
Performance Analysis of Packet Capture Methods
in a 10 Gbps Virtualized Environment

Michael J. Schultz and Patrick Crowley
Washington University in Saint Louis

Department of Computer Science and Engineering
Saint Louis, MO 63130-4899

Email: {mjschultz, pcrowley}@wustl.edu

Abstract—Network speeds are increasing and processor core
counts rise while processor clock rates stagnate. This has led to
both packet processing applications distributing their workload
over several cores and virtualization of physical systems also
using multiple cores. However, these two concepts are at odds
with each other as both must take full advantage of multi-core
systems for desirable performance.

In this paper, we look at the performance considerations of
dealing with 10 Gbps traffic rates in worst case loads using a
bare-metal system and a virtual appliance model and several
difference packet capture methods. We also discuss potential
ideas to improve the performance of these virtual systems.

Index Terms—network monitoring; performance evaluation;
throughput; virtualization

I. INTRODUCTION

Network speeds have increased to 10 Gbps and with the
IEEE 802.3ba standard approved [14] it may not be long be-
fore 100 Gbps networks are deployed in an enterprise setting.
Meanwhile, in commodity CPUs, processor frequency scaling
has been replaced by processor core scaling. Networking
appliances have taken advantage of multi-core processors by
distributing the network load to several processor cores on
commodity servers to keep pace with the demands of a modern
network. However, this proliferation of processor cores has
also enhanced another factor: virtualization.

Virtualization allows several logically distinct computing
appliances to exist on a single physical piece of hardware.
Instead of having a physical machine dedicated to a firewall
appliance and a second machine for an intrusion detection ap-
pliance, a network administrator can purchase a single physical
machine and instantiate two virtual machines (VMs) on that
physical hardware. With processor core counts continuing to
rise, server consolidation makes financially sense and improves
resource utilization.

However, if we couple the trend of distributing network
processing over multiple cores with the trend of virtualizing
network appliances the outcome may not be as good as
expected. To better understand this problem we configured
a physical machine to receive and process packets of several
sizes using various packet capture methods. We then repeated
the same experiments on a VM. Concretely, this paper makes
the following contributions.

• A clear explanation of an experimental design that can
be used to evaluate network processing workloads in a

virtualized environment
• The results of a controlled, multi-factor experiment that

suggest the following guidelines: single-core 10 Gbps
performance is sustainable on bare-metal for maximum
sized packets on 2.2 GHz processor, guest operating
system throughput can achieve about 1 Gbps without spe-
cialized software, and on bare-metal a kernel module can
outperform state-of-the-art user-space receive methods.

• A discussion of future directions in virtualized network-
ing research

II. VIRTUALIZATION BACKGROUND

Most modern Intel and AMD processors have an extended
instruction set that enables hardware virtualization support
(VT-x [15] and AMD-V [5]). With support enabled the pro-
cessor can execute an instruction that puts the processor into a
special ‘unprivileged’ mode of operation. In this mode, if the
instruction stream takes an action that would normally cause
system state (special purpose registers, access special memory
regions, etc.) to change a trap exception is generated. This trap
exception fills out the reason for the trap in shared memory
between the guest and the host and allows the host to take
control of the processor. Since the host runs in ‘privileged’
mode it can modify system state and will emulate and process
the reason the guest operating system caused the trap.

In a performance critical piece of software, like a high-
speed network device, this trap-decode-emulate cycle can take
too much time. To help alleviate this burden, a special type of
device driver has been created called a “paravirtualized driver.”

Paravirtualized drivers are a step towards achieving higher
performance in virtual machine I/O. Both Xen [17] and
KVM’s virtio [24] drivers are paravirtual. This means that
instead of the host system emulating a complete network
device (typically Realtek’s RTL8139) and its quirks it provides
a software-only device driver optimized to run in virtual en-
vironments. For the virtio paravirtualization driver, it presents
an interface to programmers who then can implement arbitrary
devices that interact with the guest system. The virtio network
driver uses a simple two queue system (transmit and receive).
However—as we will see in this paper—there are problems
when the driver is heavily loaded as the notification system
between the host and guest is “primitive” [24].



Bare-Metal Virtual Machine
Linux Kernel 3.2.1 3.2.1
Operating System CentOS 5.4 CentOS 5.5
Processor Clock Rate 2.27 GHz 2.27 GHz
Number of Cores 8 4
Private Cache Size 256 KiB 64 KiB
Shared Cache Size 8 MiB –
Memory 12 GiB 6 GiB
Control NIC Broadcom NetXtreme II Realtek RTL8139
Data Bit Rate 10 Gbps ∞
Data NIC Intel 82599EB Qumranet Virtio
Data Driver ixgbe virtio_net

TABLE I
SUMMARY OF BARE-METAL AND VIRTUAL MACHINE CONFIGURATIONS.

III. EXPERIMENTAL DESIGN

One goal of this paper is to provide a clear performance
baseline for future studies. To achieve this goal this section
explains our system configuration, testing infrastructure, and
our experiments.

A. System Configuration

In an effort to stay present with the mainline Linux kernel
this study uses kernel 3.2.1 in both the bare-metal and virtual
environment. The kernel is configured to enable KVM, KVM
support for Intel processors, and virtio paravirtualization driver
support [24] settings. Our machine specifications are summa-
rized in Table I and detailed below.

The bare-metal system uses CentOS 5.4 with the custom
kernel described above. Virtualization support is provided by
KVM [4] (distributed with the kernel) and uses libvirt [1]
(version 0.8.2) as the virtualization controller. The virtual
machine (VM) uses CentOS 5.5, again using the custom kernel
version 3.2.1 described above instead of the default.

The physical hardware contains two Intel Xeon E5520
quad-core processors with VT-x enabled and hyper-threading
disabled giving us eight physical cores that can use hard-
ware accelerated virtualization. Each core has a clock rate
of 2.27 GHz, a private L2 cache size of 256 KiB, and a
processor-shared L3 cache size of 8 MiB; total system memory
is 12 GiB. Unfortunately, our processor does not have I/O
MMU virtualization (VT-d) available, preventing us to perform
experiments using the PCI single-root I/O virtualization (SR-
IOV) standard [20].

Attached to the physical hardware are two networking
devices. The first device is a Broadcom NetXtreme II 1 Gbps
network card that is used purely for control messages (SSH
sessions, start/stop commands). This is connected to the
100 Mbps control network and uses the bnx2 driver. The
second device is an Intel 82599EB 10 Gbps network card
and is used purely for the generated data traffic described in
Section III-E. This network card is connected to a 10 Gbps
data network and is capable of using MSI-X [21], VMDq [7],
and SR-IOV (though again our chipset does not support SR-
IOV). Linux kernel 3.2.1 ships with the ixgbe driver version

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7

vcpu3vcpu2vcpu1vcpu0

VM Frame
RSS Algorithm

Fig. 1. Configuration of interrupt device receive queues, interrupt bindings,
and virtual processor bindings.

3.6.7-k which we will use for most of our experiments,
unless otherwise noted.

During our virtualization experiments, the VM is configured
with four virtual processors that use hardware virtualization
(thus they also have a clock rate of 2.27 GHz), but certain
“privileged” operations will be emulated by KVM. The VM is
configured with 6 GiB of memory. As with the physical hard-
ware, the VM has two network cards. The first device is a fully
virutalized Realtek RTL8139 network card (the default virtual
network card for most hypervisors). This card is connected
to the control network, so its performance does not matter.
The second device is the Qumranet Virtio network device
connected to the data network. As mentioned in Section II
the “virtio” driver is paravirtualized and is limited only to the
amount of data that the processor can share between the host
and guest systems.

Physical to virtual bindings can be seen in Figure 1. CPUs
that are even numbered exist on the first physical processor;
similarly odd numbered CPUs exist on the second physical
processor. Thus, the four virtual CPUs at the top of the Figure
are all bound to a single physical processor. The physical
network card uses receive side scaling (RSS) to distribute
incoming frames over distinct queues. Since experimental
traffic is destined for a single machine, all receive queues have
interrupts bound to cpu7 to prevent inter-processor interrupts.

Virtual networking is done using a bridged host network.
Simply put this creates a software switch (“bridge”) in the
host operating system that is connected to both the host data
interface and the guest data interface. This gives the virtual
data interface a logically direct connection to the control and
data networks. The logical breakdown of receiving a packet
on a bridged network can be seen in Figure 2. Traffic that is
destined for the VM must go through the host system’s bridge
code before being pushed through a virtual network device for
reception in the guest system.



VM Frame

data_if

vnet1 data_if

Data Bridge

Host CPU

Guest vCPU

Fig. 2. Logical processing that must happen when a processor receives a
packet at the software bridge.

10 Gbps Switch

10 Gbps pktgen

10 Gbps pktgen

10 Gbps pktgen

10 Gbps pktgen

10 Gbps pktgen

SUT

Fig. 3. Experimental setup for generating packets and sending them to the
system-under-test (SUT).

B. Testing Infrastructure

All tests are performed using the Open Network Laboratory
(ONL) [30]. Using ONL enables us to test the system in a
reproducible fashion without unknown external factors.

Generating packets at 10 Gbps without specialized hardware
is challenging, though easier than receiving packets at the same
rate. To ensure there are enough packets for the system-under-
test (SUT) to receive, we use a 10 Gbps network switch to
aggregate multiple Linux kernel packet generators [18], as can
be seen in Figure 3. Further details of the packet generation
will be discussed in Section III-E.

Experimental runs are completely automated once the ONL
topology for the experiment is loaded. For each packet capture
method the software is built and processing is started on the
SUT, then the packet generators are started. During the run,
every 10 seconds the average throughput for that interval
is emitted to a log file. On the completion of a test the
packet generators are stopped, the packet processing software
is stopped, the log file is gathered and stored in a unique file on
a centralized host, and then the SUT is rebooted. Performance
data is processed post facto.

C. Packet Processing Methods

One factor of interest to us is the differences between
various software packet processing methods on bare-metal and
virtual machines. As such, we have selected a kernel-space
based packet processing method and two user-space packet
processing methods. For the kernel-space packet processor
we are using the Passive Network Appliance (PNA) [25].

Hardware

Hypervisor

Host
O/S

Guest
O/S

Hardware

Guest
O/S

Host O/S

Hypervisor

Type 1 Type 2

Fig. 4. Two hypervisor types. Our experiments use KVM (type 2).

The PNA has been previously developed by the authors to
facilitate fast processing of packets on commodity hardware
and has been proven to handle a constant load of about
1 Gbps in an operation setting. It also supports both ‘null’
monitoring—capturing a packet, but performing only header
field extraction—and ‘flow’ monitoring—capturing a packet
and inserting its features into the hash table.

For the user-space packet processing methods we use the
Linux standard PF_PACKET capture methodand Fusco and
Deri’s PF_RING capture method [12]. In both cases a spe-
cial user-space version of the PNA software was built to
keep difference between the kernel- and user-space versions
minimal (e.g. the kernel-space implementation uses the Linux
sk_buff structure while the user-space implementation uses
parameter passing for the data we need). With the processing
code in place, the differences between all three implementa-
tions lies solely in the interactions with the device driver and
kernel networking stack.

Since PF_PACKET is the default kernel implementation, we
use the ubiquitous lipcap library (version 1.1.1) to capture
packets [2]. During packet processing, the PCAP callback
handler passes the packet data and true packet length to the
user-space PNA software for processing.

For PF_RING based processing, we use the pfring li-
brary distributed with the sources [10]. As with the libpcap,
the pfring library provides a callback handler that passes in
the packet data and length which we simply pass on to the
user-space PNA implementation.

Since the PF_RING kernel module supports a mode of di-
rect access to the network card (“transparent_mode=2”)
it ships with a modified version of the ixgbe driver, so the
bare-metal PF_RING experiments use this modified driver
based on the 3.6.7 version. In the virtual experiments, there
is no specialized driver and PF_RING must use the default
mode of operations.

D. Operating System

As with the packet processing method, we are also interested
in how bare-metal performance compares to VM performance.
We have previously mentioned the hardware specifications
for our bare-metal system and that we are using the KVM
hypervisor for our virtual platform in Section III-A.



Factor Level 1 Level 2 Level 3
Hardware Platform Bare-metal Virtual (KVM)
Processing Method Kernel Module PF_PACKET PF_RING
Packet Monitor Null Flow
Flow Distribution Single Multiple
Packet Size 64 bytes 256 bytes 1518 bytes

TABLE II
SUMMARY OF EXPERIMENTAL FACTORS AND TESTING LEVELS VARIED

DURING OUR TESTING.

Beyond the specific configuration of the VM, there is a
distinction between types of virtual machines [13]. KVM is
defined as a “type 2” hypervisor, meaning that the host operat-
ing system boots as it normally would and the hypervisor (or
virtual machine montior) is contained within the host system,
as seen on the right of Figure 4. This type also includes
products like Oracle’s VirtualBox [19]. The other method of
virtualization is a “type 1” hypervisor where the hardware is
directly controlled by the hypervisor which starts a special
host operating system to interact with the hardware, as seen
on the left of Figure 4. This hypervisor type is used by Xen [9],
VMware’s ESX and ESXi [28].

E. Experiments

Beyond the three packet processing methods and two plat-
forms we are testing, the other factors we have varied in
our experimentation are: amount of processing to be done,
input packet distribution, and input packet size. Table II shows
a summary of all our experimental factors and their levels.
Section IV presents our evaluation of these factors.

To vary the amount of processing done we use both a
“null” monitor and a “flow” monitor. The null monitor is
simple. It allows the Linux kernel to do the smallest amount of
processing needed to deliver the packet our processing stage,
at which point we capture the packet length for performance
tracking and discard it. It also decodes some packet header
fields, all of which are constant time operations. The flow
monitor performs all the above steps and additionally inserts
the flow features into a d-left hash table [29]. We define a flow
record as the five-tuple consisting of the source and destination
network address, transport protocol, and source and destination
transport port numbers.

Since our goal is stress testing the packet processing meth-
ods, we are interested in the difference between a heavy, but
computationally simple load and a heavy, but computationally
intense load. This is done by using two flow distribution
types: ‘single’ and ‘multi.’ The ‘single’ flow distribution
maintains the exact same flow five-tuple for every packet sent
to the system-under-test. In the flow monitor example this
means that every packet will hash to the same table entry,
update the feature counts, and finish processing. The ‘multi’
flow distribution makes every packet received by the SUT
distinct, so each packet belongs to a different flow five-tuple.
Specifically, each packet generator instance generates packets
using a separate network address range and a port combination
the does not repeat until over four billion packets have been

send by that host. Since a 10 Gbps network can only send
a maximum of 14.8 million packets per second, this ensures
each packet belongs to a different flow.

Many modern network cards (including ours) implement
TCP segment offloading which allows the hardware to coa-
lesce packets in the same TCP flow before sending them to
the operating system. To avoid any chance of this influencing
our experiments the packets we generate are all UDP packets,
so there is no point at which the hardware or software can try
to artificially improve performance.

Our final factor is the input packet size. Again, since we are
stress testing the system we want to know how it performs in
different situations. For the input packet sizes we have selected
64 (min), 256, and 1518 (max) byte sized packets. Note
that generating 64 byte packets at high rate on commodity
hardware does not saturate the 10 Gbps link; however, each
packet generator instance is capable of generating approxi-
mately 600 Mbps of data and the aggregation of that gives an
input rate of 3 Gbps which is much higher than the SUT can
handle in that scenario.

IV. EVALUATION

To evaluate our system, we used a full factorial design with
the five factors at each of the levels listed in Table II [16]. Each
experiment was replicated five times with each replication
running for 240 seconds. The system-under-test was rebooted
after every test to ensure any residual state is cleared out prior
to beginning the next test. Throughput samples were taken
every 10 seconds with the first two and last two discarded
as they may include samples taken before all the packet
generators have warmed up or cooled down. Some replications
may also include fewer data points if the system-under-test did
not reach a stable state when testing began (i.e. the system had
not finished booting).

The main packet processing in all experiments is bound to
a single core in both the bare-metal and virtual machine runs.
However, each machine does have other cores available that
idle most of the time and can perform whatever bookkeeping
tasks that the operating system needs to run (e.g. control
network connections for data collection).

Our first set of experiments determines the bare-metal
performance of our platform. Figure 5 shows the throughput
values for this set of experiments. Though not shown on the
graph all the 95% confidence intervals are all within 20% of
their respective averages and most are withing 5%. This clearly
shows very poor throughput performance in the minimum
sized packet case with the PF_PACKET capture method at
330 Mbps, below both PF_RING (391 Mbps) and the PNA
kernel module (1056 Mbps) in the null monitor case at this
packet size. In the flow monitor case none of the methods
showed strong statistical significance in their differences.

As packet sizes scale up to 256 and 1518 bytes per packet
the PNA kernel module is within 200 Mbps of line rate in
all cases. This means that time it takes to receive a maximum
sized packet is longer than the time it takes to insert the flow
record into our hash table.



0 200 400 600 800 1000 1200 1400 1600
0

2000

4000

6000

8000

10000

Packet Size (Bytes)

Megabits
per second

PCAP/Flow/multi

PCAP/Null/single

PFRING/Flow/single

PFRING/Null/singlePCAP/Flow/single
PCAP/Null/multi

PFRING/Null/multi

PFRING/Flow/multi

PNA/Flow/multi

PNA/Flow/single

PNA/Null/single

PNA/Null/multi

Fig. 5. Bit rates for our experiments running on bare-metal.

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

Megabits
per second

Packet Size (Bytes)

PCAP/Null/multi
PCAP/Flow/multi

PNA/Flow/multi
PFRING/Flow/multi

PNA/Flow/single
PCAP/Null/single

PCAP/Flow/single
PNA/Null/single

PNA/Null/multi
PFRING/Null/single

PFRING/Null/multi

PFRING/Flow/single

Fig. 6. Bit rates for our experiments running on a virtual machine.

Our next set of experiments looked at the performance of
VMs in packet capture, the results of which are shown in
Figure 6. To better show the details, the y-axis of Figure 6
only goes to 1400 Mbps instead of 10,000 Mbps as used in the
bare-metal results. Unfortunately, in all cases the throughput
results are so small that there is no statistically significant
difference among the points. Even the “best” performing
method (PF_RING with 1518 byte packets and a single flow),
which has an average throughput of 1306 Mbps comes with a
95% confidence interval of ∓846 Mbps!

This result demonstrates the complexity of virtualization.
As shown earlier in Figure 2 and discussed in Section III-A
when a packet is destined for a virtual machine it must first
be received by the host operating system, processed through
a software bridge, pushed to the hypervisor, and then pulled
into the kernel of the guest operating system, at which point
several of the packet reception stages occur a second time.
Even with the paravirtualized virtio-net driver used by
KVM, the packet still must be received by the host, pushed
into the user-space virtio driver then shared with the guest
system. Though the implementation is different, Xen uses a
similar system for paravirtualized networking.

Throughput 64 bytes 256 bytes 1518 bytes
10 Gbps 14880.95 4528.98 812.74
1 Gbps 1488.09 452.90 81.27

TABLE III
SUMMARY OF BARE-METAL AND VIRTUAL MACHINE CONFIGURATIONS.

Figure 7 shows the actual packet rates for both the bare-
metal and virtual machine experiments. For reference Table III
shows the maximum kilopacket per second values expected at
10 Gbps and 1 Gbps for the three packet sizes used. We only
label the highest performing VM experiment, but recall that
there is not a statistically significant difference between any
of the VM experiments.

This figure clearly shows that the host operating system
is failing to deliver packets at a rate that is even close to
proportional to the input rate with each packet size showing
a rate of approximately 70 kpps. The bare-metal number also
show that, at 10 Gbps, between 64 byte and 256 byte sized
packets there is also a processor performance bottleneck. In
most cases while as the packet sizes scale up to 1518 bytes
the system can perform at or near network speed.

V. DISCUSSION

During our experiments we found several interesting pieces
of information. First, the Linux kernel version can have a
major impact on performance. Though not shown in any of our
results, using older kernel versions could bring our bare-metal
throughput down from about 10 Gbps to 2.5 Gbps. This is
our prime reason for keeping the kernel up-to-date. Similarly,
the actual device driver used in the kernel can have a major
effect. When using the ixgbe 2.0.62-k2 driver distributed
with Linux kernel 2.6.34 we had peak performance numbers
of 2.5 Gbps (as stated above), but moving to the ixgbe 3.6.7
version improved our throughput to about 5 Gbps.

We also observed that our initial scheme of binding all
receive interrupts to cpu7 and binding the virtual packet
processor to vcpu3 (which is also bount to cpu7) resulted
in throughput performance in the 10 Mbps range (for 64 byte
packets). We believe this to be caused by contention on the
CPU between the host operating system using NAPI to poll
for packets and the guest operating system also using NAPI to
poll for packets (or disabling and reenabling interrupts through
the trap-decode-emulate cycle of virtualization). As such we
put the host receive and address space switching portion on
one CPU and the actual packet processing on a second CPU.
While technologies such as SR-IOV should help by reducing
the host operating system’s burden, this is still an area that
should be explored.

As will be discussed in the following section, Dong et al.
have begun exploring the interrupt emulation path for SR-
IOV aware systems [11]. We believe this to be an important
aspect of high-performance virtual systems as interrupts are
frequent and modify system state, meaning they must fre-
quently take the trap-decode-emulate path. Hardware support
for such systems may be in the near future, but the software



0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

Packet Size (Bytes)

Kilopackets
per second

PF_RING/single
VM experiments

Bare-metal experiments

PNA/Flow/single

PNA/Null/single

PNA/Null/multi

PNA/Flow/multi

PCAP/Flow/single

PFRING/Flow/single
PFRING/Null/multi PCAP/Null/multi

PFRING/Null/single

PCAP/Null/single

PCAP/Flow/multi

PFRING/Flow/multi

Fig. 7. Packet rates for both the bare-metal and virtual machine experiments.

aspects of interrupts should still be further explored to reduce
unnecessary overheads.

VI. RELATED WORK

Recent papers have looked at both network virtualization
and improving the performance of network processing in
a virtual environment. Note that these are distinct ideas.
“Network virtualization” research turns the physical network
into a software definable network for administrative purposes.
These proposals have consequences in virtual machine net-
work performance because they provide more direct methods
of capturing packets for processing [8][22][27]. Our goal is
to achieve high performance networking in virtual machines;
network virtualization’s goal is to better use network resources.

In the area of high performance networking in a virtual
environment there are proposals focused on improving the
path from initial frame reception to final processing on the
VM. Prior to Intel and AMD providing a virtual execution
environment, Sugerman et al. explored the use of VMware
Workstation’s Virtual Machine Monitor [26]. Their work ex-
plores handling I/O devices on a 733 MHz processor with
a 100 Mbps network. The analysis focuses on the transmit
side, though “TCP receive yields similar results and conclu-
sions” [26]. Their results show host side processing overhead
consumes most of the time during packet transmission. VM
performance matches native performance if the processor is
sufficiently powerful and data sizes are exceed 512 bytes.

A later document by VMware evaluates the ESX and ESXi
hypervisor in a 10 Gbps network environment [3]. This paper
focuses on the packet processing performance for 1518 byte
frames and jumbo (9000 byte) frames. At these packet sizes
they are able to achieve 5.4 Gbps in a single virtual machine.
Aggregating the throughput of multiple VMs allows them
to achieve network speeds of 9 Gbps. Unfortunately, due to
resource constraints we were not able to test their platform.

Hardware techniques to aide in virtual machine performance
exist in the form of Intel’s Virtual Machine Device queues
(VMDq) [7]. VMDq allows the network card to maintain
multiple hardware queues with separate interrupt request line
to the processor (which can be tied to a specific core). This
prevents the network card from raising an interrupt on one
core, running through the software bridge code, and then
raising an inter-processor interrupt to the core running the
VM. This moves the software switch to the network card,
however the host operating system still handles the interrupt,
some amount of packet processing, and moving the packet
from host virtual address space to guest virtual address space.

More recently memory chipsets and the PCI bus have added
virtualization support with the I/O MMU and single-root I/O
virtualization (SR-IOV) [20]. These technologies allow I/O
devices to provide performance critical PCI bus access directly
to the VM and enable the I/O MMU to be aware of the guest’s
address space. Combining these allows a guest operating
system to directly interact with the network card by providing



it with DMA addresses in its virtual memory space so the host
system does not need to perform translations. By doing this,
the host operating system no longer has to receive the packet,
process it, and re-map it to the guest’s address space; the host
only needs to forward the interrupt to the appropriate guest
operating system [23].

Recognizing this interrupt bottleneck, Dong et al. analyze
and improve the interrupt performance overheads between the
host and guest systems [11]. By taking advantage of SR-
IOV and looking at the aggregate throughput of 8 VMs they
are able to achieve a throughput of 9.57 Gbps in the virtual
environment while reducing the CPU utilization that interrupt
emulation introduces. Our hardware platform does not support
the PCI SR-IOV specification, so our experiments cannot
reflect these differences. We plan on purchasing SR-IOV aware
systems and re-running our experiments in the future.

In late 2011, Cardigliano et al. extended the PF_RING [12]
packet capture method used in this paper to be virtual machine
aware with vPF_RING [6]. This extension uses the virtio
framework to effectively bypass the hypervisor by using
mmap() to provide direct access to packet memory to the
paravirtualization driver, then using the event channels to map
memory into the guest system. This allows vPF_RING to
achieve about 1.8 Gbps on their testing platform. Due to
time and compatibility problems we were not able to get the
vPF_RING system to work in our environment.

We believe our work complements each of these by provid-
ing a baseline for single core packet processing performance
in VMs, rather than aggregate performance.

VII. CONCLUSIONS

With network speeds and processor core counts continuing
to increase while processor clock rates stagnate we see a pro-
liferation of products that provide either high performance net-
working or good virtualization. Both of these take advantage
of multiple cores to achieve the desired performance levels,
however seldom do the two meet. High performance virtual
network appliances will become important in the near future
as network administrators move from physical appliances like
firewalls and intrusion detection systems to systems that can
host two or more virtual network appliances.

In this paper we looked at how well a physical machine
can perform in several scenarios to stress test it in a 10 Gbps
environment, then ran the same tests against a virtual machine.
The results from the virtual machine experiments were—while
quite low—not unsurprising given the amount of overheads
incurred in moving a packet through the system.

Based on our results we developed these guidelines.
• Single-core 10 Gbps performance is sustainable on bare-

metal for maximum sized packets on 2.2 GHz processor
• Guest operating system throughput can achieve about 1

Gbps without specialized software
• On bare-metal a kernel module can outperform state-of-

the-art user-space receive methods
As hardware support becomes accessible, virtual machine

throughput will improve but network speeds will also continue

to increase. It is still important that software support be in
place to ease the burden for virtual machines.

REFERENCES

[1] libvirt virtualization API. http://libvirt.org/.
[2] Tcpdump/libpcap public repository. URL http://www.tcpdump.org/.
[3] 10gbps networking performance. Technical Report PS-071-PRD-01-01,

VMWare, November 2008. URL http://www.vmware.com/pdf/10GigE
performance.pdf.

[4] KVM: Kernel based virtual machine, February 2012. http://www.
linux-kvm.org/.

[5] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual,
volume 2: system programming edition, December 2011.

[6] A. Cardigliano, L. Deri, J. Gasparakis, and F. Fusco. vpf ring: Towards
wire-speed network monitoring using virtual machine. In Internet
Measurement Conference, 2011.

[7] S. Chinni and R. Hiremane. Virtual machine device queues. White
Paper, 2007.

[8] N. M. K. Chowdhury and R. Boutaba. Network Virtualization: State
of the Art and Research Challenges. IEEE Communications Magazine,
47(7):20–26, July 2009.

[9] Citrix Systems, Inc. The xen hypervisor. URL http://xen.org/.
[10] L. Deri. PF RING, May 2011. URL http://www.ntop.org/PF RING.

html.
[11] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan. High performance

network virtualization with sr-iov. In High Performance Computer
Architecture, pages 1–10, 2010.

[12] F. Fusco and L. Deri. High speed network traffic analysis with
commodity multi-core systems. In Internet Measurement Conference,
pages 218–224, 2010.

[13] R. P. Goldberg. Architectural Principles for Virtual Computer Systems.
PhD thesis, Harvard University, Cambridge, MA 02138, February 1973.

[14] IEEE. IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. URL
http://www.ieee802.org/3/ba/.

[15] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual, volume 3b: system programming guide, part 2 edition, May
2011.

[16] R. Jain. The Art of Computer Systems Performance Analysis. Wiley
Professional Computing, 1991.

[17] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network virtu-
alization in Xen. In Proceedings of the Annual Technical Conference
on USENIX. USENIX, 2006.

[18] R. Olsson. pktgen the linux packet generator. In Ottawa Linux
Symposium, 2005.

[19] Oracle. Virtualbox. URL https://www.virtualbox.org/.
[20] PCI-SIG. Single Root I/O Virtualization.
[21] PCI-SIG. MSI-X, June 2003. URL http://www.pcisig.com/

specifications/conventional/msi-x ecn.pdf.
[22] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker.

Extending networking in the virtualization layer. In Workshop on Hot
Topics in Networks (HotNets), 2009.

[23] S. Rixner. Network virtualization: Breaking the performance barrier.
ACM Queue, 6(1), January/February 2008.

[24] R. Russell. virtio: towards a de-facto standard for virtual i/o devices.
SIGOPS Operating Systems Review, 42(5), 2008.

[25] M. J. Schultz, B. Wun, and P. Crowley. A Passive Network Appliance
for Real-Time Network Monitoring. In Architectures for Networking
and Communications Systems, pages 239–249, October 2011.

[26] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing i/o devices
on vmware workstation’s hosted virtual machine monitor. In Proceed-
ings of the 2001 USENIX Annual Technical Conference. USENIX, 2001.

[27] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwarkaki, J. Crenne,
L. Gao, and R. Tessier. Scalable Network Virtualization Using FPGAs.
In Symposium on Field Programmable Gate Arrays (FPGA), 2010.

[28] VMware. Vmware esx and esxi info center. URL http://www.vmware.
com/products/vsphere/esxi-and-esx/.

[29] B. Vöcking. How asymmetry helps load balancing. Journal of the ACM,
50(4), July 2003.

[30] C. Wiseman, J. Turner, M. Becchi, P. Crowley, J. DeHart, M. Haitjema,
S. James, F. Kuhns, J. Lu, J. Parwatikar, R. Patney, M. Wilson, K. Wong,
and D. Zar. A remotely accessible network processor-based router for
network experimentation. In ANCS, pages 20–29, New York, NY, USA,
2008. ACM.


