
Topological Similarity-based Scheme for

Large-scale Group Communication Services

Yuehua Wang1,2, Zhong Zhou1,2, Ling Liu3, Liang Cheng4, Wei Wu1,2

1State Key Lab of Virtual Reality Technology and Systems, Beihang University, China
2School of Computer Science and Engineering, Beihang University, China

3College of Computing, Georgia Institute of Technology, USA
4Department of Computer Science and Engineering, Lehigh University, USA

Email:yuehua.research@gmail.com, zz@vrlab.buaa.edu.cn, lingliu@cc.gatech.edu,

cheng@cse.lehigh.edu, wuwei@vrlab.buaa.edu.cn

Abstract—Group communication is essential for multi-user
applications. However, due to unpredictable node departures
and non-deterministic network partitions, providing reliable
and scalable group communication services is challenging when
the applications are utilized by the users with heterogeneous
capacities on a large scale. To address this challenge, we propose
a novel replication scheme to achieve high reliability and low-
cost scalability in group communication with following three
features. First, it introduces a new concept of replication based
on topological similarity, which empowers each node with an
ability of measuring similarity between the nodes in topology.
By eliminating the topological similarity between the replicas,
it intelligently mitigates service interruptions caused by node
failures and network partitions. Second, instead of specifying
the number of replicas, it provides a technique for nodes
to dynamically adapt the replication placement schemes by
exploiting functionality importance of the nodes in the group-
communication session. It eliminates the bottleneck problem and
improves the network resource utilization. Third, the scheme is
self-converging and it can stabilize within a few adaptations even
facing a high churn rate. Extensive simulations show that it yields
significant improvements in reduction of replication overhead and
service interruption when comparing to existing approaches.

Keywords- Topological similarity, Importance, Reliability, Scal-
ability, Replication, Group communication.

I. INTRODUCTION

The explosive growth of network applications and the

increasing popularity of handhold devices in recent years have

made reliability and scalability important and challenging to

achieve large-scale communication. The applications include

online game, real-time conference, large-scale distributed in-

teractive simulation, instant messaging and RSS services,

which are characterized by exchanging information contents

among multiple unreliable participants with heterogeneous

capacities. In those applications, a large number of participants

who are often geographically dispersed access the services and

require reliable support by applications even in a network of

unpredictable node departures and non-deterministic network

partitions.

However, it is difficult to design a new network infrastruc-

ture or add a new service to the network layer to satisfy the

requirements of the participants given the existing infrastruc-

tures of systems deployed by the applications. One intuitive

approach to address such issue is to do replication, where

data/file copies are created and placed on other participants in

the network for high reliability and scalability. This approach

provides a proactive component that can be used to augment

the performance of the applications.

In the past decades, a fair amount of research [1–8]

with replication scheme has been developed. Generally, there

are three categories: ID-based replication [1, 2, 6], neighbor

locality based replication [7, 8] and path-based replication [3–

5]. These approaches either have mainly focused on achiev-

ing query efficiency without considering network resource

utilization, or ignore the influence of network partitions on

the system performance. In fact, the occurrence of network

partitioning could make the problem of replication even more

severe and consequently deteriorate the system performance

because of massive volumes of messages that are generated

for replica maintenance and service recovery.

Fig. 1 depicts three different scenarios that are group

communication sessions obtained in the presence of failures

in different patterns. In each scenario, there are 11 nodes

that are divided into two classes: content publisher nodes

(i.e., darkened nodes), being responsible for collecting and

disseminating data to content subscriber nodes (i.e., shaded

nodes) that are located at the edge of the network, and content

subscriber nodes, listening to their parent nodes and receiving

data from them as the data arrives.

To minimize the replication cost and improve reliability

of group communication services provided by nodes, one

approach can choose close nodes and replica nodes’ content

on them. In Fig. 1(a), nodes 7 and 9 are two replicas deployed

by node 8 with this approach [3–5, 7, 8]. This approach

brings two unique benefits. First, it enables the node in the

network with the ability of reacting quickly to the changes

of network. Second, it reduces the creation and maintenance

cost of replication. However, such an approach does not work

well when a network partition occurs as shown in Fig. 1(b).

In Fig. 1(b), a circle region of three nodes 7, 8 and 9 may

appear to be unreachable from the other nodes. As a result,

nodes 2, 5, and 11 are isolated from the session and have

no data received from the content publisher node. To address

Fig. 1. A motivating example

that, one may suggest placing the replicas in a hybrid manner

such that node 2 could also employ a remote node 26 as a

replica node to improve the efficiency of replication scheme.

It, however, subjects to a difficulty of determining the locations

and the number of remote nodes.

We also argue that the data/file replication often leads to

inefficient network resource utilization due to a large volume

of data/file copy propagation. Given accessing to the most

popular ones is frequently skewed, the replication approaches,

such as [3], [4] and [5], may exhaust the capacity of those

nodes and decrease the network resource utilization and ser-

vice quality. To avoid that, one intuitive approach is to place

more replicas for important nodes (e.g., node 8) while the

nodes with less importance have only a few. However, this

approach ignores the heterogeneity of nodes’ importance in

the different sessions. In fact, it is a normal case that some

nodes may be very important in one session but not in others

and some nodes may participate in multiple sessions while

playing less important roles.

In this paper, we focus on characterizing the replication

problem and devise a novel replication scheme to provide

scalable and reliable group communication services for the

participants at the edge of network. The scheme is unique in

three aspects. First, a new concept of replication based on

topological similarity is exploited. It empowers each partici-

pant with the ability of measuring similarity between the nodes

in topology. Instead of making replication among the physical-

ly close nodes, the nodes with low topological similarity are

employed as replicas in our replication scheme in such a way

it increases the immunity of replication placement strategies to

the network partitions. Second, we outline node importance in

groups in replication placement. With node importance consid-

eration, the nodes adaptively determine the number of replicas

by themselves which eliminates unnecessary replicas, resulting

in a reduction of replica creation and maintenance overhead. In

addition, it avoids exacerbating the bottleneck problem. Third,

in contrast to the existing replication schemes [3, 4, 9–11],

our replication scheme is self-converging and it can stabilize

within a few adaptations even facing high churn rate.

The rest of this paper is organized as follows: we first give

a formal definition of replication problem. In Section 3, the

design of the replication algorithm is presented. We provide

extensive simulations in Section 4 and review some related

work in Section 5. Finally, Section 6 concludes the paper and

discusses the research directions.

II. PROBLEM DEFINITION

We study replica placement problem in a general distributed

network G = (V,E,W), where V is the set of nodes,

E = V × V is the set of edges and W is the set of weights

of the edges. Nodes represent users who participate in the

overlay network G, edges represent links between the nodes.

Each node vi in V has a limited capacity Ci. Ci refers to

the maximum of cavail
i (t) over all t, where cavail

i (t) denotes

the available storage capacity of the node i at time t given the

storage capacity is one main factor in the Internet applications

like content searching and media streaming dissemination.

Weights represent communication cost of the links. Concretely,

for each weight ωk in W , it refers to the propagation delay

li,j required for a packet to transmit from node vi to node vj

through the link ek = (vi, vj) ,∀ vi, vj ∈ V, ek ∈ E.

Given the dynamic nature of the network, we consider G

as a network where the delays of the links and the available

capacities of the nodes may change as the nodes continuously

join or leave the network. In such a dynamic network, the

problem of replication can be modeled as a multi-objective

optimization problem, which can be represented as: for any

node vi ∈ V ,t ∈ Q+

min
vj∈R

(
∑

j

li,j ,
∑

j

cavail
j (t), 1−RR(t + τ |t)) s.t. (1)

1) R = {vj} (∀ j ∈ [1, N], i 6= j)

2) cavail
k (t) ≤ Ci (∀ k ∈ [1, N])

3) RR(t + τ |t)) > Pi(t) (∀ τ > 0, R 6= Ø)

where the symbols Q+ and N denote the set of positive rational

numbers and the number of nodes in network G respectively.

RR(t+ τ |t) refers to the service reliability offered by node vi

and its replica nodes vj . It is the probability of a set of nodes

{vj} remaining in the network in next time slot τ , which is

defined by RR(t+ τ |t) = 1−Pi(x < t+ τ |x > t)
∏

j Pj(x <

t + τ |x > t) = 1 − Pi(x<t+τ)
1−Pi(x<t)

∏

j

Pj(x<t+τ)
1−Pj(x<t) . Pi(t) is the

probability of node vi with a lifetime of t seconds.

Our goal is to find a replica placement strategy that mini-

mizes the replica maintenance cost and replica resources usage

while maximizes the service reliability offered by nodes {vj}.
However, it is important to note that this problem does not have

an exact solution since practical systems often contain a large

number of nodes and the storage capacity of the nodes may

range from a few units to a few thousands of units. Potentially,

it is impossible to enumerate all of the solutions. Therefore,

our replication algorithm is developed and we will describe it

in details in the following section.

III. TOPOLOGICAL SIMILARITY-BASED REPLICATION

SCHEME

In this section, we start off by introducing topological sim-

ilarity and describing replica placement consideration. Then,

the design of the scheme is described.

A. Topological similarity

Consider the example showed in Fig. 1(b), where the nodes

in the region marked with the dash line depart from the

multicast session because of the network partition. To avoid

that, one remote node is preferred to be placed by node 8 as

mentioned before. But the challenge is how to find this type

of nodes (e.g., node 26) while keeping cost low. Based on

the analysis of the relationship between nodes, we find that

two nodes in vicinity have a high similarity in topology. The

more shared nodes they have, the closer and more similar they

are. Given that, we define a quality index named topological

similarity as follows:

Definition 1: Given a node vi, the topological similarity of

vi to node vj , denoted by Sa(i, j), is used to describe the

similarity between vi and vj in topology, which is given by:

Sa(i, j) =
|Sneigh

i ∩ S
neigh
j |

|Sneigh
i |+ |Sneigh

j |
(2)

where S
neigh
i and S

neigh
j refer to the neighbor set of node vi

and vj that contain the two-hop neighbors of node vi and vj

respectively.

Intuitively, the value of Sa(i, j) reflects how similar the

nodes are in topology. Given a node vi, a large value of

topological similarity means the node vj is located close and

there is high overlap of the sets of the two nodes, while a

small value of that means that the node vj is located far away

from vi and there is a large space between those two nodes.

For simplicity, we use Sa to represent Sa(i, j) if there is no

confusion.

Consider the simple network given in Fig. 1. After receiving

update messages from nodes 4, 7, 9 and 14, node 8 can

have a neighbor set S
neigh
8 consisting of nodes 3, 4, 5, 7,

9, 10, 12, 13, and 15. S
neigh
8 shares 3 and 4 nodes with

that of node 7 and node 9, respectively. Then, we can get

Sa(7, 8) = 0.19 and Sa(9, 8) = 0.21. For node 26, it has

nodes 14, 15, 16 and 27 in S
neigh
26 which contains 1 node

of S
neigh
8 and Sa(26, 8) = 0.07. Compared to nodes 7 and 9,

node 26 shares fewer nodes and has lower similarity with node

8 in topology. Given the probability of one network partition

involving both nodes 8 and 26 is lower than that of network

partition marked with dash line, exploring node 26 as one

replica node can be a better choice for node 8 to improve its

service reliability. Therefore, in this paper, the technique that

is related to topological similarity is developed.

B. Algorithm Description

To begin with, we first introduce some important notions.

• The one-hop neighbor of node vi refers to the immediate

neighbor node of node vi [12].

• The k-hop neighbor of node vi refers to the immediate

neighbor of node vi’s k-1 hop neighbor, ∀k > 1.

• The incidence vector of neighbor set S
neigh
i , denoted by

Ui, is a vector whose entries are labeled with the members

of S
neigh
i . It subjects to: (Ui)k = 1 ⇔ vk ∈ S

neigh
i ,

otherwise (Ui)k = 0.

• The multicast session set of the network, denoted by

SM , contains the multicast sessions that are announced

by nodes to transmit information to multiple demanding

nodes. SM (i) and SM (j) are considered to be different

if and only if they are published by two different nodes.

• The multicast session set of node vi, denoted by SM
i , con-

tains the multicast sessions that vi involves in. It satisfies:

for 0 ≤ i ≤ N , SM
i ⊂ SM

G , where SM
G = ∪N

i=0S
M
i .

• The importance of node vi in SM (j), denoted by Imp
j
i ,

is defined as Imp
j
i = Number of descendants of vi

Number of nodes in SM (j)
,

where the descendants of vi are the nodes who are

listening data message from vi through the message paths.

With the above notions, each node along the multicast tree

creates its replica nodes by performing following procedure,

which consists of five steps: candidatelist construction, relia-

bility determination, topological similarity minimization, cost

reduction and replica placing.

Step 1: Candidatelist Construction It is accomplished by

two operations: filtration and reliability calculation.

Filtration A tree nodes vi first builds a new list listca
vi

(called candidatelist) and then adds the nodes in S
neigh
i whose

capacity satisfies cavail(t) > 0 to the list. Neither failed nodes

nor heavy loaded nodes are considered as the candidate nodes.

Reliability Calculation This operation is triggered as the

filtration is finished. Node vi begins to calculate conditional

reliability of nodes in listca
vi

using the formula mentioned in

section II. Given RR(t + τ |t) measures the probability of the

list nodes remaining in the network in next time slot τ , it

is utilized to help node vi choose one appropriate placement

strategy, which will be further described in the following steps.

Step 2: Replica Degree Determination The goal of this

step is to determine an appropriate value for |R| by carefully

combining the reliability theory and importance-aware repli-

cation strategy. The procedure of replica degree determination

is as follows.

• Node vi first lists all the nodes in the candidatelist with

their corresponding reliability in the descending order and

computes the minimum number of replica nodes r1 that

satisfies |ϕ(r1+1)−ϕ(r1)| < δ, where service reliability

ϕ(x) = 1 −
∑x

i=1 RR(t|τ) and δ is a system parameter

that is configured by default. Based on both reliability

theory and experimental results, we find that there is no

apparent improvement in service reliability after δ reaches

a certain value. In GeoCast, it is set to 0.01 (as suggested

by results in Fig. 5).

• The importance of node vi Im is then measured by

using the information collected from its children nodes,

which is defined as Im = |SM (j)|
∑

|SM (j)|

∑

Imp
j
i . Given

the importance of node vi Im, the number of repli-

ca nodes r2 desired by node vi can be calculated as

r2 = rounded(1 + Im ∗ W), where W represents the

local knowledge of node vi about the network, defined

as W = log2dG.size−log2dR.size
|immediate neighbors| . The method of r2’s

calculation ensures that the more important vi is, the

larger r2 is.

• At last, the replication degree is fixed by choosing

the bigger one from r1 and r2, which satisfies |R| =
max{r1, r2}. To minimize the topological similarity be-

tween replica candidate nodes, the first |R| nodes in

sorted candidatelist are selected and added to a new set

(called prereplicaset).

Step 3: Topological Similarity Minimization It is achieved

by iteratively choosing the candidate nodes with low topolog-

ical similarity but not including in prereplicaset to replace

the prereplicaset nodes. At each time, node vi checks if

the set prereplicaset satisfies: ϕR
′ (|R|) ≤ ϕR(|R|), where

R
′

is a temporary set such that R
′

⊂ candidatelist. If

so, the node with highest topological similarity is removed

and the candidate node is added into prereplicaset. This

procedure is executed repeatedly until SaR
′ ≥ SaR, where

SaR = Sa(i, j) = 1
|R|

∑

Sa(i, j), ∀vi, vj ∈ R.

In this procedure, nodes in candidatelist that have low-

er topological similarity to the nodes in prereplicaset

are only considered. If there is a node uj such that

Sa{prereplicaset−{ui}}∪{uj}
< SaR, ui that is the node

with highest topological similarity is replaced with uj in

prereplicaset. Another operation could also be triggered in the

similar way. It executes repeatedly until there is no replica

placement having the lower topological similarity than SaF ,

where R is the improvement replica placement strategy after

the mth operation. In such a way, SaR is convergent.

Step 4: Cost Reduction Similar to Step 3, this step is done

by replacing the prereplicaset nodes with the candidate nodes

with less replication cost which satisfying the conditions:

ϕR
′ (|R|) ≤ ϕR(|R|) and SaR

′ ≤ SaR.

Step 5: Replica Placing Nodes remaining in prereplicaset

are selected as replicas and node vi places its files/information

on them.

To avoid introducing extra overhead, we attach the main-

tenance information of replicas to the existing heartbeat mes-

sages. Every T seconds, heartbeat mechanism is performed

where T is a constant that refers to the parameterized heart-

beat period. Long time absence of heartbeat or its responds

indicates that the node has left, an then initials the recovery

process mentioned in [13].

Once a replica departure is detected by node vi, the update

of replica list is triggered by performing the following steps.

• Node vi first checks if the condition of |R| ≥
max{r1, r2} is still satisfied. If so, end this update.

Otherwise, go to next step.

TABLE I
SIMULATION SETUP

Parameter Value

Number of Routers 8080 (80 transit routers and 8000 stub routers)

Number of Nodes [1000,2000,4000,6000,8000]

intra-transit link in [50ms,80ms]
Link Latency transit-stub link in [10ms, 20ms]

intra-stub link in [1ms, 5ms]

5% nodes with 1000 units
Capacity Distribution 15% nodes with 100 units

30% nodes with 10 units
5% nodes with 1 unit

Group Number
⌊

(log1.25
N

11.5
)−1

⌋

-1

Group Size [
⌊

N ∗ r−1.25 + 0.5
⌋

, 11]

Lifetime Distribution Pareto (α = 1.1,β = 0.05)

Simulation Time 7200

r [0,8]

RT [30,120]s

• The candidatelist and prereplicaset are created and ini-

tialized by adding the qualified nodes that are in the

replica set. Then, go to next step.

• With such setting of candidatelist and prereplicaset, the

proposed replication algorithm is performed.

The computation complexity of the topological similarity-

based replication algorithm is O(n(logk + k)), where n is

the number of nodes contained in Sneigh and k is a variable

ranged from 1 to n. Since a network may consist of a large

number of nodes, it is necessary for the nodes to reduce the

computation complexity. The most effective way is to reduce

the number of nodes in the neighbor sets and the number of

replica nodes. But from experiments we find that n and k are

normally within [10, 20] and [1,6] respectively that enable the

complexity of the proposed scheme is low even in a large

network. In addition, it is important to point out that not all

nodes in Sneigh are valid for replica selection since some

nodes may be overloaded at that point in time.

IV. PERFORMANCE EVALUATION

In this section, we use extensive simulations to evaluate the

proposed algorithm.

A. Experimental environment

We use Transit-Stub graph model of the GT-ITM topology

generator to generate network topologies for our simulation.

All experiments in this paper are run on 10 topologies with

8080 routers. Table I lists the detailed parameter setting used

in our simulations.

With the lack of real-world trace data to drive these ex-

periments, we use the method mentioned in [14] to simulate

distribution of group size and group number. A modified range

[
⌊

N ∗ ra−1.25 + 0.5
⌋

, 11] is set on the group size, where N

is the number of nodes in the system and ra is a system

configured variable, ranging from 2 to
⌊

(log1.25
N

11.5)−1
⌋

. We

simulate the behaviors of joining nodes in the network using

Pareto lifetime function [15] with α = 1.1 and β = 0.05,

where the average lifetime of joining nodes is around 0.5 hour.

(a) Neigh (b) RAM (c) N&R (d) Mcost

Fig. 2. Comparison of replica number in terms of node number

To study the effectiveness of TSRS, we compare the scheme

TSRS to RAM, Neigh, N&R and Mcost in various scenar-

ios. RAM [10, 16] in our simulations refers to the random

replication scheme where the locations of data copies are

selected by following an uniform distribution. Neigh refers

to the neighbor-based replication approaches [8, 17]. N&R is

a simple extension scheme of Neigh and RAM designed to

reduce construction cost caused by RAM and improve relia-

bility of Neigh. Mcost refers to the replication schemes [9, 18]

with the aim of minimizing both replica construction cost

and its maintenance cost while satisfying system reliability

requirement.

B. Results

We first make a comparison between the replication schemes

in networks with different size, as shown in Table II. In Table

II, n1 and n2 denote total number of interrupted services with

and without replication scheme respectively. The results lead

to two observations. First, all of three replication schemes:

Neigh, RAM and N&R, can improve their performances by

increasing the replica number r. However, after r reaches

5, increasing the number of replica nodes does not achieve

dramatic improvement in the metric. This is, essentially,

because of the redundancy among the replica nodes. Second,

the scheme TSRS yields better performance in all cases than

Mcost and other counterparts with smaller r (i.e., r < 5).

Similar to Neigh and N&R with r = 5, TSRS achieves a

reduction from 99.35% to 99.61% in service interruption. This

benefits from the flexibility and reliability of the TSRS replica

nodes, which enables them to have high probability to be alive

and consequently be able to detect and react to the changes

of the network quickly. The results also show that Mcost

achieves a poor performance. This is due to the influence of

the failures of nodes with high reliability. In Mcost, the nodes

with higher reliability may have fewer replicas, but heavier

backup workload.

Fig. 2 measures the average number of the valid replica

nodes per node as a function of network size for the schemes.

As the results in Table II suggest, we vary r from 5 to 8

to obtain the optimal performance of the schemes so that we

can study the substantial benefits of TSRS. We observe that

both TSRS and Mcost yield better performance than the other

schemes in terms of replica node number. But unlike TSRS,

Mcost fails to achieve high efficiency in terms of the number

of service interruptions, as shown in Table II. Potentially, this

indicts that the scheme of TSRS provide a better way for data

TABLE II
COMPARISON BETWEEN REPLICATION SCHEMES IN NETWORKS WITH

DIFFERENT SIZE

n1

N=1000 N=2000 N=4000 N=6000 N=8000

Neigh

r=1 82 220 397 480 690
r=2 36 131 197 353 495
r=3 35 92 182 284 234
r=4 23 72 105 161 168
r=5 14 49 54 126 145
r=6 11 40 36 76 111
r=7 9 16 33 65 91
r=8 5 11 21 44 82

RAM

r=1 84 211 380 585 649
r=2 45 150 248 402 437
r=3 36 80 180 177 277
r=4 13 76 96 153 136
r=5 8 23 53 97 110
r=6 6 25 48 9p 75
r=7 5 23 41 64 70
r=8 2 20 33 50 65

N&R

r=1 80 203 385 496 687
r=2 47 91 333 296 403
r=3 46 74 124 210 301
r=4 17 65 142 197 217
r=5 13 45 90 105 154
r=6 11 38 84 99 107
r=7 8 17 50 95 103
r=8 2 16 49 58 72

Mcost

Target = 0.7 122 246 562 700 898
Target = 0.8 124 247 558 702 897
Target = 0.9 120 217 465 588 760

Target = 0.99 102 224 372 563 690

TSRS 13 46 77 93 135

n2 1988 7232 12409 22302 34419

Reduction Rate(%)=
n2−n1

n2

99.35% 99.36% 99.38% 99.58% 99.61%

replication with consideration of the reliability of nodes. Given

Mcost is not practical due to the poor performance of Most

in dealing with node failures and the network partitions, we

ignore the analysis of such method in the rest of paper for

reliability purposes.

Fig. 3 shows that the performance of RAM and N&R

heavily depends on the setting of parameter r. The larger r

is, the more messages are generated. By comparing RAM

with N&R, we see that RAM generates less messages for

replica creation than N&R, especially when the network size

is larger. This is because of the extra overhead generated for

neighborhood inquisition. In N&R, the inquire messages are

initiated and sent to both remote nodes and neighbor nodes. S-

ince it is hard to determine the range of the inquisition, a large

number of messages might be issued during this procedure

and consequently degrades the performance of applications.

(a) Neigh (b) RAM (c) N&R (d) Mcost

Fig. 3. Comparison of Creation Cost in Terms of Node Number

(a) N ∈ [1000, 8000] (b) N=4000 (a) ∆Sa ≤ 10−4 (b) N=4000

Fig. 4. Effect of RT Fig. 5. Convergence Speed

Different with them, TSRS yields better performance. The

replica number in TSRS are delicately determined by nodes

based on their statuses and the network condition.

Fig. 4(a) illustrates the effectiveness of TSRS under differ-

ent RT. RT refers to the time required for node initialization

right after it is selected as a replacement node to take over the

island previously owned by failed node. We vary RT from 30s

to 120s. It is observed that more services tend to be interrupted

when RT is larger, as well as when the network size is larger.

This can be explained by the fact that as growing RT the nodes

in the network are more likely to fail in a long time interval and

it consequently leads to a poor performance in terms of service

interruption. However, given the results showed in Table II, we

find that the scheme of TSRS with RT= 60s can still have a

high reduction rate. For instance, in the network of 8000 nodes,

it achieves 99.3% saving. The results in Fig. 4(b) show the

distribution of service interruptions over time in the network

of 4000 nodes. We note that the metric gradually drops with

the run time. This is because that majority of node failures

happen at the beginning stage of simulation, which confirms

the nature of nodes in the underlay network.

Fig. 5(a) illustrates the convergence of the algorithm TSRS

when the network size changes. The upper bound of parameter

∆Sa, defined as ∆Sa = Sasi+1
− Sasi

is set to 10−4. This

value is chosen to make sure that there is no big difference

between the topological similarity of the replica placement

strategies when the algorithm is stable. The results show

that in all cases the time required for convergence to stable

is short(less than 10). Fig. 5(b) provides a further study of

the performance of the algorithm in the network of 4000

nodes. We see that after a few adaptations, TSRS reduces the

topological similarity of placement strategies to a small value,

which implies the fast convergence of the algorithm.

V. RELATED WORK

Many research studies have also been conducted to cope

with massive node failure and keep high data availability by

using the technique of file replication. In those studies, location

of the replica nodes are determined based on node ID [1, 2, 6],

query path [3–5], or neighbor locality [7, 8].

The ID-based replication determines replica nodes based

on the relationship between the node ID and the data/file’s

ID, where the replica nodes are the nodes whose IDs match

most closely to the data/files’ IDs. In PAST [1], each file is

replicated on a set of nodes whose node ID are numerically

closest to the files’ ID. A new replica is created immediately

following a failure. CFS [2] divides files into blocks and

spreads them evenly over the available servers to prevent

large files from causing unbalanced use of storage. In recent

work, Hirokazu et al. [6] propose a distributed interval tree

replication scheme for adaptively setting the replicated objects

considering the scale of networks. The replicas are assigned

to the nodes of the interval tree created by the node with file.

In the path-based replication, the data/file copies are placed

on the nodes along the file routing path from the requester

node to the provider node. LAR [3] creates replicas on the

source of the query and adds routing hints to the replica on

nodes along the message query path. In Freenet [4], each node

along the path from the source node to the query node stores

a copy of the file. OceanStore [5] places the replicates data on

or near the client machines where the data is accessed. Those

replicas function as local access points for the data. However,

due to time-varying file popularity and node interest variation,

most of the replicas cannot be fully utilized.

The neighbor locality based replication makes file repli-

cation among the nodes located in the neighborhood of the

data/file host node. Plover [7] makes file replication among

physically close nodes based on node available capacities.

It enables the file replication and consistency maintenance

to be conducted among physically close nodes. Peercast [8]

developed a neighbor-based replication scheme, where data

copies are put on nodes who are locating in the neighborhood.

However, this type of schemes has two drawbacks. First, it

ignores the heterogeneity of nodes’ importance in the services.

Second, it subjects to a difficulty in determining replication

degree.

There are other studies [9–11, 19] for file replication based

on the file popularity or request rate. Most of them focus on

the relationship among the number of replicas, file search time,

and load balance, but do not investigate the impact of replica

location on file query efficiency.

There are two important features distinguish our approach

from the existing approaches. First, our approach leverages

node heterogeneity in lifetime, capacity and importance to

improve the replication flexibility and reduce the replication

cost caused by replica creation and maintenance. Second, our

approach makes good use of the information encoded in the

link structure of the nodes and reduces the impact of different

network partition on the service quality.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a cost-effective replication scheme to

provide scalable and reliable group communication services.

It is novel as it exploits nodes’ topological similarity and

importance heterogeneity in a distributed fashion to improve

the service reliability while keeping the replication overhead

low. Through extensive experiments, we demonstrate that

TSRS increases the reduction rate up to 99.63% and reduces

the number of data copies up to 60% when comparing to the

existing replication degree based approaches, the cost-aware

replication schemes, and their simple alternative schemes. The

results also show that TSRS is practical as it can deal with fail-

ures in different patterns without scarifying the service quality

in terms of service interruption and replication overhead. Our

future work will focus on developing techniques to increase

the utilization of the replica nodes and improve the efficiency

of our proposed scheme.

VII. ACKNOWLEDGMENT

This paper is supported by the National Basic Research

973 Program of China under Grant No. 2009CB320805,

the National Natural Science Foundation of China under

Grant No. 61170188, the National High Technology Research

and Development 863 Program of China under Grant No.

2012AA011803, and Fundamental Research Funds for the

Central Universities of China. The third author is partially sup-

ported by grants from NSF CISE NetSE program, CyberTrust

program, an IBM faculty award and an Intel ISTC on Cloud

Computing.

REFERENCES

[1] P. Druschel and A. Rowstron, “Past: A large-scale, persistent
peer-to-peer storage utility,” in HotOS’01, 2001, p. 0075.

[2] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with cfs,” ACM SIGOPS Oper-
ating Systems Review, vol. 35, no. 5, pp. 202–215, 2001.

[3] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
“Adaptive replication in peer-to-peer systems,” in ICDCS’04,
2004, pp. 360–369.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,”
pp. 46–66, 2001.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells
et al., “Oceanstore: An architecture for global-scale persistent
storage,” ACM SIGARCH Computer Architecture News, vol. 28,
no. 5, pp. 190–201, 2000.

[6] H. Yoshinaga, T. Tsuchiya, H. Sawano, and K. Koyanagi, “A
study on scalable object replication method for the distributed
cooperative storage system,” in ICDT’09, 2009, pp. 96–101.

[7] H. Shen and Y. Zhu, “Plover: a proactive low-overhead file
replication scheme for structured p2p systems,” in ICC’08,
2008, pp. 5619–5623.

[8] J. Zhang, L. Liu, L. Ramaswamy, and C. Pu, “PeerCast: Churn-
resilient end system multicast on heterogeneous overlay net-
works,” Journal of Network and Computer Applications(JNCA),
vol. 31, no. 4, pp. 821–850, 2008.

[9] H. Yu and A. Vahdat, “Minimal replication cost for availability,”
in PODC’02, 2002, pp. 98–107.

[10] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,” in ICS’02,
2002, pp. 84–95.

[11] S. Tewari and L. Kleinrock, “Proportional replication in peer-
to-peer networks,” in Infocom’06, 2006.

[12] Y. Wang, L. liu, C. Pu and G. Zhang, “GeoCast: An Efficient
Overlay System for Multicast Application,” Tech. Rep., GIT-
CERCS-09-14, Georgia Tech, 2009.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A scalable content-addressable network,” in SIGCOMM’01,
vol. 31, no. 4, 2001, pp. 161–172.

[14] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level
multicast infrastructure,” IEEE Journal on Selected Areas in
communications, vol. 20, no. 8, pp. 1489–1499, 2002.

[15] X. Wang, Z. Yao, and D. Loguinov, “Residual-based estima-
tion of peer and link lifetimes in P2P networks,” IEEE/ACM
Transactions on Networking(TON), vol. 17, no. 3, pp. 726–739,
2009.

[16] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, “Location-aware
topology matching in P2P systems,” in Infocom’04, 2004, pp.
2220–2230.

[17] T. Chang and M. Ahamad, “Improving service performance
through object replication in middleware: a peer-to-peer ap-
proach,” in P2P’05, 2005, pp. 245–252.

[18] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Com-
puting Surveys (CSUR), vol. 37, no. 1, p. 81, 2005.

[19] S. Tewari and L. Kleinrock, “Analysis of search and replication
in unstructured peer-to-peer networks,” vol. 33, no. 1, pp. 404–
405, 2005.

