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Abstract 
 

Real time applications such as military aircraft flight 
control systems and online banking are critical with 
respect to security and reliability. In this paper we 
presented a way to integrate both by considering 
confidentiality and integrity services for security and non-
uniform checkpoint strategy for reliability. The slack 
exploitation interacts in subtle ways for security in 
regards to the placement of checkpoint. The checkpoints 
are placed in to the task at low frequency in the beginning 
because the slack available can accommodate a large 
amount of work at risk and the frequency is increased 
there after considering the slack available. The security is 
applied to the data in two ways. First method introduces 
the security for the entire data at once whereas in the 
second method the data is divided into n uneven sections 
and each section is separately secured .That is at the start 
of the task basic security services are considered 
depending on the slack available. The security is 
increased gradually for the rest of the task but if there 
exist a fault, then at that point the security is maintained 
at the steady rate because of the limited slack. Compared 
to the first method the second method can provide up to a 
32.3 percent higher security. While compared to the 
traditional checkpoint strategy, the non-uniform 
checkpointing makes more efficient use of slack while 
increasing the overall security levels by 34.4 percent for 
the second method. 

    

1. Introduction 
 

True in the realm of computers, the need for developing 
systems with fault tolerance and security is ever 

increasing. The systems have to be developed such that 
they can operate successfully and securely even with any 
fault occurrence in the execution. It is to be noted here 
that the task has to be completed within the given 
deadline. In any system when a fault occurs, it has to be 
detected and recovered before the time limit. The Slack 
that exists in the schedule of a task is utilized for the 
purpose of implanting the security and reliability. 
Achieving fault tolerance and security at the same time 
demands efficient exploitation of the total slack available 
in the system. This paper presents the study on the same 
issue showing how this slack can be exploited in 
developing a secured and reliable real-time system. We 
implement Checkpoint placement strategy to recover real 
time systems from the failures during the task’s execution. 
These checkpoints can be inserted in a uniform or Non-
uniform pattern. We already proved that the security can 
be increased by 385% while achieving the tasks reliability 
using uniform checkpoint strategy [2].  

To further increase the security, in this paper, we adopt 
the non- uniform checkpoint strategy to develop a highly 
efficient fault tolerant and secure system. Here, the 
security can be achieved in two ways, either by providing 
the security over head for the entire task at once or by 
providing the security overhead after each checkpoint. 
The later method provides a higher security by up to a 
32.3 percent than the former method and 34.4 percent 
than the uniform checkpointing. Either ways the strategies 
proposed here ensure more security than the ones 
achieved by the uniform checkpoint strategy. In our study, 
for simplification, we assume that only one fault can occur 
during the execution of any task. Once the fault is 
detected, we can eliminate further placement of 
checkpoints. This process aids us in saving the slack for 
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the implementation of security. It is to be noted that in our 
study, we assume all deadlines for the tasks are soft and 
hence our algorithm is applicable for Soft-real time 
systems. The results we obtained are compared to the 
results from the uniform checkpoint approach. It is 
observed that our method could improve the fault-
tolerance and security up to 34.4 percent. 
    The rest of the paper is organized as follows. Section 2 
describes the related work and section 3 details the real 
time application followed by a fault tolerant model. 
Section 4 briefs the security methods that are used in this 
work. Section 5 gives a detailed explanation of how 
security and reliability can be integrated when non 
uniform checkpoint placement strategy is used. It also 
explains the two methods that are used for security over 
heads. Section 6 gives the performance evaluation 
followed by a summary in Section 7.  
 

2. Related Work 
 
    An extensive research has been carried out in 
developing Fault tolerant real time systems. For the real 
time systems where storage was not a primary concern, 
conventional approaches with low over head like timeline 
or back up approaches are used in developing the system 
to be fault-tolerant [5].The transient faults were recovered 
by the re-execution of the tasks [4][7]. 
    To design a fault tolerant distributed shared memory 
systems Sultan et al. developed an algorithm with very 
efficient checkpoint strategy and log Management [6]. 
Researchers have also worked on implementing a variety 
of fault tolerant activities involving both static and 
dynamic Scheduling. These activities assured the tasks 
with in the time limit and minimized the number of 
reliability activities [8]. On the other hand, same amount 
of research has been done concentrating on the security of 
the systems. Song et al. developed a security driven 
scheduling algorithms for Grids [1]. In our previous 
Study, We designed and implemented Security aware 
scheduling algorithms to protect against diversity of 
threats and attacks in a clustering environment [8]. 
Bertram et al. developed a set of algorithms for security 
constrained optimal power flow (SCOPF) and their 
configuration in an integrated package for real-time 
security enhancements [9]. 
    The literature proves that very limited or no research 
has been done in integrating the fault tolerance and 
security in real-time systems .Myers et al proposed a 
method of building a trustworthy distributed system by the 
process of Construction. [10] 
    In our previous research, we have proposed an 
approach to integrate the fault tolerance and security in 
real-time systems by implanting uniform checkpoint 

placement [2]. We are extending the work further here to 
increase the levels of security and reliability. 
    The main contributions of this paper are 1.An approach 
to integrate the security and reliability using non uniform 
checkpoints is proposed. 2. Security implementation has 
been derived in two different methods. 3. A way to 
combine the confidentiality and integrity over heads has 
been proposed in method 2. 
 

3. Non-Uniform Distribution of Checkpoints 
for Fault Recovery 

 
The basic idea behind our approach is to recover soft 

real-time systems from transient failures by inserting 
checkpoints. It should be noted that checkpoint insertions 
can be accomplished in a uniform or non-uniform manner. 
We already presented the work for uniform checkpoint 
placement strategy [2]. In this work we are considering 
the non uniform checkpoint placement strategy to further 
increase the security and reliability of the task. 

 
3.1 Real-time applications 
   
    A real-time application in this study is envisioned as a 
set of tasks, which have to be completed before their 
specified deadlines to accomplish an overall mission. We 
assume a real-time task t has a deadline D derived from 
hard real-time constraints. It is assumed that task t takes C 
number of CPU cycles for its worst-case execution. Cycle 
consumption of memory references vary with processor 
speed. Hence C is considered as the independent of the 
processor speed. Abundant research has been done to 
prove the degree of pessimism in the definition of C [3].  

The time remaining to reach deadline D after 
considering the worst-case execution time C of the real-
time task is the slack time denoted as Sl. This slack time Sl 
can be used to recover from transient faults in a real-time 
system. 

 
3.2 Non-uniform checkpoints  

 
Checkpoints are inserted in a real-time task to 

efficiently recover a task from any transient failure 
occurred during the execution. If there is a failure in the 
execution of the task then the failure is detected before the 
next checkpoint is placed. Hence it makes easy to re-
execute the task from the previous checkpoint, where the 
failure occurred. Transient failures during the course of 
the task’s execution can be readily detected by applying 
any of the already existing fault-detection techniques. 
Without loss of generality, it is assumed that no more than 
one transient failure might occur during the execution of 
the task. Similar assumptions were imposed in other 
studies [3]. The process we describe here (see Fig. 1.) 
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may not be applicable to a real-time system where a real-
time task must be re-executed entirely when a failure 
occurs. This is because available slack Sl may not be 
sufficient to accommodate such a re-execution. 
Our goal, of course, is to efficiently leverage slack time Sl 
to improve quality of security and to provide fault 
recovery. The overhead involved with generating 
checkpoints is modeled as r. It is assumed that in task t, n 
checkpoints are inserted to recover the system from 
failures if there exists any.   

Therefore, the total time spent in creating all the 
checkpoints and to do the corresponding diagnosis is 
expressed as n*r, but we did consider that no more than 
one fault can occur during the task’s execution so if a fault 
is detected, then there after it is not necessary to insert 
checkpoints. Hence, the over ahead involved with 
checkpoints relies on where the fault occurred. Fig 1(a) 
shows the uniform distribution of checkpoint [2]. 

 

 
                                                 (a)            (b)           (c)             (d)           (e)         (f)        

Fig.1 Uniform and Non-uniform distribution of checkpoints with security over head 
 
As the approach we considered here is non-uniform, the 
n checkpoints are placed in the task t such that the C 
cycles of t are divided into n sections based on the below 
formulae 
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After calculating the value of x from (1) checkpoints 

are inserted in a way such that                 
 

                   C1+C2+C3+…+Cn-1+Cn = C,  
where C1<C2<C3<…<Cn-1<Cn. 

 
The main idea behind this approach is that at the 

beginning of the execution the task hasn’t consumed 
much of available slack and therefore, low frequency of 
checkpoints is possible because most of the slack is 
available to accommodate a large amount of work at risk 
[3]. Similar to the overhead of checkpoints the recovery 
time also depends on where the fault occurred. That is if 
a fault is detected at the first checkpoint then the amount 
of rollback required would be nx because the first 
checkpoint is placed after nx as shown in fig 1(b). If the 
fault is detected at the second checkpoint then the 
rollback would be (n-1)x as shown in fig 1(c), similarly 
it would follow as (n-2)x and (n-3)x and so on for the 
faults that are detected there after as shown in fig 1(d) 

and 1(e) respectively. Fig 1(f) shows the distribution of 
checkpoints where a fault did not occur. 

Hence a task t should satisfy the below equation to 
execute before the deadline and to guarantee the fault 
tolerance. Assume that a fault might have occurred at 
section k where nk ≤≤0 then 
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represents the execution of the remainder of the 

task with no checkpoints because we considered that a 
fault can occur not more than once. Hence further 
insertion of checkpoints at this point is not required. And 
the last term So represents security over head which will 
be discussed in detail in the section 4. 
    It is intuitive to illustrate that the more the number of 
checkpoints made in a real-time task the more the task is 
fault tolerant. However, it is imperative to carefully 
choose the number of checkpoints, because there is a 
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chance that the overhead might exceed slack time Sl, 
which makes it infeasible to finish the task before its 
deadline. Also, if the value of n is much smaller then the 
value of nx will be comparatively bigger, which can be 
inferred from (2), and the slack available might not be 
sufficient for the rollback if a fault is detected in this 
section. Hence the value of n has to be increased. This 
can be easily checked by the following inequality, 

lSnx < . 

    If the above inequality is not true then the value of n 
has to be increased by 1 until the inequality is true.  

 
4. Security Implementation 

 
Security has become an important requirement for 

modern real-time systems. There are a wide variety of 
security mechanisms that can be applied to real-time 
applications. However, improving security inevitably 
leads to high overheads. Thus it is difficult if not 
impossible to implement all security mechanisms 
available to a real-time task. As confidentiality and 
integrity are the two major security issues that real-time 
tasks may encounter, we described the overhead model 
for these security services in our approach. It is worth 
noting that our approach can readily incorporate other 
types of security services like Availability to achieve 
higher security. In our previous work we integrated the 
confidentiality with reliability using uniform checkpoints 
here we are extending the security levels to 
confidentiality and integrity with non uniform 
checkpoints to further increase the ranking of security 
provided to the task [2]. 
 
Table 1: Cryptographic algorithms for confidentiality 

 
S.No 

Cryptographic 
Algorithms 

Security 

Level )( c
isl      

  c
iµ  

(KB/ms) 
  E1 SEAL 0.08 168.75 
  E2 RC4 0.14 96.43 
  E3 Blowfish 0.36 37.50 
  E4 Knufu/Khafre 0.40 33.75 
  E5 RC5 0.46 29.35 
  E6 Rijndael 0.64 21.09 
  E7 IDEA 1.00 13.5 

 
4.1. Confidentiality model 

 
Confidentiality counters snooping, which is 

unauthorized interception. Confidentiality is achieved by 
the implementation of cryptographic algorithms. Table 1 
depicts the cryptographic algorithms [2][8] that are used 
in this research. Sli signifies the security level assigned to 
each algorithm in the range from 0.08 to 1. The strongest 

encryption algorithm IDEA is assigned the maximum-
security level 1 and its performance is 13.5KB/ms.The 
security levels for the other algorithms are normalized 
by applying the following equation [2][8].Assume that li 
is the amount of data whose confidentiality has to be 
guaranteed for task ti.  
             

            c
i

c
isl µ5.13=  where 71 ≤≤ i                   (4) 
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That is P is the amount of overhead involved in 
encrypting the data. 
 
4.2 Integrity model  

  
Integrity counters the unauthorized change of 

information called alteration. Integrity is achieved by the 
implementation of Hash functions. The hash functions 
[2][8] that are considered in this work are depicted in 
Table 2. Each hash function is assigned a security level 
in the range from 0.18 to 1. The strongest and yet 
slowest Hash function Tiger is assigned a maximum 
security level of 1 and its performance is 4.36 KB/ms.  
      The security levels for other Hash functions are 
calculated by using the formula      

        g
i

g
isl µ36.4= where 71 ≤≤ i                       (6) 

Table 2: Hash Functions for Integrity 
S.No Hash Function   Security 

Level   g
isl  

g
iµ :KB/ms 

    H1   MD4 0.18 23.90 
    H2   MD5 0.26 17.09 
    H3  RIPEMD 0.36 12.00 
    H4 RIPEMD-128  0.45 9.73 
    H5 SHA-1                0.63 6.88 
    H6 RIPEMD-160 0.77 5.69 
    H7 Tiger 1.00 4.36 
 
   Assume that li is the amount of data whose integrity 
must be achieved for task ti. 
 

                          Ql g
ii =µ .                                 (7) 

 
    The term security over head So is the combination of 
the security over heads of the confidentiality and 
integrity for the corresponding amount of data. 

 
5. Integrating Reliability and Security with 
Non-uniform Distribution of Checkpoints 
     
    The implementation of security along with reliability 
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in a real time task can be done in two ways. First method 
considers the over head involved for the entire data that 
has to be secured at once, that is if we are considering 
confidentiality then based on the requirement any 
algorithm is applied to encrypt the data all at once, 
similarly for integrity. That is security over head So= P 
or Q. For simplicity, we considered the implementation 
of confidentiality and integrity individually for this 
method. The security over head that can be utilized for a 
particular task t can be calculated using the formulae  
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     Equation (8) is derived from equation (3) and (5) for 
the confidentiality over head. 
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    Equation (9) is derived from equation (3) and (7) for 
the integrity over head. Any mapping function can be 
used to map the values obtained from equation (8) and 
(9) to find the corresponding algorithm that provides 
maximum security to the task. 
     Whereas in the second method, the data is divided in 
to n uneven sections, same as the tasks CPU cycles, 
using the equation 
 
      lxxxnxnnx =+++−+−+ 12...)2()1( , (10)  

 
where l is the amount of data that has be secured for the 
entire task. x in Eq. (10) can be written as 
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    Once the data is divided in to n sections, the security 
is implemented to each and every section separately. 
The equation below shows the implementation of 
reliability and security for n different sections of data 
using non uniform checkpoint strategy. 
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For any given task t first the number of checkpoints n 

that are required for fault recovery are assumed, then the 
CPU cycles C and the amount of data l that has be to 
secured is divided in to n sections using the formulae (1) 

and (10) and then the task is executed by placing a 
checkpoint after each section and also applying the 
security mechanisms for each section separately. For the 
first section the basic confidentiality and integrity are 
provided by choosing the corresponding E1 and H1 
algorithms from Tables 1 and 2. For the next section the 
security can be increased by one that is, E2 and H2 can 
be used for security. Similar way is used to increase the 
security for other sections, but suppose if a fault is 
occurred at section k then the security mechanisms Ek 
and Hk that are used for that particular section will be 
used for the rest of the section too, because at this point 
a portion of slack has been already utilized for the roll 
back so further increasing the security might decrease 
the slack even more resulting in an effect which might 
leave the task’s execution beyond the deadline, which is 
not a feasible solution. Hence the security at this point is 
not increased. In equation (12) the term 
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 represents the execution of task 

by placing checkpoints for fault detection and using the 
algorithms of confidentiality and integrity for security. 
The security algorithms are increased after each section 
by one until a fault has been detected at section k. The 
term Ck represents the roll back of the section where a 

fault occurred. The last term )(
1
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represents the execution of the rest of the task with out 
any checkpoints. The security mechanisms that will be 
used for the rest of the sections is also going to be same 
as the one that has been used for the section k, because 
of the limited slack that is available. 

Fig. 2. Confidentiality levels for uniform checkpointing and 
Non-Uniform checkpointing. Fault occurred at K=1,2,3. 
    

6. Performance Evaluation 
 
    Fig.2 depicts how the confidentiality levels vary when 
the checkpoints are placed in Uniform and Non-Uniform 
pattern. Here K=1, 2, 3 represents that fault might have 
occurred in section 1, 2, 3, respectively in Non-Uniform 
checkpoint strategy. Uni is used to represent the uniform 
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checkpoint strategy. For uniform checkpoints, the 
confidentiality level gradually increases with increase in 
the number of checkpoints from a minimum, whereas in 
the case of Non-Uniform checkpoints, we observe a lot 
of variation depending up on where the fault is occurred. 
The higher the values of k the higher the security levels 
are. However, the average confidentiality level 
guaranteed in non-uniform checkpoint strategy is either 
higher or equal to the average confidentiality levels in 
uniform checkpoint strategy. It is to be noted from the 
graph that the Confidentiality levels corresponding to 
k=2, n=1 and k=3 and n=1, n=2 are zero because when 
we assume only one checkpoint in a task, the possibility 
of K=2 is impossible because nk ≤≤0 .     

 
Fig. 3. Uniform Vs Non Uniform Checkpoints for 

confidentiality 
 

Fig.3 indicates the improvement of confidentiality 
levels achieved by adopting Non-Uniform checkpoint 
placements over the Uniform checkpoint strategy. Here 
security for the entire data is considered at once. NU 
represents average security levels for non uniform 
checkpoint strategy where different k is considered.  

  
Fig. 4. Integrity levels for Uniform checkpointing and non 

uniform checkpointing when fault occurred at k=1,2,3. 
 
Fig 4 shows the effect on integrity levels when 

uniform and non-uniform checkpoints are considered for 
k=1,2 and 3. For uniform checkpoints the security level 
kept increasing with the number of checkpoints whereas 
for the non uniform checkpoints the security levels either 

increase or remain constant for different k that is the 
values are either greater than or equal to the values in 
the uniform checkpoints. This shows that non uniform 
approach performs better than uniform approach.       
 

 
Fig. 5. Uniform Vs Non Uniform checkpoints for Integrity 

     
    Fig. 5. shows the difference of integrity levels for 
uniform and non uniform checkpoints when the security 
is applied to the entire data at once. Same as the 
confidentiality, the integrity levels are either the same 
are higher than the uniform checkpoint integrity levels. 
With this observation it can be stated that irrespective of 
the values of k, the non uniform checkpoint strategy is 
definitely better than the uniform checkpoint strategy. 
 
7. Summary  
     
    This paper presents an approach to seamlessly 
integrating the security and reliability. Confidentiality 
and integrity services are considered for security, and 
non-uniform checkpoint placement strategy is employed 
for reliability. Two methods are proposed in combining 
the security with reliability in real time tasks. First 
method considers security overheads for an entire data at 
once. In the second method, the data is divided into n 
different sections; the security overhead for each section 
is considered separately. The simulation results show 
that the non uniform checkpoint strategy gives a 34.4% 
higher security than the uniform checkpoint when the 
second method is considered for security. In addition, 
the second method is better than the first method by 
32.3%. The overheads for all the schemes are 
analytically modelled. The approach presented in this 
paper maximizes both security and reliability for real-
time applications in an innovative way. 
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