two methods that are used for security over
heads. Section 6 gives the performance evaluation
followed by a summary in Section 7.

2. Related Work

 An extensive research has been carried out in
developing Fault tolerant real time systems. For the real
time systems where storage was not a primary concern,
conventional approaches with low over head like timeline
or back up approaches are used in developing the system
to be fault-tolerant [5].The transient faults were recovered
by the re-execution of the tasks [4][7].
 To design a fault tolerant distributed shared memory
systems Sultan et al. developed an algorithm with very
efficient checkpoint strategy and log Management [6].
Researchers have also worked on implementing a variety
of fault tolerant activities involving both static and
dynamic Scheduling. These activities assured the tasks
with in the time limit and minimized the number of
reliability activities [8]. On the other hand, same amount
of research has been done concentrating on the security of
the systems. Song et al. developed a security driven
scheduling algorithms for Grids [1]. In our previous
Study, We designed and implemented Security aware
scheduling algorithms to protect against diversity of
threats and attacks in a clustering environment [8].
Bertram et al. developed a set of algorithms for security
constrained optimal power flow (SCOPF) and their
configuration in an integrated package for real-time
security enhancements [9].
 The literature proves that very limited or no research
has been done in integrating the fault tolerance and
security in real-time systems .Myers et al proposed a
method of building a trustworthy distributed system by the
process of Construction. [10]
 In our previous research, we have proposed an
approach to integrate the fault tolerance and security in
real-time systems by implanting uniform checkpoint

placement [2]. We are extending the work further here to
increase the levels of security and reliability.
 The main contributions of this paper are 1.An approach
to integrate the security and reliability using non uniform
checkpoints is proposed. 2. Security implementation has
been derived in two different methods. 3. A way to
combine the confidentiality and integrity over heads has
been proposed in method 2.

3. Non-Uniform Distribution of Checkpoints
for Fault Recovery

The basic idea behind our approach is to recover soft

real-time systems from transient failures by inserting
checkpoints. It should be noted that checkpoint insertions
can be accomplished in a uniform or non-uniform manner.
We already presented the work for uniform checkpoint
placement strategy [2]. In this work we are considering
the non uniform checkpoint placement strategy to further
increase the security and reliability of the task.

3.1 Real-time applications

 A real-time application in this study is envisioned as a
set of tasks, which have to be completed before their
specified deadlines to accomplish an overall mission. We
assume a real-time task t has a deadline D derived from
hard real-time constraints. It is assumed that task t takes C
number of CPU cycles for its worst-case execution. Cycle
consumption of memory references vary with processor
speed. Hence C is considered as the independent of the
processor speed. Abundant research has been done to
prove the degree of pessimism in the definition of C [3].

The time remaining to reach deadline D after
considering the worst-case execution time C of the real-
time task is the slack time denoted as Sl. This slack time Sl
can be used to recover from transient faults in a real-time
system.

3.2 Non-uniform checkpoints

Checkpoints are inserted in a real-time task to

efficiently recover a task from any transient failure
occurred during the execution. If there is a failure in the
execution of the task then the failure is detected before the
next checkpoint is placed. Hence it makes easy to re-
execute the task from the previous checkpoint, where the
failure occurred. Transient failures during the course of
the task’s execution can be readily detected by applying
any of the already existing fault-detection techniques.
Without loss of generality, it is assumed that no more than
one transient failure might occur during the execution of
the task. Similar assumptions were imposed in other
studies [3]. The process we describe here (see Fig. 1.)

 3

may not be applicable to a real-time system where a real-
time task must be re-executed entirely when a failure
occurs. This is because available slack Sl may not be
sufficient to accommodate such a re-execution.
Our goal, of course, is to efficiently leverage slack time Sl
to improve quality of security and to provide fault
recovery. The overhead involved with generating
checkpoints is modeled as r. It is assumed that in task t, n
checkpoints are inserted to recover the system from
failures if there exists any.

Therefore, the total time spent in creating all the
checkpoints and to do the corresponding diagnosis is
expressed as n*r, but we did consider that no more than
one fault can occur during the task’s execution so if a fault
is detected, then there after it is not necessary to insert
checkpoints. Hence, the over ahead involved with
checkpoints relies on where the fault occurred. Fig 1(a)
shows the uniform distribution of checkpoint [2].

 (a) (b) (c) (d) (e) (f)

Fig.1 Uniform and Non-uniform distribution of checkpoints with security over head

As the approach we considered here is non-uniform, the
n checkpoints are placed in the task t such that the C
cycles of t are divided into n sections based on the below
formulae

 Cxxxnxnnx =+++−+−+ 12...)2()1(. (1)

)1(

2

+
=

nn

C
x . (2)

After calculating the value of x from (1) checkpoints

are inserted in a way such that

 C1+C2+C3+…+Cn-1+Cn = C,
where C1<C2<C3<…<Cn-1<Cn.

The main idea behind this approach is that at the

beginning of the execution the task hasn’t consumed
much of available slack and therefore, low frequency of
checkpoints is possible because most of the slack is
available to accommodate a large amount of work at risk
[3]. Similar to the overhead of checkpoints the recovery
time also depends on where the fault occurred. That is if
a fault is detected at the first checkpoint then the amount
of rollback required would be nx because the first
checkpoint is placed after nx as shown in fig 1(b). If the
fault is detected at the second checkpoint then the
rollback would be (n-1)x as shown in fig 1(c), similarly
it would follow as (n-2)x and (n-3)x and so on for the
faults that are detected there after as shown in fig 1(d)

and 1(e) respectively. Fig 1(f) shows the distribution of
checkpoints where a fault did not occur.

Hence a task t should satisfy the below equation to
execute before the deadline and to guarantee the fault
tolerance. Assume that a fault might have occurred at
section k where nk ≤≤0 then

o

n

ki
ik

k

i
i SCCCrD ++++≥ ∑∑

+== 11

)(, (3)

where∑
=

=+++−+=
n

i
i CxxxnnxC

1

12...)1(.

Here the term ∑
=

+
k

i
iCr

1

)(represents the execution of

a task up to a failure at a section k. The term

kC represents the roll back time and the term

∑
+=

n

ki
iC

1

represents the execution of the remainder of the

task with no checkpoints because we considered that a
fault can occur not more than once. Hence further
insertion of checkpoints at this point is not required. And
the last term So represents security over head which will
be discussed in detail in the section 4.
 It is intuitive to illustrate that the more the number of
checkpoints made in a real-time task the more the task is
fault tolerant. However, it is imperative to carefully
choose the number of checkpoints, because there is a

C
 C+nr

c/n
n
so

c1

c2

c3

c1

c2

c3

c4

c1

c2

c3

c4

c1

c2

c3

c4

c1

c2

c3

c4

Recovery

Checkpoint

Security
Overhead

Separation
line

 4

chance that the overhead might exceed slack time Sl,
which makes it infeasible to finish the task before its
deadline. Also, if the value of n is much smaller then the
value of nx will be comparatively bigger, which can be
inferred from (2), and the slack available might not be
sufficient for the rollback if a fault is detected in this
section. Hence the value of n has to be increased. This
can be easily checked by the following inequality,

lSnx < .

 If the above inequality is not true then the value of n
has to be increased by 1 until the inequality is true.

4. Security Implementation

Security has become an important requirement for

modern real-time systems. There are a wide variety of
security mechanisms that can be applied to real-time
applications. However, improving security inevitably
leads to high overheads. Thus it is difficult if not
impossible to implement all security mechanisms
available to a real-time task. As confidentiality and
integrity are the two major security issues that real-time
tasks may encounter, we described the overhead model
for these security services in our approach. It is worth
noting that our approach can readily incorporate other
types of security services like Availability to achieve
higher security. In our previous work we integrated the
confidentiality with reliability using uniform checkpoints
here we are extending the security levels to
confidentiality and integrity with non uniform
checkpoints to further increase the ranking of security
provided to the task [2].

Table 1: Cryptographic algorithms for confidentiality

S.No

Cryptographic
Algorithms

Security

Level)(c
isl

 c
iµ

(KB/ms)
 E1 SEAL 0.08 168.75
 E2 RC4 0.14 96.43
 E3 Blowfish 0.36 37.50
 E4 Knufu/Khafre 0.40 33.75
 E5 RC5 0.46 29.35
 E6 Rijndael 0.64 21.09
 E7 IDEA 1.00 13.5

4.1. Confidentiality model

Confidentiality counters snooping, which is

unauthorized interception. Confidentiality is achieved by
the implementation of cryptographic algorithms. Table 1
depicts the cryptographic algorithms [2][8] that are used
in this research. Sli signifies the security level assigned to
each algorithm in the range from 0.08 to 1. The strongest

encryption algorithm IDEA is assigned the maximum-
security level 1 and its performance is 13.5KB/ms.The
security levels for the other algorithms are normalized
by applying the following equation [2][8].Assume that li
is the amount of data whose confidentiality has to be
guaranteed for task ti.

 c
i

c
isl µ5.13= where 71 ≤≤ i (4)

Pl c

ii =µ/
 (5)

That is P is the amount of overhead involved in
encrypting the data.

4.2 Integrity model

Integrity counters the unauthorized change of

information called alteration. Integrity is achieved by the
implementation of Hash functions. The hash functions
[2][8] that are considered in this work are depicted in
Table 2. Each hash function is assigned a security level
in the range from 0.18 to 1. The strongest and yet
slowest Hash function Tiger is assigned a maximum
security level of 1 and its performance is 4.36 KB/ms.
 The security levels for other Hash functions are
calculated by using the formula

 g
i

g
isl µ36.4= where 71 ≤≤ i (6)

Table 2: Hash Functions for Integrity
S.No Hash Function Security

Level g
isl

g
iµ :KB/ms

 H1 MD4 0.18 23.90
 H2 MD5 0.26 17.09
 H3 RIPEMD 0.36 12.00
 H4 RIPEMD-128 0.45 9.73
 H5 SHA-1 0.63 6.88
 H6 RIPEMD-160 0.77 5.69
 H7 Tiger 1.00 4.36

 Assume that li is the amount of data whose integrity
must be achieved for task ti.

 Ql g
ii =µ . (7)

 The term security over head So is the combination of
the security over heads of the confidentiality and
integrity for the corresponding amount of data.

5. Integrating Reliability and Security with
Non-uniform Distribution of Checkpoints

 The implementation of security along with reliability

 5

in a real time task can be done in two ways. First method
considers the over head involved for the entire data that
has to be secured at once, that is if we are considering
confidentiality then based on the requirement any
algorithm is applied to encrypt the data all at once,
similarly for integrity. That is security over head So= P
or Q. For simplicity, we considered the implementation
of confidentiality and integrity individually for this
method. The security over head that can be utilized for a
particular task t can be calculated using the formulae

∑∑
+==

+++−
=

n

ki
ik

k

i
i

ic
i

CCCrD

l

11

)(
µ . (8)

 Equation (8) is derived from equation (3) and (5) for
the confidentiality over head.

∑∑
+==

+++−
=

n

ki
ik

k

i
i

ig
i

CCCrD

l

11

)(
µ . (9)

 Equation (9) is derived from equation (3) and (7) for
the integrity over head. Any mapping function can be
used to map the values obtained from equation (8) and
(9) to find the corresponding algorithm that provides
maximum security to the task.
 Whereas in the second method, the data is divided in
to n uneven sections, same as the tasks CPU cycles,
using the equation

 lxxxnxnnx =+++−+−+ 12...)2()1(, (10)

where l is the amount of data that has be secured for the
entire task. x in Eq. (10) can be written as

)1(

2

+
=

nn

l
x . (11)

 Once the data is divided in to n sections, the security
is implemented to each and every section separately.
The equation below shows the implementation of
reliability and security for n different sections of data
using non uniform checkpoint strategy.

)()(
11

g
k

c
k

n

ki
ik

k

i
g
i

i
c
i

i
i

lili
CC

ll
CrD

µµµµ
+++++++≥ ∑∑

+==

(12)

For any given task t first the number of checkpoints n

that are required for fault recovery are assumed, then the
CPU cycles C and the amount of data l that has be to
secured is divided in to n sections using the formulae (1)

and (10) and then the task is executed by placing a
checkpoint after each section and also applying the
security mechanisms for each section separately. For the
first section the basic confidentiality and integrity are
provided by choosing the corresponding E1 and H1
algorithms from Tables 1 and 2. For the next section the
security can be increased by one that is, E2 and H2 can
be used for security. Similar way is used to increase the
security for other sections, but suppose if a fault is
occurred at section k then the security mechanisms Ek
and Hk that are used for that particular section will be
used for the rest of the section too, because at this point
a portion of slack has been already utilized for the roll
back so further increasing the security might decrease
the slack even more resulting in an effect which might
leave the task’s execution beyond the deadline, which is
not a feasible solution. Hence the security at this point is
not increased. In equation (12) the term

∑
=

+++
k

i
g
i

i
c
i

i
i

ll
Cr

1

)(
µµ

 represents the execution of task

by placing checkpoints for fault detection and using the
algorithms of confidentiality and integrity for security.
The security algorithms are increased after each section
by one until a fault has been detected at section k. The
term Ck represents the roll back of the section where a

fault occurred. The last term)(
1

g
k

c
k

n

ki
i

lili
C

µµ
++∑

+=

represents the execution of the rest of the task with out
any checkpoints. The security mechanisms that will be
used for the rest of the sections is also going to be same
as the one that has been used for the section k, because
of the limited slack that is available.

Fig. 2. Confidentiality levels for uniform checkpointing and
Non-Uniform checkpointing. Fault occurred at K=1,2,3.

6. Performance Evaluation

 Fig.2 depicts how the confidentiality levels vary when
the checkpoints are placed in Uniform and Non-Uniform
pattern. Here K=1, 2, 3 represents that fault might have
occurred in section 1, 2, 3, respectively in Non-Uniform
checkpoint strategy. Uni is used to represent the uniform

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4 5 6 7 8 9 10
Number of checkpoints

S
ec

u
ri

ty

L
ev

el

Uni
k=1
k=2
k=3

 6

checkpoint strategy. For uniform checkpoints, the
confidentiality level gradually increases with increase in
the number of checkpoints from a minimum, whereas in
the case of Non-Uniform checkpoints, we observe a lot
of variation depending up on where the fault is occurred.
The higher the values of k the higher the security levels
are. However, the average confidentiality level
guaranteed in non-uniform checkpoint strategy is either
higher or equal to the average confidentiality levels in
uniform checkpoint strategy. It is to be noted from the
graph that the Confidentiality levels corresponding to
k=2, n=1 and k=3 and n=1, n=2 are zero because when
we assume only one checkpoint in a task, the possibility
of K=2 is impossible because nk ≤≤0 .

Fig. 3. Uniform Vs Non Uniform Checkpoints for

confidentiality

Fig.3 indicates the improvement of confidentiality
levels achieved by adopting Non-Uniform checkpoint
placements over the Uniform checkpoint strategy. Here
security for the entire data is considered at once. NU
represents average security levels for non uniform
checkpoint strategy where different k is considered.

Fig. 4. Integrity levels for Uniform checkpointing and non

uniform checkpointing when fault occurred at k=1,2,3.

Fig 4 shows the effect on integrity levels when

uniform and non-uniform checkpoints are considered for
k=1,2 and 3. For uniform checkpoints the security level
kept increasing with the number of checkpoints whereas
for the non uniform checkpoints the security levels either

increase or remain constant for different k that is the
values are either greater than or equal to the values in
the uniform checkpoints. This shows that non uniform
approach performs better than uniform approach.

Fig. 5. Uniform Vs Non Uniform checkpoints for Integrity

 Fig. 5. shows the difference of integrity levels for
uniform and non uniform checkpoints when the security
is applied to the entire data at once. Same as the
confidentiality, the integrity levels are either the same
are higher than the uniform checkpoint integrity levels.
With this observation it can be stated that irrespective of
the values of k, the non uniform checkpoint strategy is
definitely better than the uniform checkpoint strategy.

7. Summary

 This paper presents an approach to seamlessly
integrating the security and reliability. Confidentiality
and integrity services are considered for security, and
non-uniform checkpoint placement strategy is employed
for reliability. Two methods are proposed in combining
the security with reliability in real time tasks. First
method considers security overheads for an entire data at
once. In the second method, the data is divided into n
different sections; the security overhead for each section
is considered separately. The simulation results show
that the non uniform checkpoint strategy gives a 34.4%
higher security than the uniform checkpoint when the
second method is considered for security. In addition,
the second method is better than the first method by
32.3%. The overheads for all the schemes are
analytically modelled. The approach presented in this
paper maximizes both security and reliability for real-
time applications in an innovative way.

Acknowledgments
 The work reported in this paper was supported by the
US National Science Foundation under Grant No. CCF-
0702781, Auburn University under a startup grant, New
Mexico Institute of Mining and Technology under Grant
No. 103295, the Intel Corporation under Grant No.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4 5 6 7 8

S
ec

u
ri

ty
 L

ev
el

Uni
k=1
k=2
k=3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Number of Checkpoints

S
ec

u
ri

ty

L
ev

el

UN
 N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

Number of Checkpoints

S
ec

u
ri

ty

L
ev

el

NU

Number of checkpoints

 7

2005-04-070, and the Altera Corporation under an
equipment grant.

8. References

[1] S. Song, Y. K. Kwok, and K. Hwang, “Trusted Job

Scheduling in Open Computational Grids: Security-Driven
Heuristics and A Fast Genetic Algorithms,” Proc. Int’l
Symp. Parallel and Distributed Processing, 2005

[2] K. Bellam, Z. Zong, M. Alghamdi, M.Nijim, X Qin,
“Integrating Fault Recovery and Quality of Security
in Real-Time Systemsm,” Proc. IEEE Int'l Symp.
Ubisafe Computing, Ontario, Canada, May 2007.

[3] Rami Melhem, Daniel Mosse, Elmootazbellah (Mootaz)
Elnozahy, “The Interplay of Power Management and Fault
Recovery in Real-Time Systems,” IEEE Trans. Computers,
vol. 53, no. 2, pp. 217-231, Feb. 2004.

[4] S. Ghosh, D. Mosse, and R. Melhem, “Implementation and
Analysis of a Fault-Tolerant Scheduling Algorithm,” IEEE
Trans. Parallel and Distributed Systems, vol. 8, no. 3,
Mar. 1997.

[5] Liestman and R. Campbell, “A Fault-Tolerant Scheduling
Problem,” IEEE Trans. Software Eng., Nov.1986

[6] F. Sultan, T. Nguyen, L. Iftode, “Scalable Fault-Tolerant
Distributed Shared Memory,” Proc. ACM/IEEE Conf.
Supercomputing, 2000.

[7] S. Ramos-Thuel and J. Strosnider, “Scheduling Fault
Recovery Operations for Time-Critical Apps,” Proc. IFIP
Conf. Dependable Computing for Critical Apps, Jan. 1995.

[8] T. Xie and X. Qin, ”Scheduling Security-Critical Real-
Time Applications on Clusters,” IEEE Trans. Computers,
vol. 55, no. 7, pp. 864-879, July 2006.

[9] Bertram, T.J.; Demaree, K.D.; Dangelmaier, L.C., “An
integrated package for real-time security enhancement,”
IEEE Trans. Power Systems, May 1990.

