
Evaluating Xen for Router Virtualization
Norbert Egi§ Adam Greenhalgh‡ Mark Handley‡ Mickaël Hoerdt§ Laurent Mathy§ Tim Schooley‡

§Computing Dept., Lancaster University,UK
{n.egi,m.hoerdt, l.mathy}@lancaster.ac.uk

‡Dept. of Computer Science,University College London,UK
{a.greenhalgh,m.handley, t.schooley}@cs.ucl.ac.uk

Abstract— In this paper, we evaluate the performance of a
software IP router forwarding plane inside the Xen virtual
machine monitor environment with a view to identifying (some)
design issues in Virtual Routers. To this end, we evaluate and
compare the forwarding performance of two identical Linux soft-
ware router configurations, run either above the Xen Hypervisor
or within vanilla Linux. Even with minimal sized packets, we
show that the Xen Dom0 privileged domain offers near native
forwarding performance at the condition that the sollicitation to
unpriviledged domains stay minimal, whereas Xen unprivileged
domains offer very poor performance in every cases. This shows
that an important design principle for virtual router platforms
must be to handle all forwarding, for all virtual routers, onto
the same forwarding engine, in order to avoid much detrimental
per-packet context switching.

I. INTRODUCTION

In the past few years virtualization has re-emerged as a hot
topic in operating systems research, and it seems natural to
wish to extend these benefits to network routing. If a single
hardware platform can simultaneously perform the roles of
multiple independent routers, then many practical applications
are enabled. For example, a telecommunications provider
might install one router in an office building, and support
many separate small business customers on the same hardware
platform, while allowing each to operate and configure their
own virtual router.

Beyond the immediate commercial applications, virtual
routers can be much more flexible. If we take advantage of the
ability to isolate components through virtualization, we are no
longer constrained to have the same layer 3 protocols in each
virtual router. Indeed, in the wider community in projects such
as the NSF GENI infrastructure project, or the proposed EU
Fire initiative, it is felt that the current Internet Protocol suite
and associated architecture may need to be revamped in the
long term. An obvious way to support a new architecture is
to have it run concurrently with the old one. Overlays are one
possible scheme which have not seen general realization or
use. An alternative approach is to remain agnostic to the layer
2 technology and run the different layer 3 protocols natively
across the same layer 2 medium and to use virtualization and
isolation in the network switching entities to separate the two.

In this paper we focus on the case of single commodity
hardware platform using operating system virtualization to
perform the roles of multiple independent edge routers. When
designing a single platform virtual router a key decision is
how to split the forwarding plane. In the following sections

we introduce the options and compare them against native
Linux forwarding.

Three enabling technologies have reached maturity at this
point, making these ideas rather timely. The first of these is the
support for hardware virtualization coupled with the increased
resources available on commodity PC processors. This enables
multiple concurrent operating systems to exist on a single
platform, isolated from each other within their own separate
domains. The second is Xen [?], which is a Virtual Machine
Monitor, VMM, with its associated control software that
makes the simultaneous running of multiple operating systems
on a single system both feasible and manageable. The final
enabling technology is XORP [?], an extensible open router
platform. XORP is a routing software platform supporting
the common routing protocols, designed with extensibility in
mind. XORP’s primary relevance is that it provides a flexible
way to control forwarding on such virtual routers. In this paper
though, we focus on the forwarding path rather than the control
plane.

This paper is organized as follows : Section II presents the
important aspects of Xen relative to virtual routing, Section
III presents the experimental setup that we use to perform our
evaluation, and Section IV presents our results. We conclude
in section V.

II. XEN

Before we explore where to undertake packet forwarding in
a virtual router we must first introduce the Xen networking
model.

The Xen platform consists of a Xen hypervisor above the
physical hardware and several Domains, which represent the
virtual machine, residing above the hypervisor. The hypervisor
controls access to the physical machine’s hardware for the
guest domains. Rather than allowing guest domains to use
privileged instructions directly, hypercalls are used to notify
the Xen hypervisor about their need for executing a privileged
instruction, at which point the hypervisor handles the request.
For reliable and efficient hardware support, all the device
drivers are kept in an Isolated Driver Domain (IDD, mainly
known as Domain 0, or dom0) with special privileges. The
devices in the driver domain (dom0) are accessed by the guest
domains (domUs) via point-to-point links. See [?] for specific
details.

The Xen network device block model connects an ethernet
interface at each end of an I/O channel. The device chan-

nel interfaces found in dom0 are called back-end interfaces
(vifX.Y, where X identifies domU while Y is unique for
the interface among all the given domU’s back-end interfaces)
while the interfaces on the other side of the I/O channel, found
in the domUs, are called front-end interfaces (ethY, where Y
identifies the front-end interface of domU) and appear as the
real network interfaces of the guest operating system running
in domU. Packets passed to the interface on either side of the
I/O channel will appear at the interface on the other side of the
channel after going through the Xen hypervisor (see Figure 1).

Having examined the basic structure of Xen’s networking
subsystem we are now able to examine where we might
undertake packet forwarding and how we might move packets
between the network interfaces and the location of the packet
forwarding code. There are two plausible locations to carry
out packet forwarding for each virtual router instance :
• In virtual router’s domU instance the operating system

carries out normal forwarding. This is obviously simple
as no changed are required for a normal operating system.

• All forwarding is carried out in dom0 for all the virtual
routers on the box. This is more complex because virtual
routers must be isolated from one another.

Simplicity of design suggests forwarding in domU is the
most attractive solution but what are the costs associated with
moving packets between dom0 and domU to carry out the
forwarding and how does this scale with increasing numbers
of domUs?

A. Xen Packet Forwarding Options

Xen provides three mechanisms to move packets between
the network devices and the back-end interfaces: Bridging,
Routing and Network Address Translation. These mechanisms
are used to demultiplex the incoming traffic from the real (i.e.
physical) interface to the guest domains and to multiplex the
outgoing packets originated in the guest domains. By default,
Xen uses bridging within dom0 to connect real and virtual
interfaces, allowing transparency for applications and services
running on guest domains.

Figure 1 shows the classical network internals in Xen’s
driver domain and a guest domain. This default Xen con-
figuration uses software bridges within the driver domain to
transfer the packets between the real interfaces residing in
dom0 and the back-end interfaces associated to domUs. With
this configuration all the guest domains can share the same
network in return for an increased complexity of the driver
domain, which is not an issue when dom0 only serves its basic
duties, namely isolating the hardware devices and providing a
safe access for the guest domains to these devices.

Upon arrival, a packet is handled by the device driver in
dom0 and appears at first on pethY, the real interface of the
physical device, which is also attached to the bridge. Hence,
the bridge demultiplexes the packet and puts it on the proper
back-end vifX.Y interface based on the destination guest
domain’s MAC address. The back-end interface hands the
packet over to the Xen hypervisor, which transfer the packet
to the corresponding front-end interface (in the destination

domU). The procedure is the same for packets destined to
an interface in dom0. Outgoing packets will traverse the same
path, but the opposite way of course. In this configuration IP
addresses are assigned only to the (virtual) ethY interfaces,
which are seen as the real interfaces in each domain. In the rest
of this paper, we will refer to this design setup as ”bridged”.

XEN HYPERVISOR

Driver Domain

(dom0)

Physical

interface

Physical

interface

Guest Domain

(dom1)

eth0
 eth1

IP
 IP

peth0

vif0.0

vif1.0

x

e

n

b

r

0

peth1

vif0.1

vif1.1

x

e

n

b

r

1

eth1
eth0

L2/L3 forwarding

Fig. 1: Xen’s classical network internals

An alternative to the classical bridging in dom0 is routing.
In this latter configuration, the ethY interfaces of dom0 not
only represent but are the real interfaces of the physical NIC
(see Figure 2). Thus, it eliminates, from dom0’s forwarding
path, the I/O channels through the hypervisor as well as the
bridges attached to each physical interface. As a consequence,
packets forwarded from one to another physical interface in
dom0 will traverse the same path as it would in native Linux.
For sending packets to and from the domUs, IP addresses need
to be assigned to the back-end interfaces too as opposed to the
bridged setup. Packets destined to any of the domUs are routed
from dom0’s ethY interface to the appropriate vifX.Y back-
end interface, from which point the hypervisor passes the
packets to the ethY interface of the addressed domU, similar
to the classical bridged configuration. Packets coming from
the domUs cross the Xen hypervisor first and are routed to
the outgoing interface determined by the routing protocol and
based on the packets’ destination address. In the rest of this
paper, we will refer to this design setup as ”routed”.

XEN HYPERVISOR

Physical

interface

Physical

interface

eth0

vif1.0

eth1

vif1.1

IP routing

Driver Domain

(dom0)

Guest Domain

(dom1)

IP
IP

IP
 IP

eth0
 eth1

IP
IP

Fig. 2: Xen’s routed network internals

Work has been done in the optimization of the network per-
formance of Xen 2.0 VMM [?]. Three optimization categories

were proposed. In superpage optimization, the number of TLB
misses by guest domains is reduced with the use of new virtual
memory primitives in the guest operating systems. I/O channel
optimization includes mechanisms to make both transmit and
receive between dom0 and domUs faster. High level virtual
interface optimization consists of carrying out several TCP
operations (e.g. scatter/gather I/O, TCP/IP checksum offload,
and TCP segmentation offload (TSO)) in dom0, on behalf of
guest operating systems . The evaluation of these methods
show an insignificant impact of superpage and I/O channel
optimizations by themselves and show a little impact when
combined with high level optimization, which is the only
method that gives a high performance hit to the system.
Although the high level optimization is similar in spirit to our
design concepts (i.e. performing functionalities in the driver
domain on behalf of the guest domains in order to reduce the
number of network packets the Xen hypervisor has to handle),
the work actually carried out was targeted to servers (TCP
flows) and did not consider the specifics of router forwarding.

III. EXPERIMENTAL SETUP

In the following experiments we aim to answer three ques-
tions which will inform our descision about where to forward
packets within a virtual router. The first question is; how does
dom0 forwarding compare with native linux forwarding and
does increasing the number of domUs effect performance? The
second question is; what is the impact of using the bridging
and routing mechanisms to move packets from dom0 to the
domUs? And the final question is; how does the forwarding
performance of dom0 compare to that of a domU domain?

The experiments were carried out on the Heterogeneous
Experimental Network (HEN) testbed[?], using a simple three
node topology, as illustrated in Figure 3, consisting of a traffic
generator (TG) on the left, a traffic sink (TS) on the right
and the system under test (SUT) in the middle. Both TG and
TS hardware configurations are Dell PowerEdge 1950 servers
with two dual core Intel Xeon processors (2.66GHz each) and
2GB system memory. The SUT test was either a Sun Fire
X4100 with one 2.2Ghz AMD Opteron(tm) Processor (single
core) and 2GB of memory or a Dell 1950 servers described
above. The Dell 1950 system’s network interfaces are Gigabit
Ethernet Intel(R) PRO/1000 NICs residing in PCI-Express x4
slot, while Sun Fire X4100 systems used the same network
card but residing in a PCI-X 100 Mhz slot. The systems are
interconnected via a Force10 E1200 non-blocking switching
fabric.

Traffic
Generator
(TG)

Traffic
Sink
(TS)

System Under

(SUT)
Test

Fig. 3: Topology used

For generating and receiving traffic we used the Click
modular router [?] software and its associated Linux kernel

(2.6.16.33) polling patch. The Click modular router offers
high performance traffic generation as well as measurement
capabilities that we evaluated first before doing the actual
performance measurements on the SUT. Figure 4 shows the
performance over a direct link between TG and TS, when
exchanging minimum 64 bytes frames. It can be seen (and it
was verified) that loss-free linerate (e.g. 1.488.095 packets per
second on a Gigabit Ethernet) was achieved between TG and
TS. This rate also applies when the packets were categorized
into more packet flows equally sharing the total bandwidth,
up to 32 flows. This means that TG and TS are capable
of saturating the ethernet link and that, on the three node
topology, any loss observed with a rate below this maximum
is happening in the SUT.

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 500000 1e+06 1.5e+06 2e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

Fig. 4: TG to TS IP link performance

For each test, a constant bit rate of traffic was generated
from TG to TS with an increasing packet rate between 100
kpps and 1500 kpps for the Dell 1950 SUT hardware or
between 100 kpps and 1000 kpps for the Sun Fire X4100
hardware. We increased the rate with 100 kpps granularity
and kept the packet at 64 bytes for all the experiments. Traffic
was generated with each rate for 10 seconds and repeated three
times. The rate for each 10 second burst was observed on the
TS and the mean of the three readings was calculated.

The packets were forwarded by the SUT, using the various
setups of native Linux version 2.6.16.33 and Xen version
3.0.4-1, all using the same kernel configuration. The vanilla
e1000 network driver furnished in the kernel was used with
NAPI[?] enabled on each network interfaces of the SUT. The
arriving traffic in the traffic sink was examined and the number
and rate of the packets were calculated and stored for later
processing.

IV. RESULTS

In this section, we present the results of our experiments
and show that the default bridged scheme used in Xen for
inter-domain packet transfer has significant costs for dom0’s
forwarding performance. We show the effects on performance
of having multiple domUs forwarding traffic either alone or
in conjunction with dom0.

We examine the performance of bridging, routing and a
hybrid bridged routing scheme similar to Xen but running
under native Linux. We then examine bridged and routed con-
figurations within the Xen platform. We give our explanations
of performance hits where applicable.

A. Native Linux Forwarding Performance

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

X4100 bridged
X4100 routed

X4100 bridged and routed
1950 bridged
1950 routed

1950 bridged and routed

Fig. 5: Bridged native Linux vs routed native Linux vs routed and
bridged native Linux

The measured performance of native Linux constitutes the
reference numbers which the following Xen experiment results
are compared with. They show the possible performance
achievable on a general purpose hardware architecture like the
Dell 1950 and the Sun Fire X4100. In the following section,
we present only the results gathered with the Sun Fire X4100
hardware platform as the observed patterns were very similar
on the other hardware architecture.

Figure 5 shows the performances of all the setups that we
tested: a bridged setup (Figure 6(a)), a routed setup (Figure
6(b)) and a hybrid of the bridging and routing solutions
(Figure 6(c)). The difference in the performance between
simple bridged and routed is very small as opposed to the
hybrid configuration which shows a 30% lower forwarding
rate on both hardware configurations.

Ethernet Bridge

Eth0

PhyPhy

Eth1

(a) Bridging only

IPIP

IP Forwarding (Routing)

Eth1Eth0

PhyPhy

(b) Routing only

Ethernet
Bridge 0

Ethernet
Bridge 1

Eth1Eth0

PhyPhy

IP IP

IP Forwarding (Routing)

(c) Hybrid of Briding
and Routing

Fig. 6: Protocol stack of different configurations described in the
paper

The protocol stacks showed on Figure 6 illustrate that with
the hybrid setup, the complexity involved is more relevant.
When a bridge is set up, Linux implements a logical interface

that forwards the packets between the device driver and the
IP layer whenever it is needed (i.e. the incoming packet is
destined to the host itself or the host sends a packet out
on a network interface attached to the bridge). The packet
handler for this logical interface is implemented as a basic
hook executed within a scheduled NAPI interrupt of the
hardware network driver. This hook checks whether a physical
interface is bridged when it receives a packet. If this interface
is bridged, the bridging hook is called and the packet is
passed to the upper kernel layer directly. NAPI is designed so
that interrupts are allowed as fast as the system can process
them [?]. NAPI uses the hardware DMA ring of the network
card to store packets. When the system load reaches its limit,
packet processing is poll-driven instead of interrupt driven.
We conclude that packets are dropped in the DMA ring of
the network card because of the overhead introduced by the
bridge in the receive/send path. Why and where the software
bridge is costly still need to be investigated in more detail.

As this bridge implementation is used to connect the real
and virtual network interfaces in dom0, it is very likely that
this performance hit will be observed on the Xen hosts too.

B. Xen Forwarding Performance

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200000 400000 600000 800000 1e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

Native
0 domU
1 domU
2 domU
3 domU
4 domU
5 domU
6 domU

Fig. 7: Dom0 bridged forwarding performance with different
numbers of domUs vs native Linux

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200000 400000 600000 800000 1e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

Native
0 domU
1 domU
2 domU
3 domU
4 domU
5 domU
6 domU

Fig. 8: Dom0 routed forwarding performance with different
numbers of domUs vs native Linux

We start the evaluation of Xen with the results of the
performance tests on the forwarding in the privileged driver
domain (dom0). We only present the results for the Sun Fire
X4100 architecture as the results observed on Dell’s 1950
presented a similar pattern here too. It is worth noting that
even by using Xen with the support of SMP (e.g. support for
multi-processors) and allowing Xen to automatically allocate
the domUs to each core of the Dell CPUs the results remained
similar.

Figure 7 and 8 show the forwarding rate of dom0 with an
increasing number of guest domains in the bridged and routed
setups, respectively. In both figures the forwarding rate of
native Linux for the same setup is plotted as well to illustrate
the performance differences between Xen’s driver domain and
native Linux.

Both figures show that the number of running guest domains
does not have any influence on the performance of dom0’s
forwarding performance if the domUs are not used to forward
packets. Nevertheless, we can observe a high performance
impact in Figure 7. This is due to the complex bridged I/O
communication channel architecture explained in section II.
Figure 8 shows that this performance hit can be avoided if the
I/O communication channel between dom0 and the domUs is
moved to the IP layer.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200000 400000 600000 800000 1e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

Native
2 domU - bridged config

2 domU - router config
4 domU - bridged config
4 domU - routed config

6 domU - bridged config
6 domU - routed config

Fig. 9: DomU-only aggregated forwarding performance in bridged
and routed setup with different numbers of domUs vs native Linux

We evaluate the forwarding performances of guest domains
alone, as follows. Figure 9 shows the aggregate forwarding
performances with increasing number of domUs running on
the Sun Fire X4100 architecture. The traffic load is equally
distributed amongst the domUs. First, it is clear that guest
domains have a significantly lower forwarding rate than that
of dom0. With 6 domUs the achieved aggregated throughput
is roughly 6 times lower than that of dom0. Second, as we
increase the number of domUs, the aggregated performance
decreases independently of the I/O channel setup. This is as
one would expect: as each guest domain requires CPU time
to handle its packets far more context switches are required
leaving less time for actual work to be done resulting in
greater packet loss. This effect is amplified as the number
of forwarding guest domains increases. The bottleneck is the

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200000 400000 600000 800000 1e+06

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

Native
2 domU routed config

2 domU bridged config
4 domU routed config

4 domU bridged config
6 domU routed config

6 domU bridged config

Fig. 10: Dom0 and domU aggregated forwarding performance in
bridged and routed setup with different numbers of domUs vs

native Linux

Xen hypervisor here, as the performances observed in both
routed and bridged setup are very similar.

Figure 10 shows the aggregated forwarding performance of
Xen when traffic is forwarded both by dom0 and an increasing
number of domUs, starting from 2 domUs up to 6 domUs. As
one would expect, the aggregate performance of Xen decreases
as the number of domUs increases, again due to the extra
context switches.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 50000 100000 150000 200000 250000

R
ec

ei
ve

d
P

ac
ke

t R
at

e

Generated Packet Rate

DomU1 bridged config
DomU1 routed config

DomU2 bridged config
DomU2 routed config

DomU3 bridged config
DomU3 routed config
Dom0 bridged config
Dom0 routed config

Fig. 11: Dom0 and domUs flow breakdown forwarding performance
in bridged and routed setup with 3 domUs

Figures 11 and 12 show the per-domain performance when
forwarding in dom0 and 3 and 6 domUs respectively. We
observe how the hypervisor is allocating more resources to the
priviledged dom0 domain but still does not ensure a guaranteed
resource reservation mechanism: when the number of domUs
increases and if traffic is flowing both through domUs and
dom0, the performance of dom0 is deeply impacted even if
the resources are allocated equally amongst the domains.

Again, the routed I/O channel is offering almost 100% more
performance than the bridged one and the difference between
dom0 and domU’s performances is more pronounced as the
Xen hypervisor is less sollicited with the bridged I/O channel.

In Figure 12 we observe that with the bridged I/O channel,
dom0 is getting better performances than the domUs, whereas

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 0 20000 40000 60000 80000 100000 120000 140000 160000

R
e

c
e

iv
e

d
 P

a
c
k
e

t
R

a
te

Generated Packet Rate

DomU1 routed config
DomU1 bridged config
DomU2 routed config

DomU2 bridged config
DomU3 routed config

DomU3 bridged config
DomU4 routed config

DomU4 bridged config
DomU5 routed config

DomU5 bridged config
DomU6 routed config

DomU6 bridged config
Dom 0 routed config

Dom 0 bridged config

Fig. 12: Sun Fire X4100 Dom0 and domU flow breakdown
forwarding performance in bridged and routed setup with 6 domUs

with the routed I/O channel the performance difference be-
tween dom0 and the domUs is almost invisible. The whole
system is so stressed that the Xen hypervisor is no longer
able to reserve resource for the priviledged domain. With the
bridged I/O channel and because packets forwarded even by
the priviledged domain have to pass through the hypervisor, as
illustrated in Figure 1, Xen is still able to privilege dom0, but
it does not prevent dom0 forwarding performance to degrade
compared to the case without forwarding in domUs.

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 20000 40000 60000 80000 100000 120000 140000 160000

R
e

c
e

iv
e

d
 P

a
c
k
e

t
R

a
te

Generated Packet Rate

DomU1 routed config
DomU1 bridged config
DomU2 routed config

DomU2 bridged config
DomU3 routed config

DomU3 bridged config
DomU4 routed config

DomU4 bridged config
DomU5 routed config

DomU5 bridged config
DomU6 routed config

DomU6 bridged config
Dom 0 routed config

Dom 0 bridged config

Fig. 13: Dell 1950 Dom0 and domU flow breakdown forwarding
performance in bridged and routed setup with 6 domUs

The same behaviour were not observed under the Dell
1950 architecture, as the hypervisor has more resources to
dispatch. We can see on Figure 13 that with both routed and
bridged I/O channel Xen is still able to privilege dom0, even

if the performance drop compared to native Linux is still very
remarkable.

V. CONCLUSION

Our main goal in running these experiments was to establish
whether the forwarding perfomance of Xen is suitable for a
virtual router platform.

We presented preliminary results for a performance eval-
uation of the forwarding path of a software router running
under Xen virtualisation software. Those results showed that
even with minimal packet size, Xen priviledged domain is able
to forward packets as fast as native Linux at the important
condition that the guest domains are not forwarding at the
same time. Those results showed too that the performances
of the unpriviledge domains are very low compared to native
Linux, and that to build an efficient virtual router based on
Xen, this must be taken into account.

Our result indicate that CPU saturation is a main fea-
ture of PC-based virtual routers, and that to avoid context-
switching overheads, the virtualization platform (e.g. Xen) so
all forwarding is handled in the privileged domain. In other
words, domUs should only host the control (slow) path of its
associated virtual router, while the corresponding forwarding
should be “migrated” to dom0.

Although our current work has focused on PC-based solu-
tion using Xen, we believe that these general characteristics
and recommendations will apply to any virtual router platform,
and that the need for a single forwarding engine capable
of forwarding for multiple virtual routers is a pre-requisite
to achieve high performance. Our future work will tackle
technique to achieve this.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R.Neugebauer, I.Pratt, and A. Warfield, “Xen and the art of virtualization,”
in 19th ACM Symposium on Operating Systems Principles. ACM Press,
October 2003.

[2] M. Handley, O. Hodson, and E. Kohler, “XORP: an open platform for
network research,” in HOTNETS02, October 2002.

[3] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network vir-
tualization in xen,” in Proceedings of the USENIX’06 Annual Technical
Conference, Boston, Massachusset, USA, June 2006, pp. 15–28.

[4] “Heterogeneous experimental network,”
http://www.cs.ucl.ac.uk/research/hen/.

[5] E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek, “The
click modular router,” ACM Transaction on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[6] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in 5th Annual
Linux Showcase and Conference, November 2001.

