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Abstract

This paper examines the problem of rate allocation for multicasting over slow
Rayleigh fading channels using network coding. In the proposed model, the net-
work is treated as a collection of Rayleigh fading multiple access channels. In this
model, rate allocation scheme that is based solely on the statistics of the channels
is presented. The rate allocation scheme is aimed at minimizing the outage prob-
ability. An upper bound is presented for the probability of outage in the fading
multiple access channel. A suboptimal solution based on this bound is given. A
distributed primal-dual gradient algorithm is derived to solve the rate allocation
problem.

Keywords: Network coding for multicasting, wireless networks, outage
capacity, Rayleigh fading, multiple access channels

1. Introduction

Network coding extends the functionality of intermediate nodes from stor-
ing/forwarding packets to performing algebraic operations on received data. If
network coding is permitted, the multicast capacity of a network with a single
source has been shown to be equal to the minimal min-cut between the source
and each of its destinations [2]. In the past decade, the concept of combining
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data by network coding has been extensively extended by e.g. [3–5] and it is well
known that in order to achieve the multicast rate, a linear combination over a finite
field suffices if the field size is larger than the number of destinations. Moreover,
centralized linear network coding can be designed in polynomial time [6]. Decen-
tralized linear network coding can be implemented using a random code approach
[7]. A comprehensive survey of network coding can be found in e.g., [8, 9].

Many network resource allocation problems can be formulated as a constrained
maximization of a certain utility function. The problem of network utility max-
imization has been explored extensively in the past few decades [10, 11]. We
briefly introduce related work on topology management and rate allocation for
network coding in multicast over wireless networks. The problem of finding a
minimum-cost scheme (while maintaining a certain multicast rate) in coded net-
works was studied by Lun et al. [12, 13]. They showed that there is no loss of
optimality when the problem is decoupled into: finding the optimal coding rate
allocation vector (also known as subgraph selection) and designing the code that
is applied over the optimal subgraph. Moreover, in many cases, optimal subgraphs
can be found in polynomial time. If in addition the cost function is also convex
and separable, the solution can be found in a decentralized manner, where message
passing is required solely between directly connected nodes. This decentralized
solution, if coupled with random network coding (e.g. [14, 15]) provides a fully
distributed scheme for multicast in coded wireline networks. This has prompted
many researchers to develop different algorithms that find minimum-cost rate al-
location solutions distributively; e.g. [16–19].

When addressing the problem of rate allocation for multicast with network
coding in wireless networks, Lun et al., [13, 20] tackled the problem through the
so-called wireless multicast advantage phenomenon. This phenomenon simply
comes down to the fact that when interference is avoided in the network (e.g.,
by avoiding simultaneous transmissions), communication between any two nodes
is overheard by their nearby nodes due to the broadcast nature of the wireless
medium. In [20], the wireless multicast advantage was used to reduce the trans-
mission energy of the multicast scheme (since when two nodes communicate,
some of their nearby nodes get the packet for ”free”). Therefore, their wireline
minimum-cost optimization problem was updated accordingly [see 20, eq.(1) and
(40)]. In [19] interference is allowed but is assumed to be limited. Joint optimal
power control, network coding and congestion control is presented for the case
of very high SINR (signal to noise plus interference ratio). This interference as-
sumption implies that there are some limitations on simultaneous transmissions
and this is taken into account in the optimization problem. In [21] the problem
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of joint power control, network coding and rate allocation was studied. They
showed that the throughput maximization problem can be decomposed into two
parts: subgraph selection at the network layer and power control at the physical
layer. A primal dual algorithm was given that converges to the optimal solution
provided that the capacity region is convex with respect to the power control vari-
ables (i.e., when interference are ignored). On the other hand, to take interference
into account a game theoretic method was derived to approximately characterize
the capacity region.

In wireless networks, it is reasonable to assume that there is no simultane-
ous packet transmission or reception by any transceiver. These properties of the
wireless medium introduced a new cross-layer interactions that may not exist in
the wired network. Sagduyu et al. [22] analyzed and designed wireless network
codes in conjunction with conflict-free transmission schedules in wireless ad hoc
networks. They studied the cross-layer design possibilities of joint medium access
control and network coding. It was shown that when certain objectives such as
throughput or delay efficiency are considered, then network codes must be jointly
designed with medium access control. The joint design of medium access control
and network coding [22] was formulated as a nonlinear optimization problem. In
[23] the work reported in [22] was extended and a linear formulation was derived.

However, there are certain other considerations that must be taken into ac-
count in the search for a rate allocation vector in wireless networks. The wireless
medium varies over time and suffers from fading channels due to multipath or
shadowing, for example. In [24] the block fading model was introduced. In this
model the channel gain is assumed to be constant over each coherence time inter-
val. Typically, fading models are classified as fast fading or slow fading. In fast
fading, the coherence time of the channel is small relative to a code block length
and as a consequence the channel is ergodic with a well-defined Shannon capacity
(also known as the ergodic capacity [25]). In slow fading, the code block length
and the coherence time of the channel are of the same order. Hence, the channel
is not ergodic and the Shannon capacity is not usually a good measure of per-
formance. The notion of outage capacity was introduced in [24] for transmitting
over fading channels when the channel gain is available only at the receiver. In
this approach, transmission takes place at a certain rate and tolerates some infor-
mation loss when an outage event occurs. An outage event occurs whenever the
transmitted rate is not supported by the instantaneous channel gain; i.e., when the
channel gain is too low for successful decoding of the transmitted message. It is
assumed that outage events occur with low probability that reliable communica-
tion is available most of the time. A different strategy to deal with slow fading is
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the broadcast channel approach [26]. In this approach different states of the chan-
nel are treated as channels toward different receivers (a receiver for each state).
Hence, the same strategy as used for sending common and private messages to
different users on the Gaussian broadcast channel can be applied here. When the
channel gain is also available at the encoder, the encoder can adapt the power and
the transmission rate as a function of the instantaneous state of the channel and
thus can achieve a higher rate on average. Moreover, as regards the outage capac-
ity, the transmitter can use power control to conserve power by not transmitting at
all during designated outage periods.

When dealing with outage capacity for fading MAC, the common outage has
a similar definition to the outage event in the point to point case. A common
outage event is declared whenever we transmit with rates that are not supported
by the instantaneous channel gains. If the channel gains are available at both the
decoder and the encoders, additional notions of capacities for the fading MAC
need to be taken into account. The throughput capacity region for the Gaussian
fading MAC was introduced in [27]. In a nutshell, this is the Shannon capacity
region where the codewords can be chosen as a function of the realization of the
fading with arbitrarily long coding delays. However, as for the point to point case,
this approach is not realistic in slow fading cases since it requires a very long
delay to average out the fading effect. [28] derived the delay limited capacity
for the Gaussian fading MAC (also known as the zero outage capacity). In the
delay limited capacity, unlike the throughput capacity, the chosen coding delay
has to work uniformly for all fading processes with a given stationary distribution.
However, the delay limited capacity is somewhat pessimistic due to the demand to
maintain a constant rate under any fading condition. The outage capacity region
and the optimal power allocation for a fading MAC were described in [29]. As
was pointed out in [29], in a slow fading environment, the decoding delay depends
solely on the code-length employed and not on the time variation of the channel.

The demand for interference free channels at all nodes means that some level
of orthogonality is required between different transmissions in the network. Avoid-
ing interference between all nodes comes at the cost of loss of expensive band-
width, or alternatively leads to rate degradation in band limited systems. The
same argument can be applied to the limited interference model since some or-
thogonality at a certain radius is required. In [1], the MAC network coding model
was introduced. In the MAC network model, in contrast to the wireless broadcast
advantage based models, the superposition property of the wireless medium is ex-
ploited. The network is treated as a collection of multi access channels, such that
each receiver simultaneously receives data from all its in-neighbors.
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Main contributions: This paper explores the problem of rate allocation for
multicasting over slow Rayleigh fading channels using network coding. The
problem is examined in a model where the network is treated as a collection of
Rayleigh fading multi access channels. In our network model, we assume that
links on the network vary faster than the entire network can respond to the varia-
tions. Therefore, our goal is to find a rate allocation scheme that is based solely
on the statistics of the channels which minimizes the outage probability. This pa-
per differs from prior works at two major aspects. Prior works’ models assume
long time averaging of the instantaneous capacity (as in the ergodic capacity ap-
proach) or averaging of the packet arrival rate (see e.g., [9]). These assumptions
are more suitable for fast fading model while in slow fading model this is unreal-
istic. Hence, in this paper we design a different rate allocation scheme which is
more suitable to the slow fading model. Moreover, in this paper the design of the
rate allocation scheme is based solely on the statistics which is desirable in many
practical large scale networks, as will be emphasized in section 4.

The communication model is described in detail in section 2.
In section 3 we present lower and upper bounds for the outage probability of a

fading MAC. In section 4 a suboptimal solution for the rate allocation problem is
presented for the MAC network model. The solution is based on an upper bound
on the probability of outage in the fading MAC. In section 5 a distributed solution
is derived for the rate allocation problem in the MAC network model. In section
6 we report some simulation results. We end with concluding remarks.

2. Communication model

Let G = (V , E) be a directed graph with a set of nodes V and directed edges
E ⊂ V ×V, where transceivers are nodes and channels are edges representing a
wireless communication network. In this paper, scalars and random variables are
denoted by lower case letters. Vectors and matrices are denoted by boldface lower
and upper case letters, respectively. We are abusing of notation a bit by using the
same letters to refer to random variables and their realizations. The cardinality of
any set A is denoted by |A|. All vectors are columns and inequalities between
vectors are defined element-wise; i.e., v ≤ u implies vi ≤ ui for all i. For any
node j ∈ V , we denote the in-neighborhood and out-neighborhood of j by I(j)
and O(j) respectively, i.e., I(j) = {i : (i, j) ∈ E} and O(j) = {i : (j, i) ∈ E}.
The network is treated as a collection of multi access channels, such that each
receiver simultaneously receives data from all its in-neighbors. For simplicity, it
is assumed that there is no interference between transmissions toward different re-
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ceivers (see Fig. 1(a)). This can be achieved by orthogonal transmissions e.g., by
using a certain frequency reuse pattern or directional antennas. Clearly, this is an
improvement over a model where all transmissions are orthogonal. If we consider
the MAC network model with deterministic channel gains, a joint power control
and rate allocation solution for a (convex) network utility can be found distribu-
tively [21]. This is due to the convexity of the capacity region of the multi access
channels [30]. The deterministic model can be adapted to deal with fast fading
channels in the case of a constant power allocation vector by using the ergodic
MAC capacity region instead of the MAC capacity region. This ergodic capac-
ity region is easily obtained by taking the expectations of the capacity constraints
[30]. Here, we examine the MAC network model in the case of slow fading chan-
nels. We aim to find a rate allocation scheme that is based solely on the statistics
of the channels which minimizes the outage probability.

The channel gain of link (i, j) is denoted by hi,j . hi,j is a zero mean circular
complex normal random variable with variance of υ2

i,j . It is assumed that all hi,j
are independent of each other. Denote by hj := [hi,j : i ∈ I(j)] and by ηj :=
[|hi,j|2 : i ∈ I(j)]. The transmission on link (i, j) is denoted by xi,j and it is
transmitted with an average power pi,j . We assume that σ2

j is the variance of ξj -
the zero mean Gaussian noise at node j. Hence, the received signal at node j is
given by:

yj =
∑
i∈I(j)

hi,jxi,j + ξj. (1)

Fig. 1(b) illustrates the MAC of node 1 in the network of Fig. 1(a). The rate
transmitted on a link (i, j) is denoted by ri,j , the rate allocation vector is denoted
by r = [ri,j : (i, j) ∈ E ] and the local rate allocation vector is denoted by rj =
[ri,j : i ∈ I(j)]. When the instantaneous channel gains hi,j are deterministic and
known, this is the well-known Gaussian multi access channel [30]. Hence, the
instantaneous MAC capacity region is given by:

V ins
j (hj) :=

ri,j :

∑
i∈M(j)

ri,j ≤ log2

(
1 +

PM(j),j

σ2
j

)
∀M(j) ⊆ I(j)

 , (2)

where PM(j),j =
∑

i∈M(j)

pi,j|hi,j|2. However, when dealing with Rayleigh chan-

nels, this capacity region may not be a good measure of performance and the
outage capacity is a better and more practical alternative. A common outage event
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Figure 1: The MAC network model: (a) An illustration of a wireless network with 12 transceivers
positioned as a directed graph G. In the MAC network model each receiver receives data from all
its in-neighborhood nodes. For example the nodes in I(1) = {2, 3, 6} transmit toward node 1 and
the nodes in I(4) = {1, 6, 7} transmit toward 4. However, it is assumed that (for example), there
is no interference between the transmissions toward node 1 and the transmissions toward node 4.
(b) The MAC of node 1.
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is jointly declared for all links whenever we transmit toward a certain node with
rates that are not supported by the instantaneous MAC capacity region.

Definition 1. For a rate vector rj and for the MAC associated with node j, the
common outage event is

rj /∈ V ins
j (hj), (3)

where the (random) capacity region V ins
j (hj) is defined in (2).

Definition 2. The probability of outage in the fading MAC of node j is given by

P out
j = Pr

(
rj /∈ V ins

j (hj)
)
. (4)

Similar to these definitions, we define an outage event and outage probability
for the MAC network model.

Definition 3. The outage event for the MAC network model is the event for which
there exists node j ∈ V such that rj /∈ V ins

j (hj).

Hence, the probability of outage in the MAC network model is given by

P out
MAC = Pr

(⋃
j∈V

{
rj /∈ V ins

j (hj)
})

. (5)

To complete the description of the local communication model, we associate
the codebooks, the encoders (Fi,j : i ∈ I(j)) and the decoder gj that establish
the connection between I(j) and j at rates (ri,j : i ∈ I(j)) to any node in the
network. Obviously, node j shares the appropriate codebooks and encoders with
its in-neighbors.

The source node is denoted by s ∈ V and it is assumed that I(s) = φ. The
set of all destinations (sinks) is denoted by Ds ⊆ V\{s}. Intermediate nodes are
allowed to send out packets that are a combination of their received information
and as a result they break the flow conservation by increasing/decreasing the out-
side rate. However, the main theorem of network coding for multicast is stated in
terms of the max-flow (min-cut) between each source and its destinations. There-
fore, we distinguish between the flow at an edge (i, j) and the actual rate at that
link. Let fdi,j be the flow at edge (i, j) destined for destination d ∈ Ds, and let
ri,j be the actual at edge (i, j). The communication parameters are summarized in
Table 1.
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Table 1: A summary of communication model parameters
xi,j Transmission on link (i, j)
hi,j Channel gain of link (i, j) hi,j ∼ CN (0, υ2

i,j)
hj hj = [hi,j : i ∈ I(j)]
ηj ηj = [|hi,j|2 : i ∈ I(j)]
pi,j Average power of the transmission on link (i, j)
ξj Noise at node j ξj ∼ CN (0, σ2

j )
yj Received signal at node j
ri,j Rate at link (i, j)
rj Local rate allocation vector rj = [ri,j : i ∈ I(j)]
r Rate allocation vector r = [ri,j : (i, j) ∈ E ]
V ins
j (H) Instantaneous MAC capacity region of node j
P out
j Probability of outage in the fading MAC of node j
P out

MAC Probability of outage in the MAC network model
s Source node
Ds Set of all destinations Ds ⊆ V\{s}
fdi,j Flow at edge (i, j) destined for destination d ∈ Ds

As was mentioned in section 1, there is no loss of optimality by first finding
the optimal rate allocation solution and then designing the coding scheme that re-
alizes the connection. In the following section the rate allocation vector for the
MAC network model is given as the solution to an optimization problem and the
coding scheme that realizes the connection is assumed to be given. For large scale
networks, where global network information is not available, the random network
coding shown in [14, 15] can be employed. In general, in random network cod-
ing, intermediate nodes store all their received packets in their memory and when
a packet injection occurs on an outgoing link, the node forms a packet that is a
random linear combination of the packets in its memory. In order to enable de-
coding at the destinations, the random coefficients of the linear combinations are
included in the header of the packet as side information. These coefficients are
called the global encoding vector of the packet. Decoding is possible if all desti-
nations collect enough packets with linearly-independent global encoding vectors.
The algorithm shown in [14] for random packet level network coding was adjusted
to the MAC network model in [1].
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3. Bounds on the probability of outage of a MAC

In this section we bound the outage probability of a fading MAC. To do so, we
need the following notations and definitions. Consider a (slow) fading MAC with
n links each of which is a Rayleigh channel i.e., hi ∼ CN (0, υ2

i ) i = 1, 2, · · · , n.
Denote the variance of the zero mean Gaussian noise at the receiver by σ2. For
any matrix B, bi,j denotes the entry in the i’th row and j’th column of B. Let Br∗

be a submatrix of B constructed by deleting the r’th row of B. For r = 1 we
denote B1∗ = B∗. For any n ≥ 1 let 1n,0n be vectors with length n of ones and
zeros, respectively. For any n ≥ 1, let An be a (2n − 1)× n matrix, such that for
n = 1 A1 = 1 and for n ≥ 2

An+1 =

 02n−1 , An

1 , 0Tn
12n−1 , An.

 , (6)

i.e., each row of An is the binary representation of the row index (for example
A2 =

[
[0, 1]T , [1, 0]T , [1, 1]T

]T ). For any scalar a and vector v ∈ RK , c = av−1
is calculated point-wise; i.e., ci = avi − 1.

The probability of outage of a fading MAC is given in definition 2. Obviously,
the probability of outage can be expressed as

Prout
MACn

= 1− Pr
(
r ∈ V ins(h)

)
, (7)

where h := [h1,h2, · · · ,hn] and V ins(h) is the instantaneous capacity region.
As can be seen from (2) the expression r ∈ V ins(h) stands for a conjunction of
(2n − 1) inequalities, each of which is in the form of∑

i∈M

ri ≤ log2

(
1 +

PM
σ2

)
, (8)

where PM =
∑
i∈M

pi|hi|2 andM is a subset of {1, 2, . . . , n}. Rewriting (8) in a

matrix form yields

aTMr ≤ log2

(
1 + aTM

1

σ2
Pη

)
, (9)

where, aM is a vector with length n such that

ai =

{
1 i ∈M
0 otherwise,
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P is an n × n diagonal matrix with p1, p2, . . . , pn on the main diagonal and η =
[|h1|2, |h2|2, . . . , |hn|2]

T . A simple algebraic operation yields that (9) is equivalent
to

2aT
Mr − 1 ≤ aTM

1

σ2
Pη. (10)

Note that since |hi|2 i = 1, 2, . . . , n are independent exponential random vari-
ables with an expectation of 2υ2

i , the random variables zi = 1
2υ2i
|hi|2 i =

1, 2, . . . , n are i.i.d exponential random variables with an expectation of 1. Hence,
the event in (10) is equivalent to the event

2aT
Mr − 1 ≤ aTM

1

σ2
PΥzn, (11)

where Υ is a diagonal matrix with 2υ2
1, 2υ

2
2, . . . , 2υ

2
n on the main diagonal and

zn = [z1, z2, . . . , zn]T is a vector of n i.i.d standard exponential random variables;
E{zi} = 1. Therefore, from (7) and (11), it is implied that the outage probability
in a MAC with n links can be written as

Prout
MACn

= 1− Pr (AnDnzn ≥ bn) , (12)

where Dn is a diagonal matrix with 1
λ1
, 1
λ2
, · · · , 1

λn
on the main diagonal, λi =

1
2υ2i

σ2

pi
and bn = 2Anr − 1. For example in a MAC with n = 3 links we have that

A3 =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


, b3 =



2r3 − 1
2r2 − 1
2r2+r3 − 1
2r1 − 1
2r1+r3 − 1
2r1+r2 − 1
2r1+r2+r3 − 1


.

Note that when the MAC is with i.i.d links we have that Dn = 1
λ
In where In is an

n× n identity matrix.
Hence, the probability of outage in a MAC is related to the joint distribu-

tion of linear combinations of exponential random variables. Huffer and Lin [31]
presented an algorithm for the computation of the exact expression of the joint
distribution of general linear combinations of spacings2 by repeated uses of two

2Suppose ui i = 1, 2, · · · , n are independently and uniformly distributed on the interval
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recursions that reduce the dimensionality of the problem. They also pointed out
that the algorithm remains valid as well for linear combinations of exponential
random variables. However, this is inaccurate and in this paper we revise result to
handle exponential random variables. The new recursion is given in Lemma 6 in
Appendix Appendix A.

By using the algorithm in [31] together with Lemma 6, an exact expression of
the probability of common outage can be computed. However, the computation
of a symbolic expression becomes extremely complicated in a MAC with more
than 2 links. Therefore, we present an upper and a lower bound on that outage
probability. To that end, we need the following lemma:

Lemma 1. Let z be a vector of n i.i.d exponential random variables with an ex-
pectation E{zi} = 1. If there exists an entry ar,i > 0 in A such that ar,j = 0 for
all j 6= i and br ≥ 0, the following holds

Pr (Az > λb) = e
−λ br

ar,i Pr

(
Ar∗z > λ

(
br∗ − br

ar,i
ar∗
))

.

Proof: This lemma is an immediate consequence of Lemma 6 (i.e., when k = 1
and Ψ = {j}). �

In [32] it was pointed out that the outage probability of a MAC with n i.i.d
links is bounded from below by

Prout
MACn

≥ 1− e−λSn
Γ
(
n, λ

(
2Rn − 1− Sn

))
(n− 1)!

, (13)

where Γ(n, x) is the incomplete gamma function, Sn =
n∑
k=1

(2rn − 1) and Rn =

n∑
i=1

ri. In the case of a Rayleigh fading MAC with independent links but with

different variances, Theorem 2 gives a lower bound on the probability of outage.

Theorem 2. Let λi = 1
2ν2

σ
pi
i = 1, 2, · · · , n have distinct values; i.e., λi 6= λj for

all i 6= j, then the probability of a MAC with n independent Rayleigh(υi) channel

(0,1), and let u(1) ≤ u(2) ≤ · · · ≤ u(n) be the corresponding order statistics. The spacings
s1, s2, · · · , sn+1 are defined by the successive differences between the order statistics: si = u(i)−
u(i−1), where u(0) := 0 and u(n+1) := 1.
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i = 1, 2, · · · , n is bounded below by

Prout
MACn

≥ 1−
n∑

i=1

γie
−βn−λi(2Rn−Sn−1), (14)

where, γi =
∏
j 6=i

λj
λj − λi

, βn =
n∑
i=1

λi(2
ri − 1), Sn =

n∑
i=1

(2ri − 1) and Rn =

n∑
i=1

ri.

Proof: As was explained earlier, the expression AnDnzn ≥ bn in equation (12)
stands for a conjunction of (2n − 1) inequalities. The inequalities that are re-
lated to the rows of An indexed by 2i i = 0, 1, . . . , (n − 1) stand for the direct
instantaneous capacity constraints ri ≤ log2

(
1 + |hi|2pi

σ2

)
, whereas all the other

inequalities refer to constraints that involve more than one link of the MAC ca-
pacity region (see eq. (2)). In particular, the (2n − 1)th inequality refers to the
constraint

n∑
i=1

ri ≤ log2

(
1 +

n∑
i=1

pi|hi|2

σ2

)
.

Obviously,
Pr (AnDnzn ≥ bn) ≤ Pr

(
ÃnDnzn ≥ b̃n

)
, (15)

where Ãn is a submatrix of An constructed by taking the rows indexed by {2i :
i = 0, 1, . . . , (n− 1)} ∪ {2n − 1} of An and b̃n is a sub-vector of bn constructed
by taking the appropriate entries of bn. Note that up to a permutation of the rows,
the first n rows of Ãn is the identity matrix. Therefore, we can eliminate these n
rows by n uses of lemma 1. Hence, we have that

Pr
(
ÃnDnzn ≥ b̃n

)
= e−βn Pr

(
n∑
i=1

zi
λi
≥ x

)
, (16)

where x = 2Rn − Sn − 1. The probability of a distinct coefficients linear combi-
nation of i.i.d exponential variables is given by [33]

Pr

(
n∑
i=1

zi
λi
≥ x

)
=

n∑
i=1

γie
−λix. (17)

13



The claim now follows. �
Note that Theorem 2 is valid only when λ1, λ2, . . . , λn are all distinct. When

we have a MAC with a set of K links with the same value of λi and n − K
links with distinct values of λ, a similar bound can be computed by replacing the
probability in (17) by integrating the expression of the pdf derived in [34]. We
omit the calculation of this probability here, for the sake of brevity.

For simplicity, in the derivation of the upper bound we only consider a MAC
with n i.i.d links. Computing the bound for the case where there are independent
links with nonidentical variances is much complicated and is considered as future
work. The upper bound for a MAC with 3 links is given in Lemma 3 and the upper
bound for the general case is given in Theorem 4.

Lemma 3. The probability of common outage of a MAC with 3 i.i.d links is bounded
by

Prout
MAC3

≤ 1− e−λ(2R3−1)G(λα3) (18)

where G(x) = 1
2
x2 + x + 1, λ = 1

2υ2
σ2

p
, R3 =

3∑
i=1

ri and α3 = (2r1 − 1)(2r2 −

1)(2r3 − 1).

Proof: The probability of a successful (non-outage) transmission is given by

1− Prout
MAC3

= Pr (A3z3 ≥ λb3) . (19)

Define the following constants βi = 2ri − 1 and βi,j = 2ri+rj − 1. Note that the
rows of A3 and b3 indexed by {2i : i = 0, 1, 2} satisfy the conditions of lemma
1. Hence, by three uses of Lemma 1 we can eliminate these rows of A and b3.
These three uses of Lemma 1 are legitimate, since after each use of the lemma
the result matrix and vector still satisfy the conditions of Lemma 1 (since βi ≥ 0,

βi,j−
∑
i∈B

βi ≥ 0 and (2R3−1)−
j∑
i=1

βi ≥ 0, for all B ⊆ {i, j} and i, j ∈ {1, 2, 3}).

Therefore, the probability of successful transmission can be rewritten as

1− Prout
MAC3

= e−λS3 Pr
(
Az ≥ λb̃

)
, (20)

where A is a submatrix of A3 constructed by deleting the rows indexed by {2i :

i = 0, 1, 2}, S3 =
3∑
i=1

(2ri − 1) and b̃ = [β2,3 − β2 − β3 ,β1,3 − β1 − β3 ,β1,2 −
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β1 − β2 ,(2R3 − 1)− β1 − β2 − β3

]T . It is easy to see that

Pr
(
Az ≥ λb̃

)
≥ Pr

(
Ãz ≥ λb̃

)
, (21)

where

A =


0 1 1
1 0 1
1 1 0
1 1 1

 , Ã =


0 1 0
0 0 1
1 0 0
1 1 1

 ,
since the eliminated z1, z2 and z3 are non-negative random variables. Note that

since b̃4 −
3∑
i=0

b̃i = α ≥ 0 and b̃ ≥ 0, we have that b̃4 −
j∑
i=0

b̃i ≥ 0 for all

j ∈ {1, 2, 3}. Again, by three uses of Lemma 1, we can eliminate the first three
rows of Ã and write

Pr
(
Ãz ≥ λb̃

)
= e−λγ̃ Pr (z1 + z2 + z3 ≥ λα3) , (22)

where γ̃ = b̃1 + b̃2 + b̃3. Note that Z = z1 +z2 +z3 has an Erlang(3, 1) distribution
and therefore

Pr (Z > z) = e−zG(z). (23)

Hence, (22) can be rewritten as

Pr
(
Ãz ≥ λb̃

)
= e−λγ̃e−λα3G(λα3). (24)

Combining (20),(21) and (24) yields

1− Prout
MAC3

≥ e−λ(α3+γ+γ̃)G(λα3). (25)

The claim now follows from the fact that

α3 + γ + γ̃ = 2R3 − 1.

�

Theorem 4. The probability of common outage of a MAC with n ≥ 3 i.i.d Rayleigh(υ)
channels is bounded by

Prout
MACn

≤ 1− e−λ(2Rn−1)G̃(λαn) (26)

where G(x) = 1
2
x2 + x+ 1, Rn =

n∑
i=1

ri and αn =
n∏
i=1

(2ri − 1).
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Proof: The proof proceeds by induction on n. The claim is true for n = 3 by
Lemma 3. Let the statement be true for n = k. We will now prove the result for
n = k + 1. From (12) we have that

1− Prout
MACk+1

= Pr (Ak+1zk+1 ≥ λbk+1) . (27)

Note that [bk+1]2k = 2r1 − 1. Also note that by exploiting the structure of Ak+1

(see equation (6)), the 2k’th row of Ak+1 can be eliminated by using Lemma 1.
Hence,

1− Prout
MACk+1

= e−λ(2r1−1) Pr
(
Ãk+1zk+1 ≥ λb̃k+1

)
, (28)

where

Ãk+1 =

[
02k−1 , Ak

12k−1 , Ak

]
(29)

and b̃k+1 =
(

2Ãk+1r − 1
)
− (2r1 − 1)

[
0T

2k−1
,1T

2k−1

]T . It can easily be verified
that

Pr
(
Ãk+1Zk+1 ≥ λb̃k+1

)
≥ Pr

(
Ǎk+1Zk+1 ≥ λb̃k+1

)
, (30)

where

Ǎk+1 =

[
02k−1 , Ak

02k−1 , Ak

]
,

since z1 ≥ 0. Note that for any two vectors 02k−1 ≤ x1 ≤ x2 the following holds

Pr
(
Ǎk+1zk+1 ≥

[
xT1 ,x

T
2

]T)
= Pr (Akzk ≥ x2) . (31)

Note that

2Ãk+1r =

[
2Akγ

2r1 · 2Akγ

]
, (32)

where γ = [r2, r3, . . . , rk+1]T . Therefore, we have that

b̃k+1 =

[
2Akγ − 1
2r1
(
2Akγ − 1

) ] . (33)

Since 2r1 ≥ 1, combining (31) with (33) yields

Pr
(
Ǎk+1zk+1 ≥ λb̃k+1

)
= Pr

(
Akzk ≥ λ̃

(
2Akγ − 1

))
, (34)

where λ̃ = λ2r1 . By the induction hypothesis for k, we have that

Pr
(
Akzk ≥ λ̃

(
2Akγ − 1

))
≥ e−λ̃(2R̃2−1)G

(
λ̃α̃2

)
, (35)
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where R̃2 =
k+1∑
i=2

ri and α̃2 =
k+1∏
i=2

(2ri − 1). Combining (28),(30),(34) and (35)

yields
1− Prout

MACk+1
≥ e−λ(2r1−1)e−λ̃(2R̃2−1)G

(
λ̃α̃2

)
. (36)

The claim now follows from the fact that

λ(2r1 − 1) + λ̃
(

2R̃2 − 1
)

= λ
(
2Rk+1 − 1

)
,

λ̃α̃2 ≥ λαk+1 and that G(x) is monotonically increased with x . �
Note that the lower bound (13) in the i.i.d case may also be expressed as

Prout
MACn

≥ 1− e−λ(2Rn−1)G̃
(
λ
(
2Rn − 1− Sn

))
, (37)

where,G̃ (x) =
n−1∑
k=0

1

k!
xk. Hence,

G̃(λβn) ≥ eλ(2Rn−1) (1− Prout
MACn

)
≥ G(λαn), (38)

where βn = 2Rn − 1− Sn.

4. Rate allocation for the fading MAC network model

In this section we study the problem of finding the rate allocation vector for
the fading MAC network model discussed in the previous sections. In our wire-
less model we assume a slow fading model with independent Rayleigh fading
channels. For simplicity we only consider a network in which λi,j = λj for all
j ∈ V\{s}. In other words, the network is assumed to be a collection of multiple
access channels with i.i.d links (note that λj j ∈ V\{s} may be distinct). This
assumption comes down to the fact that we normalized the transmission power
of nodes that connected to the same receiver appropriately to the statistics of the
best channel. As was mentioned earlier, the case where there are independent
links with nonidentical variances is much complicated and is considered as future
work.

While it is assumed that the instantaneous channels gain may be available at
both the encoders and the decoders, we assume that the rate allocation vector is de-
termined a-priori, based solely on the statistics. The rationale for this assumption
is that the rate allocation vector is determined based on network considerations,
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whereas the instantaneous state of each component of the network varies faster
than the entire network can respond to the variations. Note that this assumption
is practical as well when the power constraints must be satisfied in each encod-
ing block (e.g. when we are under Federal Communications Commission (FCC)
regulations).

Consider the rate allocation graph G̃ = (V , E , r) (the graph that is obtained by
assigning a rate ri,j for each link (i, j) in G). The optimal rate allocation vector
that minimizes the probability of outage in the MAC network model while main-
taining a multicast rate of Rs is a solution of the following optimization problem:

min
f ,r

Pr

(⋃
j∈V

{
rj /∈ V ins

j (hj)
})

(39)

subject to

0 ≤ fdi,j ≤ ri,j ∀(i, j) ∈ E , d ∈ Ds (39a)∑
i∈I(j)

fdi,j −
∑
i∈O(j)

fdj,i =

{
0 j /∈ {s, d}
Rs j = d

(39b)

∀j ∈ V\{s}, d ∈ Ds,

where the flow constraints (39a)-(39b) guarantee that any feasible solution of (39)
provides a minimum min-cut of at least Rs between the source and each desti-
nation. Therefore, a multicast rate of Rs is achievable by network coding, see
Theorem 1. in [13].

Unfortunately, as was mentioned earlier, the computation of the probability of
a common outage becomes extremely complicated in a MAC with more than 2
links. Therefore, we present a suboptimal solution to the rate allocation problem
in the fading MAC network model. We relax the problem and instead of using
the exact expression of the probability of common outage, we minimize an upper
bound on the outage probability of a multiple access channel. To that end, consider
the following lemma.

Lemma 5. The probability of common outage of a MAC with n i.i.d Rayleigh(υ)

channels is bounded by Prout
MACn

≤ 1− e−λ(2Rn−1).

Proof: For n = 1, we have a Rayleigh fading Gaussian channel with outage
probability given by:

Prout
MAC1

= 1− e−λ(2r1−1). (40)
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For n = 2, a simple computation yields that

1− Prout
MAC2

= e−λ(2r1+r2−1) (1 + λ (2r1 − 1) (2r2 − 1))

≥ e−λ(2r1+r2−1). (41)

For n ≥ 3, the claim follows from Theorem 4 and the fact that for any non-
negative x, we have G(x) ≥ 1. �

The probability of an outage in the MAC network model is given in equa-
tion (5). By assumption, all hi,j are independent of each other. Therefore, the
probability of an outage in the MAC network model can be rewritten as

P out
MAC = 1−

∏
j∈V\{s}

(
1− P out

j

)
. (42)

Obviously, if P out
j is bounded above by P̃ out

j the following holds

P out
MAC ≤ 1−

∏
j∈V\{s}

(
1− P̃ out

j

)
. (43)

Although the bound in Lemma 5 is weaker than the one we get from Theorem
4, we used the weaker bound to find a rate allocation vector for the outage MAC
model. For every j ∈ V\{s} denote

R̃j :=
∑
i∈I(j)

ri,j. (44)

Hence, from Lemma 5 we have

P out
MAC ≤ 1−

∏
j∈V\{s}

e
−λj

(
2R̃j−1

)
. (45)

Finally, since e−λ(2Rj−1) is log-concave the problem becomes computationally
tractable:

min
f ,r

∑
j∈V\{s}

λj2
R̃j (46)

subject to

0 ≤ fdi,j ≤ ri,j ∀(i, j) ∈ E , d ∈ Ds (46a)∑
i∈I(j)

fdi,j −
∑
i∈O(j)

fdj,i =

{
0 j /∈ {s, d}
Rs j = d

(46b)

∀j ∈ V\{s}, d ∈ Ds.
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5. Distributed solution for MAC network model

In the previous section the rate allocation vector for the MAC network model
was given as a solution to the convex optimization problem (46). This problem
can easily be solved by a standard convex optimization technique in a centralized
fashion. However, the centralized solution requires full knowledge of the network
topology and statistics. In this section we discuss how to distributively solve (46).

As pointed out in e.g., [13, 35, 36], if certain conditions are satisfied, convex
optimization problems may be solved distributively by a continuous time primal-
dual method. This method can be described as follows. The optimization is
studied through its Lagrangian where the primal and dual variables are updated
simultaneously by a set of gradient laws (dynamic system). These laws define a
trajectory in the direction of the respective partial gradients, starting from some
initial point. The dynamic system is stated such that the saddle points of the La-
grangian are equilibrium points. Hence, if a strong duality holds for the original
convex optimization problem, the algorithm stops updating the variables when it
reaches the optimal solution. It is worth mentioning that in contrast to gradient
method, in which convergence is guaranteed for convex problems from any initial
point (see e.g., §9 in [37]), the asymptotic behavior of dynamic systems is not im-
mediate in the general case (even though the problem is convex). In other words,
convergence to an equilibrium point is not guaranteed in the general case. In this
type of problem the existence of Lyapunov functions is used to prove the stability
of the equilibrium points. There is no general technique for the construction of
these functions. However, in some specific cases the construction of Lyapunov
functions is known (see e.g., [38]).

As can be easily verified, the cost function in (46) is not strictly convex (and
also is not separable in the decision variables f and r). In problems with a non-
strictly convex cost function, it is possible to have more than one optimum point.
Hence, in this case the standard primal-dual solution may not converge. In [36] a
modified primal dual gradient method was derived for non-strictly convex prob-
lems. In that method the solution will converge to one of the optimal points by
modifying the constraint set of the convex optimization problem. Following [36],
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we suggest the following modified convex optimization problem:

min
f ,r

∑
j∈V\{s}

λj2
R̃j (47)

subject to

φ
(
−fdi,j

)
≤ 0 ∀(i, j) ∈ E , d ∈ Ds (47a)

φ
(
fdi,j − ri,j

)
≤ 0 ∀(i, j) ∈ E , d ∈ Ds (47b)

φ
(
qdj
)
≤ 0 ∀j ∈ V\{s}, d ∈ Ds (47c)

φ
(
−qdj

)
≤ 0 ∀j ∈ V\{s}, d ∈ Ds, (47d)

where R̃j was defined in (44), φ(x) = ex − 1 and for all j ∈ V\{s}, d ∈ Ds

qdj :=
∑
i∈I(j)

fdi,j −
∑
i∈O(j)

fdj,i − ψdj (48)

ψdj :=

{
0 j /∈ {s, d}
Rs j = d

. (49)

Note that theorem 11 in [36] that guarantees convergence for the corresponding
dynamic system was proved under the assumption that Slater’s condition holds for
the modified convex optimization problem. It is easy to see that Slater’s condition
does not hold for (47). However, it can be verified that their proofs remain valid
as they are under any other constraint qualification (i.e., whenever strong duality
for the modified optimization holds). In Appendix Appendix B, we show that
strong duality holds for (47). Denote by ρdi,j, w

d
i,j, ϕ

d
j and µdj the dual variables of

(47) and define

∆d
i,j := −ϕdjeq

d
j + Ii 6=sϕ

d
i e
qdi + µdje

−qdj − Ii 6=sµdi e−q
d
i , (50)

where Ii 6=s = 1 if i 6= s and zero otherwise. The primal-dual gradient laws for
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(47) are given by

ṙi,j = τi,j

(
−λjeR̃j +

∑
d∈Ds

wdi,je
fdi,j−ri,j

)
(51)

ḟdi,j = kdi,j

(
ρdi,je

−fdi,j − wdi,jef
d
i,j−ri,j + ∆d

i,j

)
(52)

ρ̇di,j = αdi,j

[
e−f

d
i,j − 1

]+

ρdi,j

(53)

ẇdi,j = θdi,j

[
ef

d
i,j−ri,j − 1

]+

wd
i,j

(54)

ϕ̇dj = βdj

[
eq

d
j − 1

]+

ϕd
j

(55)

µ̇dj = γdj

[
e−q

d
j − 1

]+

µdj

, (56)

where τi,j, kdi,j, θ
d
i,j, α

d
i,j, β

d
j and γdj are some positive scalars and for any two scalars

x and p

[x]+p =

{
0 x < 0, p < 0

x otherwise.

The dynamic (51)-(56) can be distributively implemented by associating a pro-
cessor for each node in the network, excluding the source node. Each node j’s
processor keeps track of the variables ϕdj and µdj as well as the variables associ-
ated with node j’s ingoing links (i.e., the links in {(i, j) : i ∈ I(j)}). Note that
message passing is required only between direct neighbors.

6. Simulation results

In this section the probability of outage of the suboptimal algorithm for the
MAC network model is presented. In the simulation we consider the networks
shown in Fig. 1 where it was assumed that all links are i.i.d Rayleigh(υ) channels,
with υ = 1. We solved (46) for various values of SNR = P

σ2 and the results are
shown in Fig. 2. The lower and upper bounds for the outage probability were
obtained by calculating (13) and (26) (respectively) for each MAC associated with
node j if I(j) ≥ 3 and the exact expression of the outage probability for each
receiver j with I(j) ≤ 2. As can be seen, up to 6 bits/sec/Hz the bounds are quite
tight.
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We compared the performance of the fading MAC network model to the per-
formance of the non-naive TDMA model. The optimal rate allocation scheme
that minimizes the probability of outage for the TDMA based model was derived
in [1]. The results for the non-naive TDMA model are shown in Fig. 3. Al-
though for low multicast rate demands there is no significant gain in preferring
the MAC network model over the Non-naive TDMA model, when we have a de-
mand for a high multicast rate the MAC network model outperforms the TDMA
based model. To emphasize this result, note that in the non-naive TDMA model
(see Fig. 3) we achieved a multicast rate of Rs ≈ 5.5 bits/sec/Hz with probability
of outage of P out ≈ 0.1 with SNR = 30dB whereas we obtained the same results
(i.e., Rs ≈ 5.5, P out ≈ 0.1) in the MAC network model with SNR = 25dB.

Finally, we simulated a discrete time version of the distributed algorithm shown
in section 5. In this version we consider time steps m = 1, 2, . . . and the deriva-
tives were replaced by differences. The scalars τi,j, kdi,j, θ

d
i,j, α

d
i,j, β

d
j and γdj can

be thought as step sizes. We did not optimized these step sizes and they were
randomly chosen at the initiation of the simulation (τi,j and kdi,j where about 10
times larger than the other step sizes). During the simulation, we considered the
network sown in Fig. 1 and it was assumed that node 5 was the source node and
that the destinations were Ds = {1, 4, 8, 10}. The convergence of the algorithm is
shown in Fig. 4.

7. Conclusions

In this paper we studied the rate allocation problem for multicasting over slow
Rayleigh fading channels using network coding. A rate allocation scheme based
solely on the statistics of the channels was presented. In the MAC network model,
where the network is treated as a collection of slowly Rayleigh fading multiple
access channels, we proposed a suboptimal scheme as the solution to a convex
optimization problem. This suboptimal solution is based on an upper bound on
the probability of outage of a fading multiple access channel. A primal-dual gra-
dient algorithm was derived to solve the problem distributively. In the simulation
results, it is shown that the MAC network model outperforms the TDMA based
model. The paper provides a practical solution to networks with slow fading chan-
nels in which long delays are unacceptable (e.g., in video streaming), with the ob-
jective of minimizing outage events throughout the network. As a potential future
works, one should consider to derive a bound on the outage probability in the non
i.i.d case and extend the problem of statistic-based rate allocation scheme to deal
with other than Rayleigh fading model (e.g., Rician or Nakagami models).
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Figure 2: The probability of outage of the fading MAC network model for various values of SNR
for the network shown in Fig. 1. It was assumed that node 5 was the source node and that the
destinations were Ds = {1, 4, 8, 10}.

24



1 2 3 4 5

10
−3

10
−2

10
−1

multicast rate [bits/sec/Hz]

O
ut

ag
e 

pr
ob

ab
ili

ty

 

 

20dB
25dB
30dB

Figure 3: The probability of outage in the non-naive TDMA for various values of SNR for the
network shown in Fig. 1. It was assumed that node 5 was the source node and that the destinations
were Ds = {1, 4, 8, 10}.
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Figure 4: The convergence of the distributed algorithm for the network shown in Fig. 1. It was
assumed that node 5 was the source node and that the destinations were Ds = {1, 4, 8, 10}. The
dashed line represents the optimal solution of (46) and the solid line represents the value of the
cost function in (46) over time.
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Appendix A. A recursion for computing the joint distribution of linear com-
binations of exponential random variables

In this section we present a new version of a recursion that appeared as equa-
tion (17) in [31]. The lemma in [31] gives a recursion for the computation of the
joint distribution of linear combinations of spacings of uniform distribution. The
authors in [31] remarked that the recursion remain valid as well for computing the
joint distribution of linear combinations of exponential random variables. This is
inaccurate and we revise the result to handle exponential random variables. To
that end, we need the following notations. Let Ψ = {i1, i2, . . . , ik} k ≥ 1 be a set
of indices of columns of a matrix A such that i` < i`+1 for all ` and let A−Ψ(m)

denote the submatrix of A constructed by deleting the columns of A indexed by
{i1, i2, . . . , im}.

Lemma 6. Let z1, z2, · · · , zN+1
be (N + 1) i.i.d exponential random variables

with expectation E{zi} = 1. Let Ψ = {i1, i2, . . . , ik}, k ≥ 1 be a set of indices
of identical columns of matrix A (without loss of generality i` < i`+1 for all `). If
there exists a row r in A such that a) ar,i > 0 for i ∈ Ψ, b) ar,i = 0 for i /∈ Ψ and
c) br ≥ 0, the following recursion holds

Pr (Az > λb) =
k−1∑
m=0

1

m!
(λδ)me−λδ Pr

(
Ar∗
−Ψ(m)z > λc

)
, (A.1)

where δ = br
ar,i1

and c = br∗ − δar∗i1 .

Proof: As pointed out in [31], since the expression Az > λb stands for a conjunc-
tion of inequalities involving i.i.d random variables, Pr (Az > λb) = Pr (πAz > λπb)
and Pr (Az > λb) = Pr (Aπz > λπb) hold for any permutation matrix π with
the appropriate dimensions. Therefore, without loss of generality, we assume that
r = 1 and Ψ = {1, 2, . . . , k} (See the illustration of such a matrix in Fig. A.5).
Under these assumptions, the first inequality in Az > λb is

D = {a1,1

k∑
`=1

z` > λb1}. (A.2)

Clearly,
Pr (Az > λb) = Pr (D ∩ {A∗z > λb∗}) . (A.3)
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Figure A.5: An illustration of a matrix A that satisfies the assumptions in Lemma 6, where Ψ =
{1, 2, . . . , k} and r = 1.
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The event D can be written as the union of disjoint events D = ∪k−1
m=0Dm, where

Dm = {
m∑
`=1

z` ≤ λδ ≤
m+1∑
`=1

z`}. (A.4)

Therefore,

Pr (Az > λb) =
k−1∑
m=0

Pr (Dm) Pr (A∗z > λb∗|Dm). (A.5)

For m < k, the rth inequality in Az > λb can be rewritten as

{
N+1∑
`=1

ar,`z` > λbr} = {
m+1∑
`=1

ar,`z` +
N+1∑
`=m+2

ar,`z` > λbr} =

{ar,1
m+1∑
`=1

z` +
N+1∑
`=m+2

ar,`z` − ar,1λδ > λbr − ar,1λδ} =

{ar,1

(
m+1∑
`=1

z` − λδ

)
+

N+1∑
`=m+2

ar,`z`− > (br − λδar,1)} =

{
[
ar,1, ar,m+2, · · · , ar,N+1

]T
Tm > (br − λδar,1)}, (A.6)

where

Tm =

[
m+1∑
`=1

z` − λδ, zm+2, · · · , zN+1

]T
. (A.7)

Therefore,

Pr (A∗z > λb∗|Dm) = Pr
(
A∗(−m)T

m > λ (b∗ − δa∗) |Dm

)
(A.8)

In the following we show that the event Tm|Dm has the same distribution as
(n + 1 − m) i.i.d exponential random variables. Obviously, Dm is independent
with (Tm)∗. Therefore, in order to show that Tm|Dm has the same distribution as

(n + 1 −m) i.i.d exponential random variables, it suffices to show that
m+1∑
`=1

z` −

λδ|Dm has the same distribution as zm+1. Note that{
m+1∑
`=1

z` − λδ|Dm

}
=

{
m+1∑
`=1

z` − λδ|0 ≤ λδ −
m∑
`=1

z` ≤ zm+1

}
. (A.9)
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Therefore,

Pr

(
m+1∑
`=1

z` − λδ > x|0 ≤ λδ −
m∑
`=1

z` ≤ zm+1

)
= (A.10)

Pr

(
zm+1 > x−

m∑
`=1

z` + λδ|0 ≤ λδ −
m∑
`=1

z` ≤ zm+1

)
. (A.11)

Due to the memoryless property3 of the exponential random variable we can write

Pr

(
zm+1 > x−

m∑
`=1

z` + λδ|zm+1 ≥ λδ −
m∑
`=1

z` ≥ 0

)
= (A.12)

Pr

(
zm+1 > x−

m∑
`=1

z` + λδ −

(
λδ −

m∑
`=1

z`

))
= (A.13)

Pr (zm+1 > x) . (A.14)

Therefore, (A.8) becomes

Pr (A∗z > λb∗|Dm) = Pr
(
A∗(−m)z > λ (b∗ − δa∗)

)
. (A.15)

Combining (A.5) and (A.15) yields

Pr (Az > λb) =
k−1∑
m=0

Pr (Dm) Pr
(
A∗(−m)z > λ (b∗ − δa∗)

)
. (A.16)

In order to complete the recursion we need an explicit expression of Pr(Dm).

Pr(Dm) = Pr

(
m∑
`=1

z` ≤ λδ ≤
m+1∑
`=1

z`

)
(A.17)

= 1− Pr

(
m∑
`=1

z` > λδ

)
− Pr

(
λδ >

m+1∑
`=1

z`

)
(A.18)

= Pr

(
m∑
`=1

z` ≤ λδ

)
− Pr

(
m+1∑
`=1

z` ≤ λδ

)
. (A.19)

3The memoryless property of an exponential variable means that for any a, b ≥ 0, we have that
Pr (Z > a+ b|Z > a) = Pr (Z > b), where Z is exponential random variable.
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Since
m∑
`=1

z` follows the Erlang(m, 1) distribution4, we have that

Pr(Dm) =
1

m!
(λδ)me−λδ. (A.20)

The claim now follows. �

Appendix B. Strong duality of (47)

Lemma 7. Strong duality holds for (47).

Proof: Consider the following optimization problem

min
f ,r

∑
j∈V\{s}

λj2
R̃j (B.1)

subject to

φ
(
−fdi,j

)
≤ 0 ∀(i, j) ∈ E , d ∈ Ds (B.1a)

φ
(
fdi,j − ri,j

)
≤ 0 ∀(i, j) ∈ E , d ∈ Ds (B.1b)∑

i∈I(j)

fdi,j −
∑
i∈O(j)

fdj,i =

{
0 j /∈ {s, d}
Rs j = d

(B.1c)

∀j ∈ V\{s}, d ∈ Ds.

Note that the refined Slater’s condition holds for (B.1) and therefore (B.1) has
zero duality gap [37], but it does not hold for (47). Obviously, the feasible sets
of (46), (47) and (B.1) are all the same and therefore they have identical optimal
solutions. We need to show that solving (47) through its Lagrangian yields the
same solution. Denote the primal variables by x = (f , r) and the dual variables by
ζ. Denote the Lagrangians of (47) and (B.1) by L(x, ζ), LM(x, ζ), respectively.
The dual function of (47) is given by q(ζ) = min

x
L(x, ζ). Assume that there

exists x̃(ζ) = (̃f , r̃) that is a minimizer of L(x, ζ) that does not obey the flow
conservation constraint (46b). Therefore, there exists node j ∈ V\{s} such that

4The CDF of Erlang(m,λ) distributed random variable Y is given by FY (y) = 1 −
m−1∑
`=0

1

`!
(λy)`e−λy .
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qdj 6= 0. Hence, we have either φ(qdj ) > 0 or φ(−qdj ) > 0. Without loss of
generality assume that φ(qdj ) > 0. In that case, since the cost function in (47)
is bounded below by 0 we can always choose ζ such that the dual solution q(ζ)
is infinity (by setting all λi to zero except the one with the positive coefficient
φ(qdj ) > 0). This contradicts the feasibility of the primal (47). We conclude by
noting that L(x, ζ) = LM(x, ζ) for any x obeys the flow conservation constraint
(46b). �
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