
Transparent Network Protocol Testing and Evaluation

Xiaoshuang Wang, Sunil Agham, Vikram Munishwar, Vaibhav Nipunage, Shailendra Singh, and Kartik Gopalan

Computer Science, Binghamton University, Binghamton, NY, USA

Contact: kartik@binghamton.edu

Abstract—Network protocol developers typically go through
a tedious and error-prone process of testing and debugging their
protocol implementation for various settings. They perform a
number of tasks manually such as configuration of numerous
network settings, controlled reproduction of unexpected protocol
behavior, and traffic capture and analysis. We present a Protocol
Testing and Evaluation System (PTES) to assist developers
in transparently testing their protocol implementations. PTES
enables a protocol developer to construct and execute various
controlled and repeatable testing scenarios. The developer can use
simple iptables-like rules to specify various local and distributed
network events and actions. During protocol execution, PTES
triggers these events and actions in a coordinated manner and
records the protocol responses to these events which can later
be examined by the developer. We present the design and
implementation of three variants of PTES for native, simulated,
and emulated platforms for both wired and wireless networks.
We demonstrate the utility of PTES by automating the testing of
TCP/IP and Optimized Link State Routing (OLSR) protocols.

I. INTRODUCTION

Testing and debugging of network protocol implemen-
tations is typically a manual process in which developers
test the protocol behavior against various network conditions
and configurations. Event-injection is a technique to perform
controlled testing of a protocol implementation. Events are
injected into the network during protocol execution, either
externally or by manually instrumenting the protocol code, and
the protocol response to the events is recorded.

A number of challenges make event-based protocol testing
and evaluation difficult to execute. First, manual instrumen-
tation of protocol code can make the testing process harder.
Second, it is challenging to reproduce and record protocol
responses for distributed network events. For instance, in case
of wireless protocols such as AODV [1] and OLSR [2], an
event on one node can affect the routing decision on another
node. Reproducing such distributed dependencies across nodes
requires careful co-ordination among multiple nodes, which
may be difficult to achieve through manual instrumentation
alone. Third, when protocols need to be tested for large
deployment scenarios, developers often rely on simulation or
emulation for quick testing in order to save on deployment
and configuration time. However, again the event-injection and
testing process is performed largely manually on a protocol-
by-protocol basis. Finally, to evaluate protocol responses to
network events, the developer has to again manually instrument
the protocol code to capture packet traces at individual nodes.

Existing tools for protocol testing and evaluation that
address some of the above concerns tend to be either protocol-
specific, testbed-specific or difficult to use due to unfamiliar
interfaces that developers need to learn from scratch. In this
paper, we present the design and implementation of a Protocol

Testing and Evaluation System (PTES) to assist protocol de-
velopers in testing their protocol implementation under various
network event scenarios. The protocol implementation under
test does not need to be modified or instrumented for the
sake of testing. Test cases can be specified and executed
independent of the protocol implementation.

To assist developers in easily specifying test cases, PTES
provides a few basic building blocks. Developers can specify
controlled injection of events on various nodes and also specify
the corresponding actions to execute in response to those
events. PTES provides a familiar iptables-like interface [3]
for protocol developers to specify Event-Action rules. For
example, an event could be receiving certain number of packets
of a particular protocol type and an action could be delaying,
modifying, or duplicating a packet or rebooting a particular
node. PTES also allows distributed Event-Action specification
in which an event is monitored on one or more nodes and
the corresponding action is executed on a different node.
The dependencies and timings among events and actions are
transparently managed by PTES during protocol execution. To
help developers evaluate the behavior of a protocol in response
to a specific event, PTES provides a mechanism to collect an
aggregated log of events and actions for analysis.

PTES can work in both native mode on physical machines
running Linux and in simulated or emulated mode in the ns-
3 [4] platform. The ns-3 platform is a well-known tool for
network simulations and emulations. Simulations allow for
experiments with a large number of nodes, whereas emulations
introduce a certain degree of realism in experiments through
the use of real network hardware for packet transmission
and reception. Thus developers can use PTES to either test
real protocol implementations in the native mode or add
PTES hooks to their existing ns-3 scripts, without modifying
the underlying ns-3 protocol implementation. It is up to the
developers/testers to assess the relative merits of using native
implementations vs. simulations/emulations. The role of PTES
is primarily to provide a convenient testing framework for each
of the environments.

To summarize, our key contributions are as follows. (1)
We present the design of a transparent and non-intrusive
approach for testing network protocols that is independent
of protocol implementations, and works in real, emulated,
and simulated platforms. (2) We present a distributed Event-
Action specification framework using the familiar iptables
interface. (3) We present two implementations of the proposed
design in native Linux and ns-3 based platforms.

II. HIGH-LEVEL ARCHITECTURE OF PTES

PTES enables protocol developers execute test scenar-
ios without modifying their protocol implementation details.

2

Fig. 1: Components of PTES.

Developers can use a familiar iptables-like interface to
specify various test configurations. Each configuration consists
of a set of rules. Each rule specifies an event to monitor and a
corresponding action to execute in response to the event. Once
specified, a test configuration is executed in parallel with the
protocol execution. PTES records a log of events, actions, and
protocol responses during the execution for offline analysis. In
this section, we will provide an overview of this Event-Action
framework.

A. Event-Action Architecture

Figure 1 shows the high-level architecture of the PTES
environment consisting of test nodes and a controller. The con-
troller initiates the experiment by accepting an Event-Action
specification from the user. Depending on the specification,
the controller assigns each node with the role of either an
event node, an action node, or both. When an event occurs, the
event nodes inform the corresponding action nodes, which then
execute the specified action. This Event-Action coordination
could be either local (i.e. the event is the action node) or
distributed (i.e. an event could trigger actions on one or more
remote action nodes). A kernel module at each node, called
the Event-Action module, is responsible for coordinating the
events and actions between different nodes. To trigger remote
actions, the Event-Action module sends an action message over
the control interface to its peer on the remote node which in
turn executes the corresponding action. Protocol testers can
also build an Event-Action chain so that a cascade of events
and actions can trigger each other in a sequence.

B. Event-Action Specification

Test configurations in PTES are specified in a format
similar to the widely used iptables rules. Distributed events
and actions in PTES are specified as extensions to the existing
iptables rules. A PTES-specific parser converts each of
the extended rules into multiple regular rules that can be
executed locally by the iptables framework at each node.
For example, the following rule specifies that, when event
nodes, or enodes, 3 and/or 7 receive a TCP packet from
node 1, then all action nodes, or anodes, should reboot.

iptables -p tcp -s 1 --enodes 3,7

--anodes * -j RESTART

The parser converts the above rule into the following per-
node rules for event nodes 3 and 7.

iptables -p tcp -s 192.168.1.1 -j

COR --action restart --mac-source

ff:ff:ff:ff:ff:ff

In the above conversion, the parser replaces the node IDs
with the IP addresses of the corresponding nodes by referring
to a mapping table. It also replaces the argument --anodes

* with the per-node argument --mac-source followed by a
broadcast address. The additional argument -j COR instructs
the Event-Action kernel module at nodes 3 and 7 to coordinate
with the remote action nodes by sending a RESTART message
over the control interface.

C. Time Synchronization

To coordinate effectively, it is critical that all the nodes in
PTES maintain the same notion of physical time, preferably at
microseconds granularity, to enable meaningful synchroniza-
tion of distributed events. A kernel module in the controller
broadcasts time-sync packets periodically (every 200ms in our
current prototype) over its control interface. Each synch packet
carries the global time in microseconds since the start of
the experiment. In between the arrival of two synchroniza-
tion packets, each node uses its local clock (at microsecond
granularity) to track time more accurately.

III. PTES MODULES

PTES modules are protocol-testing components that im-
plement the functionalities of individual events and actions.
These modules are implemented as target and match extensions
in the iptables implementation in the Linux kernel and
ns-3. The target modules are used to alter the flow or the
contents of network packets or the state of the system. Match
modules can be used to decide if a network packet matches an
iptables rule. Incoming and outgoing packets at each node
are intercepted using Netfilter hooks, following which one
or more modules may examine or process the packet in some
manner. Modules currently supported in PTES can be classified
as: 1) Selection modules, 2) Action modules and, 3) Logging
modules.

A. Selection Modules

In many situations, the simple matching capabilities of
iptables are not sufficient, such as when one wishes to
capture protocol traffic between specific times or would like
to match every N th packet of a connection. Selection modules
extend the existing matching capabilities of iptables using
time range and packet counts. 1) TIME selection module
captures network packets between a start-time and an end-
time and sends them to a target modules for further processing.
2) COUNTER selection module keeps track of the number of
packets received and invokes a target module once N packets
have been received, where N is specified as a parameter.

B. Action Modules

Action modules allow the injection of various actions on
different nodes in response to network events. PTES currently
supports the following actions. 1) DELAY module delays
the delivery of an incoming packet by a user-specified time
interval. The intercepted packets wait in a kernel queue for

3

the delay duration after which they are re-injected into to
the local protocol stack for further processing. 2) MODIFY
module takes a list of offset:value pairs from the user.
The value at the specified offset in each intercepted packet
is replaced with the provided value. 3) RE-ORDER module
changes the order of packets sent from the node. Module takes
a minimum and maximum delay value as inputs. For each
intercepted packet, it delays the packet by a random delay
value between the minimum and the maximum (by re-using the
DELAY module) and then re-inserts packet into the network
stack. 4) DUPLICATE module inserts a duplicate copy of
a packet at PREROUTING, POSTROUTING or FORWARD
stages of Netfilter processing. Duplicate packets are not
re-duplicated to prevent infinite loops. 5) REBOOT module
simulates a node crash by rebooting a node, either immediately,
or after a specified delay. 6) DROP module drops matching
packets. 7) BROADCAST STORM module floods the network
to create network congestion.

C. Traffic Logging Modules

Logging modules record packet information for matching
packets. The LOG module records information from each
intercepted packet such as, protocol type, source MAC, desti-
nation MAC, IP protocol type, and source/destination IP. The
BANDWIDTH module calculates and record the bandwidth
usage for matching packets in a specified interval. Logs are
recorded over the control interface using either NFS-assisted
logging or real-time logging. NFS-assisted logging at each
node uses an NFS-mounted directory from the controller to
record the system logs (syslog). To reduce the overheads
introduced by NFS, PTES also provides a real-time log-
ging mechanism in which a custom light-weight kernel-level
protocol between the controller and the nodes transfers the
log information to the controller. A logging module at the
controller collects and stores all the log data from each node.

IV. EXECUTION MODES OF PTES

PTES can be used on various platforms to perform pro-
tocol evaluations. Protocol developers can test either wired
or wireless network protocols using 1) native Linux platform
on multiple physical machines (also called native mode), 2)
ns-3 in simulation mode on a single physical machine, or 3)
ns-3 in emulation mode using multiple physical machines. In
addition, PTES can also work in a hybrid setup with mix of
emulated and simulated ns-3 nodes. It is up to the protocol
developers/testers to decide which of the modes will be most
accurate for testing their specific protocol implementation. The
role played by PTES is mainly to provide a convenient testing
framework for each of the above modes.

A. PTES in Native Mode

PTES can work in native mode on physical machines run-
ning Linux using the Netfilter/iptables framework.
The implementation of PTES in native mode is illustrated in
Figure 2. Netfilter matches the incoming, outgoing, and
forwarded packets in the Linux kernel against a set of user-
specified rules. PTES modules are loaded into the kernel at
each node before the experiment. Nodes in PTES receive per-
node Event-Action specifications from the central controller
in the form of per-node iptables rules that are generated
after parsing the user-specified PTES rules. After the PTES

Fig. 2: PTES in Native Mode

injects the per-node iptables rules into the kernel, the
Event-Action module starts monitoring the network packets
for the specified events and triggers the corresponding actions
when the rules match.

A COR module (or coordination module) is responsible for
the coordination of distributed events and actions. To trigger
an action at a remote host in response to an event, the COR
module directly sends an Action message (as an Ethernet frame
with special protocol field) containing the corresponding action
information. The Action messages are acknowledged by the
receiver to reduce their likelihood of being lost in transit. When
the remote node receives an Action message, it triggers the
module that implements the corresponding action. A Logging
Module on each node communicates with a corresponding
module on the controller and transmits log messages using
a low-overhead communication protocol. Alternatively, log
events can also be sent to the local sysklogd daemon which
saves the data to NFS-mounted directories from the controller.

B. PTES on ns-3

We also added support for PTES in ns-3 simulations and
distributed emulations. To do so, we first needed to add
support in ns-3 for an Netfilter/iptables-like packet
filtering mechanism. An existing tool, called ns-3-netfilter [5],
provides a basic support by adding hooks at level 3 layer
of TCP/IP stack in ns-3 by modifying the Ipv4L3Protocol
class. However, the extensions provided by the ns-3-netfilter
framework are limited to accepting and dropping an incoming
packet. To fully integrate PTES with ns-3, we extended ns-
3 by adding support for PTES modules at different chains.
Specifically, changes and enhancements done to ns-3 and ns-3-
netfilter are as follows. 1) We ported ns-3-netfilter code for the
latest ns-3 version. 2) We extended ns-3-netfilter to accept and
parse more complex iptables rules, including PTES event-
action rules. 3) We implemented and integrated various PTES
modules in the ns-3-netfilter framework. 4) We implemented
a distributed ns-3 Event-Action framework among ns-3 nodes.
Our modification to ns-3 adds up to around 1,600 lines of C++
code. The ns-3 Event-Action framework, referred hereafter
as ns-3 Netfilter/iptables framework, includes both
local and distributed event-injection. We now describe the two
modes of PTES in ns-3 – simulation and distributed emulation.

1) PTES in ns-3 Simulation Mode: PTES in ns-3 sim-
ulation mode monitors every incoming and outgoing packet.
For the packet that matches a particular iptables rule, the

4

Fig. 3: PTES in ns-3 Simulation Mode

target specified in the iptables rule is launched and the
event specified in the rule is processed.

The implementation of PTES in ns-3 simulation mode is
illustrated in Figure 3. The ns-3 Netfilter/iptables

framework has all the hooks inside the ns-3 class
Ipv4L3Protocol, which does most of the Network Layer proto-
col processing. A new class called Ipv4Netfilter, implementing
packet filtering hook is added to class Ipv4L3Protocol.All
the five Netfilter hooks, namely PREROUTING, FOR-
WARD, INPUT, OUTPUT, POSTROUTING, are inserted at
corresponding places in the network protocol stack. Whenever
a packet passes through a Netfilter hook, the Ipv4Netfilter
class performs Match() operation on the packet. The Match()
operation compares the packet with standard options, such as
protocol type, source IP, destination IP, source port, destination
port, etc. If a packet matches all the filters in a rule, the Target()
operation in the specified target class is executed, which injects
the corresponding events and actions into the simulated node.

To trigger actions such as packet delays or packet re-
ordering, we implemented a support for delayed processing.
Each packet that needs delayed processing is marked by the
Netfilter/iptables target and is removed from protocol
stack into a sorted queue ordered by packet delay expiration
time. A dedicated thread periodically checks if there is any
packet ready to be inserted back into the protocol stack.

2) PTES in ns-3 Distributed Emulation Mode: PTES in
ns-3 distributed emulation mode enables injecting an event on
an emulated ns-3 node located on another physical machine.
To implement the Event-Action framework in ns-3 distributed
emulation, we exploit the emulated node feature and MPI
support of ns-3. The EmuNetDevice class from ns-3 allows
one or more simulated nodes in ns-3 to transmit and receive
real network packets using real network interfaces. MPI helps
synchronize parts of an experiments running on various phys-
ical machines. MPI is also used for sending Action messages.

Figure 4 shows the implementation of the PTES in ns-3
distributed emulation mode. Each node in the testbed can be
identified by a tuple (MID, NID) which consists of a Machine
ID (MID), to represent a physical machine and a Node ID
(NID) to identify a unique ns-3 node on the given physical
machine. When a packet matches an iptables rule on a
particular ns-3 node and a remote action needs to be triggered,
the coordinator target (COR) sets up an Action message with
required information such as MID, NID, action information,
remote iptables rules, etc. The COR target then sends the
Action message to the destination using MPI [6]. The MPI
message arrives at the controller first and gets forwarded to
the destination testbed machine.

Fig. 4: PTES in ns-3 Distributed Emulation Mode

Each testbed node runs an MPI receiver, which is respon-
sible for receiving all the Action messages from the remote
source and injecting the corresponding actions on local ns-3
nodes. MPI receiver maintains a bitmap of events for each
node. Once an Action message is received, the MPI receiver
thread updates the bitmap. Each time when a Netfilter

hook executes, before matching the rules, the Netfilter

hook checks the bitmap and executes the pending actions first.
In addition, the ns-3 Netfilter/iptables framework pe-
riodically checks if any one of the actions in the bitmap is set.
If so, the specified action is injected into the experiment. If the
Action message contains an iptables rule, the Netfilter
framework inserts the new rule to the existing chain.

V. EVALUATION

PTES works in different modes – simulation, emulation
and native – and with both wired and wireless networks. For
wireless network experiments, we use the MiNT-2 testbed [7],
where a wireless node is mounted on a iRobot Create robot [8].
Each wireless node is equipped with a Soekris net5501 board,
8G flash card, one miniPCI wireless card, and one wire-
less USB adapter. The miniPCI wireless card is used for
experiments, whereas the wireless USB adapter is used for
communicating with the controller and transmitting action
messages. Based on the test scenario specification, robots form
the desired network topology, on which wireless protocols can
be tested. For wired Ethernet network experiments, we run
our experiments on machines connected over 1Gbps Ethernet
network. We use commonly used OLSR [2] and TCP/IP [9]
protocols for evaluation. Figure 5 shows the topology of wire-
less nodes used for the sections V-A, V-B, V-C, V-D. The solid
lines connect the nodes that can communicate with each other.
We arrange the nodes so that node 1 can only communicate
with node 3 through intermediate nodes 4 or 2 and vice-
versa. Node 4 and 2 are configured with 18dB and 12dB
transmission power respectively. Thus, when communicating
from the source node 1 to the destination node 3, the OLSR
protocol selects the node 4 over node 2 to route the packets
due to higher signal strength(less packet loss) with node 4.

A. Event-Action Framework Validation

This experiment demonstrates the behavior of OLSR when
a DROP event is injected at node 4. Specifically, a DROP
action message is transmitted from node 2 to 4 after 80
seconds, which makes node 4 drop all the incoming packets

5

Fig. 5: Topology of the testbed for evaluation

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200 220

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Intermediate Node 4

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200 220

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Intermediate Node 2

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200 220

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Destination Node 3

Fig. 6: Effect of DROP module on per-node reception rate

from the experiment interface. After 180 seconds, node 2 sends
ACCEPT action message to node 4 so that node 4 can receive
network packets from the experiment interface again. The
BANDWIDTH module on node 2, 3, and 4 measures incoming
bandwidth from node 1 to node 3. In Figure 6, the data points
are the ICMP packets captured at the PREROUTING chain of
the corresponding node. The first graph is the bandwidth log
of node 4. When the DROP action message is received at node
4, it starts to drop all ICMP packets. As a result, node 3 does
not receive any packets. OLSR takes some time to recalculate
routes after which node 1 starts sending the packets through
the intermediate node 2. The second graph shows the ICMP
traffic on node 2 after 100 seconds. After 180 seconds, node 4
comes back again and starts forwarding the packets to node 3.
However, node 4 takes some time to discover the neighbors.
Once the link with node 4 becomes stable, node 1 prefers
node 4 as the intermediate node over node 2 because node 4
is configured with a higher transmission power.

B. Effect of Delaying Packets

By default, when two nodes try to communicate with
each other, OLSR selects the route with lesser hops. With
the same number of hops, OLSR chooses the one with better
network link quality. However, the OLSR implementation that

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80 90

R
T

T
 (

m
s
)

Ping Packets Sequence

Fig. 7: Effect of DELAY module on round-trip time.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 20 40 60 80 100 120 140 160 180

T
C

P
 P

a
c
k
e
t
S

e
q
.
N

o
.

Packet Order

TCP Packet Reorder
No TCP Packet Reorder

Fig. 8: TCP packet 600ms reorder window random reorder

we use does not consider the latency as a parameter to choose
one route over another. To demonstrate this, we use DELAY
module to delay the packets on node 4. We insert iptables
rules on node 4 to enable packet delay of 400ms from time
80s to 120s during the experiment. Node 1 runs regular ping
with an interval of 1 second. From figure 7 we can notice that
the RTT of ping packets reaches to 800ms (twice the delay
time), since each ICMP packet is delayed by 400ms. Despite
packets being delayed at node 4, OLSR does not select node
2 as its new intermediate node.

C. Effect of Packet Reordering

The Reorder Module adds a random delay to the transmis-
sion time of each matching packet within a specified range
(5ms to 60ms). Figure 8 demonstrates the effect of packet
reordering on a TCP connection. The X-axis shows the packet
reception order, and the Y-axis shows the sequence number of
each received packet. The dashed line, which indicates that no
packet reordering was used, is a straight line since the packets
all arrive in the same order they were sent. The solid line
represents actual order of sequence numbers received when
the Reorder Module is used. It can be observed that with
reordering, some packets with larger TCP sequence numbers
are received sooner than those with smaller sequence numbers.

D. Effect of Packet Modification

The OLSR specification [10] mentions that if the length
field of an OLSR message is invalid, the packet shall be
discarded. To verify this behavior of OLSR protocol, we use
the MODIFY module to change the length of the packet. With
the MODIFY module enabled on node 4 from 60 second
to 180 second, the OLSR length field of all incoming UDP
packets is overwritten with an invalid value. Therefore, OLSR
discards these packets assuming that the data inside the packet
is corrupt. The Figure 9 shows the result of this experiment
for intermediate nodes 4 and 2, and the destination node 3. We
can observe that 60 seconds onward, all the incoming OLSR
packets at node 4 are modified at the PREROUTING chain.
Since node 4 does not receive any valid OLSR packet for
a certain duration of time, corresponding routing table entry
expires. Finally node 1 changes its intermediate node from

6

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Intermediate Node 4

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Intermediate Node 2

 16

 18

 20

 22

 24

 26

 28

 40 60 80 100 120 140 160 180 200

B
a

n
d

w
id

th
 (

K
b

p
s)

Time (sec)

Destination Node 3

Fig. 9: Effect of MODIFY module on per-node reception rate

�� ��

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

Fig. 10: Topology for evaluating PTES with ns-3.

node 4 to node 2. After disabling the MODIFY module, the
node 4 is again selected over node 2 as an intermediate node.

E. PTES with ns-3

This experiment demonstrates the integration of PTES with
ns-3 including the ability to work with emulated and simulated
nodes. We have four physical machines. Physical machines 1
and 4 each have single emulated ns-3 node. Physical machines
2 and 3 each have 6 emulated ns-3 nodes. For rest of this ex-
periment, node refers to emulated node on a physical machine.
Figure 10 illustrates the topology. Numbers in circles show the
per node id for emulated nodes. Dotted arcs depicts range of
each physical machine. Each physical machine can directly
communicate with only its immediate neighbor. Out of the 6
nodes on machine 2, only one is active at a given time, starting
with node 1. After an interval of 100s, this node becomes
inactive and next node on this machine becomes active. This
is automated by setting PTES event-action rules to activate
or deactivate a node after a given duration. For reminder of
this experiment, a node b on machine a is represented as a:b.
Throughout the duration of experiment, node 1:1 transmits
ICMP packets to node 4:1. But since machine 1 cannot reach

1:1

2:1
2:2
2:3
2:4
2:5
2:6

3:1
3:2
3:3
3:4
3:5
3:6

4:1

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08

T
e
s
tb

e
d
 N

o
d
e
s

Time (us)

ICMP Packet

Fig. 11: PTES with ns-3: Observed ICMP packet route.

 0

 15

 30

 45

 60

 75

 90

 105

 1 2 3 4 5 6

T
im

e
 (

s
e
c
)

SYN Packets Sent by Client

Fig. 12: TCP connection establishment - phase 1

machine 4, the packets hop through machine 2 and 3. During
0 to 100s duration, nodes 2:1 and 3:1 are active. Thus, the
route during this period should be 1:1 to 2:1 to 3:1 to 4:1. The
observed ICMP packet route is shown in Figure 11. Y-axis
represents nodes. Node 1:1 has a total of 72 iptables rules.
Each 100 second, node 1:1 sends 12 Event-Action messages
to all the nodes on machine 2 and 3 so that only one node on
each machine accepts network packets. We can see from the
figure that in the very beginning, node 1:1 sends ICMP packets
through node 2:1 and 3:1. After 100 seconds, the route changes
as the nodes 2:1 and 3:1 go silent and 2:2 and 3:2 become
active. However, the OLSR routing protocol does not find out
the route change immediately. Thus, the node 1:1 sends ICMP
packets to the destination only after 300 seconds, when the
nodes 2:3 and 3:3 start accepting network packets.

F. TCP Connection Establishment

This experiment uses PTES to verify the TCP connection
establishment protocol on a wired network. TCP uses a three-
way handshake for connection establishment. In first phase,
client sends SYN packet to server. In second phase, server
replies with SYN-ACK. Finally, client sends ACK to server
and connection is established. If client does not receive SYN-
ACK packet, it sends SYN packet again with exponentially
increasing intervals. Node 1 acts as a client and tries to
establish TCP connection with node 2. A DROP rule drops
the incoming SYN-ACK packets at node 1. Figure 12 shows
that, since node 1 assumes loss of SYN-ACK packet, it resends
successive SYN packets at exponentially increasingly intervals.

G. Effect on TCP Congestion Window Size

This experiment demonstrates the impact of packet loss,
caused by the DROP module, on TCP congestion window size.
A sender transmits packets to the destination at 1 Mbps for first
50 seconds. The DROP module randomly drops TCP packets
between 10 and 22 seconds. Figure 13 shows the change

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10 20 30 40 50

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

(b
y
te

s
)

Time(sec)

Fig. 13: TCP congestion window with random drop

in TCP congestion window size. TCP congestion avoidance
and slow-start maintains two variables for each connection,
congestion window size (cwnd) and slow-start threshold size
(ssthresh). The initial value of cwnd is small but with each
successful transmission it increases by one TCP maximum
segment size. Since the TCP packets are never lost for the
first 10 seconds, the cwnd increases rapidly. After 10 seconds,
nearly one third of the TCP packets are dropped randomly
by the Netfilter framework. As a result, the congestion
avoidance algorithm makes ssthresh decrease to 2 and cwnd
decrease to 1. When the random drop Netfilter rule
expires after 50 seconds, no TCP packet drops are observed.
The cwnd and ssthresh slowly increase back to the old value.

H. Logging Overhead

To measure the overhead of message logging in PTES,
we performed periodic bandwidth monitoring at node 4 using
a PTES iptables rule as it receives packets from nodes 1
and 3. Due to space constraints, we summarize our findings.
As expected, the more frequently the measurement rule is
triggered, the higher the CPU usage and network overhead.
However, the CPU usage and network overhead are noticeably
affected only when the measurement interval is smaller than
50ms and there is no observable overhead above 400ms.

VI. RELATED WORK

Protocol testing has been studied in a number of contexts
with focus on specific aspects of protocol behavior. DOC-
TOR [11] is a software-based tool that injects processor, mem-
ory, and communication related events in the HARTS real-time
system. ORCHESTRA [12] is a fault probing and injection
system that works by inserting a new layer into the protocol
stack of the Mach and Solaris operating systems. NFTAPE [13]
composes a configurable environment for experiments using
existing event injectors. Virtualwire [14] is an event-injection
tool that uses a custom declarative scripting language to specify
events and actions across multiple nodes. FIAT [15] tests
the dependability of real-time distributed systems by injecting
events into the source code at the compile-time. NIST Net [16],
Dummynet [17], and ComFIRM [18] also rely upon packet
capture for event-injection but support neither distributed nor
time-based injection capabilities. Cesium [19] is a simulation
tool that allows events to be injected into the protocol at
runtime. StarBED [20] provides a fault-injection mechanism
in a large-scale testbed of 512 physical nodes each having up
to 10 virtual nodes. Loki [21] is an fault-injection framework
for distributed systems in which faults injected in one node
can depend upon the states of the other nodes. Mendosus [22]
is an SAN-based platform to test the reliability of network
services in the presence of faults. In contrast to the above tools,

that require a special GUI or a new programming language,
PTES provides uses and familiar iptables interface for
event-action specification, thus lowering the barriers to usable
protocol testing. PTES is also protocol-transparent in that it
does not require any protocol modifications and works over
native, simulated, and emulated protocol testing platforms.

VII. CONCLUSION

We presented a Protocol Testing and Evaluation System
(PTES) that can transparently test protocol implementations in
native, simulated, or emulated settings for wired and wireless
networks. PTES enables protocol developers to execute con-
trolled and repeatable testing scenarios using familiar and sim-
ple iptables-like rules. A distributed Event-Action frame-
work allows the specification and coordination of network-
wide events and actions on different nodes, independent of
protocol implementation and execution. PTES also records
protocol behavior during testing for offline analysis.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation through grant CNS-0751161.

REFERENCES

[1] E. B.-R. C. Perkins and S. Das, “Ad hoc On-Demand Distance Vector
(AODV) Routing Protocol,” RFC 3561 (Experimental), Oct. 2003.

[2] “Optimized Link State Routing Protocol,” (http://www.olsr.org).

[3] “Netfilter/iptables,” (http://www.netfilter.org).

[4] “ns-3 Network Simulator,” (http://www.nsnam.org/).

[5] “ns-3 Netfilter,” (http://code.nsnam.org/adrian/ns-3-netfilter/).

[6] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI: The Complete Reference. MIT Press, 1995.

[7] C. Mitchell, V. Munishwar, S. Singh, X. Wang, K. Gopalan, and N. Abu-
Ghazaleh, “Testbed design and localization in mint-2: A miniaturized
robotic platform for wireless protocol development and emulation,” in
Proc. of COMSNETS, 2009.

[8] “Roomba Create,” (http://www.irobot.com/).

[9] T. Socolofsky and C. Kale, “TCP/IP tutorial,” RFC 1180, 1991.

[10] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626 (Experimental), Oct. 2003.

[11] S. Han, K. Shin, and H. Rosenberg, “Doctor: Integrated software fault
injection environment for distributed real-time systems,” in IPDS, 1995.

[12] S. Dawson, F. Jahanian, and T. Mitton, “Orchestra: A probing and fault
injection environment for testing protocol implementations,” in Proc. of

Computer Performance and Dependability Symposium, Sept. 1996.

[13] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “NFTAPE:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Proc. of IPDS, 2000.

[14] P. De, A. Neogi, and T. cker Chiueh, “Virtualwire: A fault injection
and analysis tool for network protocols,” in ICDCS, 2003.

[15] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Bar-
ton, R. Dancey, A. Robinson, and T. Lin, “FIAT: fault injection based
automated testing environment,” in Fault-Tolerant Computing, 1988.

[16] M. Carson and D. Santay, “Nist net: A linux-based network emulation
tool,” Computer Commun. Review, July 2003.

[17] L. Rizzo, “Dummynet: A simple approach to the evaluation of network
protocols,” ACM Computer Communication Review, January 1997.

[18] R. J. Drebes, G. Jacques-Silva, J. M. F. da Trindade, and T. S. Weber,
“A kernel-based communication fault injector for dependability testing
of distributed systems.” in Haifa Verification Conference, Nov. 2005.

[19] G. A. Alvarez and F. Cristian, “Cesium: Testing hard real-time and
dependability properties of distributed protocols,” in Object-Oriented

Real-Time Dependable Systems, 1997.

8

[20] T. Miyachi, Y. Makino, R. Beuran, S. Uda, S. Miwa, and Y. Tan, “Fault
injection on a large-scale network testbed,” in Proc. of Asian Internet

Engineering Conference, 2011.

[21] R. Chandra, R. Lefever, M. Cukier, and W. Sanders, “Loki: a state-
driven fault injector for distributed systems,” in Proc. of Dependable

Systems and Networks, 2000.

[22] X. Li, R. Martin, K. Nagaraja, T. D. Nguyen, and B. Zhang, “Mendosus:
A SAN-based fault-injection testbed for construction of highly available
network services,” in Novel Uses of System Area Networks, 2002.

