
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A More Scalable Approach to Content-Centric Networking

Permalink
https://escholarship.org/uc/item/12f3h4c2

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2015-08-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12f3h4c2
https://escholarship.org
http://www.cdlib.org/

A More Scalable Approach to
Content-Centric Networking

J.J. Garcia-Luna-Aceves∗†
∗Palo Alto Research Center, Palo Alto, CA 94304

†Department of Computer Engineering, University of California, Santa Cruz, CA 95064
Email: jj@soe.ucsc.edu

Abstract—On-demand Content Exchange with Adaptive Nam-
ing (OCEAN) is introduced as an alternative to content-centric
networking approaches (NDN and CCN) that require the main-
tenance of forwarding state of each Interest traversing a router
in a Pending Interest Table (PIT). Content routers in OCEAN
maintain data answer routing tables (DART) to support the
correct forwarding of Interests and responses to such Interests
(content or negative acknowledgments) without divulging the
identities of consumers who originate Interests. The size of
a DART is proportional to the number of routes used by
Interests traversing a router, rather than the number of Interests
traversing a router. It is shown that undetected Interest loops
cannot occur in OCEAN, while the same is not true for CCN and
NDN, and that Interests and responses to Interests are forwarded
correctly in the absence of failures. OCEAN attains similar
latencies than NDN and CCN but incurs orders of magnitude
less storage overhead.

I. INTRODUCTION

Several information-centric networking (ICN) architectures
have been proposed as an alternative to today’s Internet [2].
A leading ICN approach can be characterized as Interest-
based, and consists of: populating forward information bases
(FIB) maintained by routers with routes to name prefixes
denoting content, sending content requests (called Interests)
for specific named data objects (NDO) over paths implied
by the FIBs, and delivering content along the reverse paths
traversed by Interests. The original content-centric networking
(CCN) proposal [9] was the first example of an Interest-
based ICN architecture in which Interests need not be flooded
and do not state the identity of the sender. Today, named
data networking (NDN) [13] and CCNx [5] are the leading
approaches on Interest-based ICN.

Since the introduction of CCN and NDN [9], [13], the
research community has assumed four major premises for
Interest-based content-centric networking: (a) Stating the name
of requested content or the content name and a nonce is
needed to detect Interest looping; (b) forwarding state for
each Interest traversing a router must be maintained in its
Pending Interest Table (PIT) to allow Interests and responses
to such Interests (content or negative acknowledgments) to
be forwarded without divulging the sources of Interests; (c)
Interests from different consumers requesting the same content
need to be aggregated to attain efficiency; and (d) NDOs need
to be sent over the reverse paths created by Interests.

This paper shows that maintaining PITs is not necessary–
and indeed is undesirable–in order to attain correct and
efficient forwarding of Interests and content in a content-
centric network. Section II addresses the performance impact
of Interest aggregation on the efficiency of NDN and CCN in
a practical deployment, and the problem of undetected Interest
looping in NDN and CCN.

Section III introduces OCEAN (On-demand Content Ex-
change with Adaptive Naming). Instead of a PIT, a content
router maintains a data answer routing table (DART), which al-
lows routers to return data objects to the correct neighbors who
requested them and without requiring Interests to state their
origins. OCEAN attains this using a data structure inspired by
some of the earliest work on virtual circuit networking with
local identifiers [11], [14]. An Interest in OCEAN states the
name of the requested content, a hop count, a destination-and-
return token (dart), and a nonce. The hop count is used for
Interest loop detection. The dart is used by forwarding routers
to leave a trace of the path traversed by the Interest using
local identifiers of the previous hop and the current hop, so
that a named data object (NDO) or a negative acknowledgment
(NACK) can be sent back to the content requestor, without the
producer or caching site knowing the source of the Interest.
The nonces in Interests are used by a content producer or
caching site to associate multiple paths traversed by Interests
from the same consumer, without knowing the identity of the
consumer.

Section IV proves that Interest loops cannot occur and be
undetected if OCEAN is used, and that that Interests, NDO
messages and NACKs traverse the correct paths in the absence
of failures. Section V compares the complexity of NDN and
CCN with the complexity of OCEAN, which has a storage
complexity that is orders of magnitude smaller than that of
NDN and CCN.

II. INTEREST AGGREGATION IN NDN AND CCN

A. Elements of NDN and CCN Operation

In NDN and CCN a given router uses three primary data
structures: a forwarding information base (FIB), a pending
interest table (PIT), and a content store (CS). The forwarding
strategy determines the interaction among these tables needed
to forward Interests towards nodes advertising having copies
of requested content, send named data objects (NDO) back to
consumers who requested them over reverse paths traversed

by Interests, and send any other signal indicating the inability
to satisfy an Interest.

A router uses its FIB to route Interests towards the desired
content producer advertising a content prefix name. A FIB
is populated using content routing protocols or static routes.
The FIB entry for a given name prefix lists the interfaces that
can be used to reach the prefix. A CS is a cache for content
objects. With on-path caching, routers cache the content they
receive in response to Interests they forward.

A PIT is used in NDN and CCN to keep track of the
neighbor(s) to which NDO messages or NACKs should be sent
back in response to Interests, allows Interests to not disclose
their sources, and enables Interest aggregation. A PIT entry
consists of a vector of one or multiple tuples, one for each
nonce processed for the same NDO name. Each tuple states
the nonce used, the incoming interfaces and the outgoing
interfaces. Each PIT entry has a lifetime, which should be
larger than the estimated round-trip time to a site where the
requested NDO can be found.

When a router receives an Interest, it checks whether there is
a match for the content requested in the Interest in its CS. The
Interest matching mechanisms differ in NDN [13] and CCNx
[5], with the latter supporting exact Interest matching only. If
a match to the Interest is found, the router sends back an NDO
over the reverse path traversed by the Interest. If no match is
found in the CS, the router determines whether the PIT stores
an entry for the same content. In NDN, if the Interest states
a nonce that differs from those stored in the PIT entry for the
requested content, then the router “aggregates” the Interest
by adding the incoming interface from which the Interest was
received and the nonce to the PIT entry without forwarding the
Interest. On the other hand, if the same nonce in the Interest
is already listed in the PIT entry for the requested content,
the router sends a NACK over the reverse path traversed by
the Interest. In CCNx, aggregation is done if the Interest is
received from an interface that is not listed in the PIT entry
for the requested content, and a repeated Interest received from
the same interface is simply dropped.

If a router does not find a match in its CS and PIT, the
router forwards the Interest along a route (or routes) listed in
its FIB for the best prefix match.

B. Interest Aggregation and Undetected Loops

Interest aggregation can provide performance benefits as
long as there is a high likelihood that many Interests arrive at a
router asking for the same content that has not yet been cached
locally. However, given the latencies expected in the Internet
today [3], [4], this is not likely. Because of on-path caching
and round-trip latencies between a requestor and a router with
cached content being a few hundred milliseconds at most, the
percentage of Interests that can benefit from aggregation is
negligible, especially if on-path caches have large capacities.

On the other hand, Interest propagation is based on FIB
entries, which need not correspond to loop-free paths due
to topology changes or the ranking of interfaces (neighbors)

with respect to content prefixes made at individual routers
independently of others.

Interest aggregation has a negative side effect when Interests
are aggregated while traversing loops induced by the FIB
entries. We have shown that attempting to detect Interest loops
using content names or content names and nonces, which is
the approach in NDN and CCN, does not always work when
Interests are aggregated [7], [8]. Furthermore, we have also
shown that no forwarding strategy can be defined that always
works correctly, allows Interest aggregation, and detects loops
by identifying Interests uniquely using names, names and
nonces, or other information.

Fig. 1. Interest looping in NDN or CCN

Figure 1 illustrates undetected Interest looping in NDN and
the original CCN proposal. Arrowheads in the figure indicate
the next hops to content advertised by router j according to
the FIB entries stored in routers. Thick lines indicate that the
perceived performance of an interface is better than interfaces
shown with thinner lines. Dashed lines indicate the traversal
of Interests over paths. The time when an event arrives at a
router is indicated by ti.

Figure 1(a) shows the case of a long-term Interest loop
caused by multi-paths implied in FIBs not being loop-free,
even though all routing tables are consistent. In this case, the
ranking of interfaces in a FIB can be such that a path with
a larger hop count may be ranked higher than a path with a
smaller hop count, because of the perceived performance of
the interfaces or paths towards prefixes.

Figure 1(b) shows the case of a temporary Interest loop
when single-path routing is used and FIBs are inconsistent
due to a topology change at time t1. In both cases, router
a aggregates the Interest from x and router x aggregates the
Interest from b, and the combined steps preclude the detection
of any Interest looping. In this example, it would appear that
the looping problems could be avoided by forcing router b to
use q rather than x for Interests regarding prefixes announced
by j. However, the same looping problems would exist even if
link (b, q) were removed in the example, and the ways in which
FIBs are populated and interfaces are ranked are independent
of updates made to PITs.

III. OCEAN

A. Design Rationale

The design rationale for OCEAN is based on four ob-
servations. First, Interest aggregation is unlikely to have a
significant impact in an actual deployment at Internet scale.
Content caching and the relatively small round-trip latencies
make it highly unlikely that many Interests requesting the same
content will arrive at a router when the content has not been

cached due to a prior request. On the other hand, Interest
aggregation in NDN and CCN interacts negatively with loops
resulting from FIB inconsistencies resulting from topology
changes or local rankings of interfaces.

Second, the number of routers in a network is orders of
magnitude smaller than the number of NDOs accessed through
them. Hence, maintaining forwarding state based on the routes
going through a router–each used by many Interests–is by
nature orders of magnitude smaller than forwarding state based
on the Interests traversing a router.

Third, a correct Interest forwarding strategy cannot be
based on attempting to identify each Interest uniquely, but the
information in the FIBs can be used to establish an ordering
of the routers that forward Interests.

Lastly, there is no inherent reason to require reverse-path
forwarding to be used to forward NDOs or NACKs sent in
response to Interests.

For simplicity of exposition, we make a number of assump-
tions in the description of OCEAN. We assume that Interests
are retransmitted only by the consumers that originated them,
rather than routers that relay Interests, and that routers forward
Interests on a best-effort basis. Given that no prior work shows
that any Interest matching policy is better than simple exact
matching of Interests, we assume that routers use exact Interest
matching. We assume that a request for content from a local
content consumer is sent to the router in the form of an Interest
stating an infinite hop count to content and an empty dart and
nonce. Lastly, a router is assumed to know which interfaces
are neighbor routers and which are local consumers.

B. Information Exchanged and Stored

The information used to enable correct forwarding of In-
terests, NDO messages, and NACKs are the destination-and-
return tokens (darts), and Interest nonces. Darts are local
identifiers used to uniquely denote routes established between
source and destination routers over which Interests, NDO
messages and NACKs are sent. Nonces are global identifiers
that can be used to associate two or more routes established
between the same source and destination of Interests.

The name of NDO j is denoted by n(j), and the terms
neighbor and interface are used interchangeably. An Interest
forwarded by node k requesting NDO n(j) is denoted by
I[n(j), hI(k), IDI(k), dartI(k)], and states the name of the
requested NDO (n(j)), the hop count (hI(k)) from node k to
the nearest instance of the name prefix n(j)∗ that is the best
match for n(j), a nonce (IDI(k)) created by the origin of the
Interest, and the dart (dartI(k)) used to establish anonymous
routes back to the sources of Interests.

An NDO message sent in response to an Interest is denoted
by D[n(j), sig(j), IDI(i), dartI(i)], and states the name of
the Interest (n(j)), a signature payload (sig(j)) used option-
ally to validate the content object, the nonce (IDI(i)) and the
dart (dartI(i)) to be used to forward the message, and the
NDO itself.

The NACK sent in response to an Interest is denoted by
NI[n(j), CODE, IDI(i), dartI(i)] and states the name of the

NDO (n(j)), the nonce (IDI(i)) and the dart (dartI(i)) to be
used to forward the NACK, and a code (CODE) indicating the
reason why the NACK is sent. Possible reasons for sending a
NACK include: an Interest loop is detected, no route is found
towards requested content, no content is found, and the DART
entry expired.

Router i maintains five tables: an optional content store
(CSi), a FIB (FIBi), a data-answer routing table (DART i),
an origin nonce table (ONT i), and a destination nonce table
(DNT i). CSi is the same as in NDN and CCN, lists the
NDOs stored in local caches, and is indexed on the names of
NDOs. The other tables are different.

A predecessor for Interests regarding n(j)∗ is a router that
forwarded an Interest to router i regarding NDO n(j), which
matches name prefix n(j)∗. A successor for Interests related
to n(j)∗ is a router to whom router i forwards an Interest
regarding n(j), which matches name prefix n(j)∗. An anchor
of a prefix is a router that has advertised the prefix.
FIBi is indexed using content name prefixes. The entry for

prefix n(j)∗ consists of a set of tuples, one for each next hop
in the set of successors of router i for n(j)∗ (Si

n(j)∗). The
tuple corresponding to neighbor q ∈ Si

n(j)∗ states:
1) h(i, n(j)∗, q): The hop count to n(j)∗ through q.
2) a(i, n(j)∗, q): The nearest anchor through q for n(j)∗.
The minimum hop count from i to n(j)∗ through any

neighbor listed in FIBi is denoted by h(i, n(j)∗).
DART i stores the mappings of predecessors to successors

along paths to anchors. The entry created for Interests received
from router p and forwarded to router s towards a given anchor
a is denoted by DART i(a, p) and specifies:

1) ai(a, p): The anchor a for which the forwarding state is
established at router i.

2) pi(a, p): The predecessor p of route to a.
3) pdi(a, p): The predecessor dart, which equals the dart

received in Interests from p routed towards anchor a.
4) si(a, p): The name of router s, selected by router i to

forward Interests received from p towards anchor a.
5) sdi(a, p): The successor dart included in Interests sent

towards anchor a through successor s.
6) hi(a, p): The number of hops to anchor a through suc-

cessor s when the dart entry was established.
7) LT i(a, p): The lifetime for the entry.
The lifetime of a DART entry is decremented while the

router stores it and the entry is deleted when the lifetime
reaches the 0 value. An entry in a DART can remain in storage
for long periods of time in the absence of topology changes,
and the removal of a DART entry causes only a minor slow
down of some Interests and the most likely case in a stable
network is for the replacement of the DART entry to state the
same information as the entry that was erased.
ONT i stores the mappings between the names of local

consumers and the nonces assigned to them by router i. The
entry for nonce ni contains the local identifier of a local
consumer c and is denoted by ONT i(ni).
DNT i is indexed using the nonces received in Interests.

The entry for a nonce IDI(k) received in an Interest from
router k is denoted by DNT i(IDI(k)) and contains a list of
one or more tuples, each stating the name of a router that sent
an Interest containing the same nonce IDI(k), and the dart
stated in that Interest.

C. Interest Loop Prevention and Detection

A salient feature of OCEAN is that Interest loops resulting
from inconsistencies in FIB entries maintained at different
routers are avoided or detected if they occur. The following
rule is used to ensure that router i accepts an Interest from
neighbor k only if it is closer to n(j)∗ through at least one
next hop than k was when it sent its Interest.

Interest Forwarding Rule (IFR):
Router i accepts I[n(j), hI(k), IDI(k), dartI(k)] from router
k if the following condition is satisfied:

∃ v(v ∈ Si
n(j)∗ ∧ hI(k) > h(i, n(j)∗, v))

Figures 2(a) and (b) illustrate how OCEAN prevents Inter-
ests from traversing loops when a multi-path routing protocol
is used to populate the FIBs and FIB entries state next hops
to prefixes that lead to forwarding loops. The pair of numbers
next to a node in Figure 2(a) indicate the hop count from that
node to n(j) over an interface and the ranking of the interface
according to the FIB of the node. Let (v, h, r) denote the triplet
indicating an interface, its hop count and its ranking.

In Figure 2(a), FIBa states (b, 4, 1), (p, 4, 2), and (x, 6, 3);
FIBb states (x, 6, 1), (a, 5, 2), and (q, 3, 3); and FIBx states
(a, 5, 2) and (b, 5, 1). As Figure 2(b) shows, router a receives
I[n(j), hI(y) = 5, IDI , dartI(y)] from router y at time t1.
Router a forwards I[n(j), hI(a) = 4, IDI , dartI(a)] to b,
because 5 = hI(y) > h(a, n(j)∗, b) = 4 and b is ranked
above p. Router b receives the Interest at time t2 and accepts
it , because 4 = hI(a) > h(b, n(j)∗, q) = 3. Router b must
use neighbor q as the next hop for the Interest, because q
is the highest ranked neighbor satisfying IFR. Similarly, the
Interest generated by router x is forwarded to router q towards
j without traversing a loop, because each relaying router must
satisfy IFR.

Figures 2(c) to (e) illustrate how OCEAN operates when
single-path routing is used and a temporary routing-table loop
exists in the FIBs. Each router has a single next hop and hop
count for each prefix in its FIB. The distance from a router to
name prefix n(j)∗ need not be directly proportional to the hop
counts of the paths. For example, link (b, q) may have limited
bandwidth or long delays and hence b prefers the path through
x to reach n(j)∗. Router b updates its FIB at time time t0 as
shown in Figure 2(c), and routers have inconsistent FIB states
for n(j) while Interests are being forwarded. As shown in
Figure 2(d), router b must send NI[n(j), loop, IDI , dartI(b)]
to a, because 4 = hI(a) 6> h(b, n(j)∗, x) = 6. In turn, a
forwards a NACK to y. The Interest from x also prompts a
NACK from b because IFR is not satisfied. Within a finite
time, FIBa, FIBx, and FIBb are updated to reflect the
new topology state, and Interests from y regarding objects in
n(j)∗ can be forwarded along the chain of nodes a, b, and q

towards n(j)∗. Similarly, within a finite time, Interests from
x regarding n(j)∗ can be forwarded to b and q towards n(j)∗.
Section IV proves that no Interest loops can go undetected in
OCEAN.

Fig. 2. OCEAN ensures Interest-loop detection

D. Maintaining Forwarding State

Routers in OCEAN maintain routes to those sites advertis-
ing name prefixes (anchors), and populate their routing tables
using a routing protocol operating in the control plane (e.g.,
[6], [10]). Routers populate their FIBs with routes to anchors
based on the data stored in their routing tables.

In NDN and CCN, the route taken by the response to an
Interest is the reverse path traversed by that Interest, which is
incrementally stored in the PITs of the routers along that path.
In OCEAN, DARTs and ONTs replace the PITs, and DNTs
enable the forwarding of an NDO message or NACK over a
path that need not be the reverse of the path traversed by the
Interest.

Routers create nonces to unambiguously associate local
consumers with the Interests sent on their behalf, and without
revealing their identities. The dart mappings stored in DARTs
are equivalent to the label mappings first introduced for packet
switching based on virtual circuits [11], [14]. They are used to
allow multiple Interests asking for NDOs associated with the
same name prefix to be multiplexed in the same route segments
established between the routers originating the Interests and
an anchor or a router that can respond to the Interests using
cached content. The nonce mappings stored in ONTs allow
a router receiving a response to an Interest to give it to the
correct consumer.

The combined use of DNTs with DARTs and ONTs enables
a generalization of the label swapping approach that allows
NDO messages or NACKs to be sent over paths that need not
be the reverse paths traversed by the Interests they answer.

Algorithms 1 to 5 specify the steps taken by routers to
process and forward Interests, and return NDO messages or
NACKs. In our description, it is assumed that router i has
populated ONT i with all the nonces locally assigned to local
consumers, and that DART entries are silently deleted when
their lifetimes expire. For convenience, it is assumed that an

anchor of a name prefix stores all the NDOs associated with
the prefix in its CS.

In addition, it is assumed that the control plane updates
FIBi to reflect any changes in hop counts to name prefixes re-
sulting from the loss of connectivity to one or more neighbors.
Accordingly, if router i detects that connectivity to neighbor
k is lost, it deletes all entries in DART i for which k is the
predecessor or the successor of a path towards any anchor.

Algorithm 1 (Interest Source) shows the steps taken by
router i to process Interests received from local consumers.
For convenience, content requests from local consumers are
assumed to be Interests stating the name of an NDO and the
name of the consumer, together with an an empty hop count
to content and an empty dart. Router i uses the highest ranked
neighbor router to forward an Interest (Line 9 of Algorithm
1). If a DART entry exists for the selected successor of the
Interest, the corresponding successor dart is used; otherwise, a
new successor dart is created and a new DART entry is stored
before the Interest is forwarded.

Algorithm 1 Processing Interest from consumer c at i
1: function Interest Source
2: INPUT: CSi , FIBi , DART i , ONT i , I[n(j), nil, c, nil];
3: if n(j) ∈ CSi then send D[n(j), nil, c, nil];
4: if n(j) 6∈ CSi ∧ n(j)∗ ∈ CSi then send NI[n(j), no content, nil, c, nil];
5: if n(j) 6∈ CSi ∧ n(j)∗ 6∈ CSi then
6: if n(j)∗ 6∈ FIBi then
7: % No route exists to n(j)∗:

send NI[n(j), no route, nil, c, nil]
8: else
9: for each v ∈ Si

n(j)∗ by rank do
10: % Interest can be forwarded to v:

a = a(i, n(j)∗, v);
11: if ∃DART i(a, i) | si(a, i) = v then
12: % Interest can be forwarded using entry DART i(a, i):

IDI (i) = ONT i(c);
hI (i) = hi(a, i); dartI (i) = sdi(a, i);
send I[n(j), hI (i), IDI (i), dartI (i)] to si(a, i)

13: else
14: create entry DART i(a, i):

ai(a, i) = a; compute SD 6= sdi(p, q) ∀DART i(p, q);
pi(a, i) = i; pdi(a, i) = SD;
si(a, i) = v; sdi(a, i) = SD;
hi(a, i) = h(i, n(j)∗, v); LT i(a, i) = MLT ;

15: create and send Interest:
IDI (i) = ONT i(c);
hI (i) = hi(a, i); dartI (i) = sdi(a, i);
send I[n(j), hI (i), IDI (i), dartI (i)] to si(a, i)

16: end if
17: end for
18: end if
19: end if
20: end function

Algorithm 2 (DART Mapping) shows the steps taken by
router i to process an Interest received from a neighbor router
k. If the requested content is cached locally, an NDO message
is sent back (Line 3 of Algorithm 2). If the content does not
exist, a NACK is sent back (Line 4 of Algorithm 2). If the
content is remote and a DART entry already exists for the dart
stated in the Interest from k (Line 8 of Algorithm 2), then IFR
has been satisfied by a previous Interest on the same route to
an anchor of the prefix and the existing mapping can be used.

Alternatively, if the Interest must be forwarded and no
DART entry exists for the dart stated in the Interest from k,
router i must find a successor for the Interest and must create
a DART entry. Router i sends a NACK if no entry can be
found in FIBi for n(j)∗ (Line 11 of Algorithm 2) or IFR

is not satisfied (Line 21 of Algorithm 2). Otherwise, router i
selects the highest-ranked neighbor router v that satisfies IFR
and creates a DART entry mapping the dart received from k to
a new dart created for a route to the selected anchor through
v (Lines 14 to 20 of Algorithm 2).

Algorithm 2 describes a simple forwarding strategy in which
router i selects the first neighbor v found in the ranked list of
interfaces stored in FIBi for prefix n(j)∗, such that v offers a
path that has a hop count towards the requested content that is
strictly smaller than the hop count stated in the Interest being
forwarded.

Algorithm 2 Processing Interest from router k at i
1: function DART Mapping
2: INPUT:

CSi , FIBi , DART i , I[n(j), hI (k), IDI (k), dartI (k)];
3: if n(j) ∈ CSi then call Response(D[n(j), sig(j), IDI (k), dartI (k)];
4: if n(j) 6∈ CSi ∧ n(j)∗ ∈ CSi then
5: CODE = no content;

call Response(NI[n(j), CODE, hI (k), IDI (k), dartI (k)]);
6: end if
7: if n(j) 6∈ CSi ∧ n(j)∗ 6∈ CSi then
8: if ∃DART i(a, k) | pdi(a, k) = dartI (k) then
9: % Interest can be forwarded using entry DART i(a, k):

hI (i) = hi(a, k); IDI (i) = IDI (k); dartI (i) = sdi(a, k);
send I[n(j), hI (i), IDI (i), dartI (i)] to si(a, k)

10: else
11: if n(j)∗ 6∈ FIBi then
12: % No route exists to n(j)∗:

CODE = no route;
call Response(NI[n(j), CODE, IDI (k), dartI (k)])

13: else
14: for each v ∈ Si

n(j)∗ by rank do
15: if hI (k) > h(i, n(j)∗, v) then
16: % Interest can be forwarded to v:

a = a(i, n(j)∗, v);
compute SD | ∀p∀q (SD 6= sdi(p, q) ∈ DART i);

17: create entry DART i(a, k):
hi(a, k) = h(i, n(j)∗, v); LT i(a, k) = MLT ;
ai(a, k) = a; pi(a, k) = k; pdi(a, k) = dartI (k);
si(a, k) = v; sdi(a, k) = SD;

18: create and forward Interest:
hI (i) = hi(a, k);
IDI (i) = IDI (k); dartI (i) = sdi(a, k);
send I[n(j), hI (i), IDI (i), dartI (i)] to v;
return

19: end if
20: end for
21: % Interest may be traversing a loop:

CODE = loop; call Response(NI[n(j), CODE, dartI (k)])
22: end if
23: end if
24: end if
25: end function

The entry in DART i for the anchor-predecessor pair (a,
k) establishes a mapping from the dart used by router k in
Interests that can be resolved by anchor a (predecessor dart)
to the dart used by router i in Interests that can be resolved
by anchor a and that it forwards to router v (successor dart).
The predecessor-successor mappings stored in the DARTs of
routers from router i to an anchor a denotes route segments
that can be used to forward Interests towards a unambiguously.
Conversely, the sequence of successor-predecessor mappings
stored along the same path can be used to forward responses
(NDO messages or NACKs) to the origins of Interests unam-
biguously.

If reverse-path forwarding of NDO messages and NACKs
is adopted, routers that relay an Interest and the router that
responds to the Interest can send the NDO message or NACK
back using the dart mappings stored in their DARTs. The
router that originated the Interest on behalf of a local consumer
uses the nonce included in the response to forward it to the

correct consumer.
However, Interests can be forwarded to the same anchor

over multiple paths, with each such path identified with a
different set of dart mappings. The router that responds to
Interests can store in its NDT the mappings between the
nonces included in Interests and the routes over which the
Interests were received (identified by the neighbor routers and
dart received in the Interests). Given that nonces are assigned
with a low probability of collision, an NDO message or NACK
may be sent by the responding router over a path different than
the one traversed by the Interest.

Algorithm 3 Responding to a Remote Interest at i
1: function Response
2: INPUT: CSi , FIBi , DART i , DNT i ,

(D[n(j), sig(j), IDI (k), dartI (k)] ∨ NI[n(j), CODE, IDI (k), dartI (k)]);
3: dartik = dartI (k);

add tuple [k, dartik] to the list of tuples for entry DNT i(IDi(k))

4: select tuple [n, dartin] ∈ DNT i(IDi(k));
5: if response = D[n(j), sig(j), IDI (k), dartI (k)] then
6: send D[n(j), sig(j), IDI (k), dartI (n)] to neighbor n
7: end if
8: if response = NI[n(j), CODE, IDI (k), dartI (k)] then
9: send NI[n(j), CODE, IDI (k), dartI (n)] to neighbor n
10: end if
11: end function

Algorithm 2 calls Algorithm 3 (Response) to send back an
NDO message or a NACK in response to a remote Interest.
For simplicity, only those routers that respond to Interests
from remote consumers store information in their DNTs.
Algorithm 3 does not provide a specific approach for the
selection of a neighbor out of many, but makes clear the use of
nonces and darts for the forwarding of responses to the correct
consumer over one of many paths traversed by different prior
Interests between the same routers.

Algorithm 4 Processing NDO message at i
1: function NDO Handling
2: INPUT: DART i , CSi , D[n(j), sig(j), IDI (q), dartI (q)];
3: [o] verify sig(j);
4: [o] if verification fails then discard D[n(j), sig(j), IDI (q), dartI (q)]
5: if ∃DART i(a, k) | sdi(a, k) = dartI (q) then
6: % NDO message can be forwarded to predecessor k:

dartI (i) = pdi(a, k); IDI (i) = IDI (q);
send D[n(j), sig(j), IDI (i), dartI (i)] to k;
[o] store the content with name n(j) in CSi

7: end if
8: end function

Algorithm 5 Processing NACK at i
1: function NACK Handling
2: INPUT: DART i , NI[n(j), CODE, IDI (q), dartI (q)];
3: if ∃DART i(a, k) | sdi(a, k) = dartI (q) then
4: % NACK can be forwarded to predecessor k:

dartI (i) = pdi(a, k); IDI (i) = IDI (q);
send NI[n(j), CODE, IDI (i), dartI (i)] to k

5: end if
6: end function

Algorithm 4 (NDO Handling) outlines the processing of
NDO messages. A router accepts an NDO message received
from a neighbor only if it has a DART entry with a successor
dart matching the dart stated in the NDO message (Line 5
in Algorithm 4). A router stores a data object it receives
optionally (Step 6 of Algorithm 4).

Algorithm 5 (NACK Handling) states the steps taken to
handle NACKs. Router i forwards the NACK it receives for
n(j) only if it has a DART entry with a successor dart
matching the dart stated in the NACK (Line 3 in Algorithm 5).

E. OCEAN Forwarding Example

Figure 3 illustrates how darts and nonces are used to label
Interests and associate Interests with NDO messages and
NACKs. In the example, routers a and x have local consumers
originating the Interests, and those Interests are assumed to
request NDOs regarding name prefixes advertised by anchor
d. The arrowheads in the links of the figure denote the next
hops stored in the FIBs of routers, y(i) denotes the ith dart
in DART y , and IDy

c denotes a nonce created by router y to
associate Interests submitted from a local consumer c. The
figure shows DART entries of routers for anchor d, ONT
entries at routers a and x, and DNT entries at router d.

Fig. 3. Forwarding using darts and nonces.

Router a uses nonces IDa
p(d) and or IDa

q (d) to label the
Interests it originates on behalf of local consumer cp and cq ,
respectively. By the same token, router x uses nonce IDx

w(d)
to label all Interests it originates on behalf of local consumer
cw. Accordingly, ONT a stores the mappings cp ↔ IDa

p , and
cq ↔ IDa

q ; and ONT x stores the mapping cw ↔ IDx
w.

As Figure 3 illustrates, routers a, b, and c establish the
following mappings in their DARTs: [a; a(i)] ↔ [b; a(i)] at
a, [a; a(i)] ↔ [c; b(j)] at b, [b; b(j)] ↔ [d; c(i)] at c, and
[c; c(i)] at d. These mappings denote the routes (a, b, c, d),
(b, c, d), and (c, d) uniquely. Similarly, routers establish the
DART mappings shown in the figure that denote the routes (a,
r, s, d) and (x, b, c, d), as well as subpaths to d in them.

All the Interests originated by consumers cp, cq , and cx
regarding content advertised by anchor d can be routed towards
d using the same few darts shown in Figure 3. Given that an
NDO or NACK specifies the successor dart and the nonce
stated the Interest it answers, NDO messages and NACKs can
be forwarded correctly from d (or a router along the way to
d caching content) to router a or router x unambiguously.
Furthermore, routers a and x can use the entries in ONT a

and ONT x and the nonces in the replies they receive to send
them to the correct local consumers.

The above illustrates that OCEAN supports correct Inter-
est forwarding and correct reverse-path forwarding of NDO
messages and NACKs using DARTs and ONTs. However,
the forwarding of NDO messages and NACKs need not be
limited to reverse-path forwarding. As Figure 3 shows, when
router d receives Interests from neighbors s and c, it stores
the mappings between nonces and the successor darts in those
Interests in DNT d, namely: IDa

p(d) ↔ {[c, c(i)], [s, s(j)]},
IDa

q (d) ↔ {[c, c(i)], [s, s(j)]} and IDx
w(d) ↔ {[c, c(k)]}.

Accordingly, router d can send an NDO message or NACK
to the origin of an Interest stating nonce IDa

p(d) or IDa
q (d)

through neighbor s or c, without having to use the reverse path
over which the Interest was received.

IV. CORRECTNESS OF OCEAN

The following theorems show that OCEAN is correct.
Theorem 4.1 shows that OCEAN prevents Interests from being
propagated along loops without meeting routers that detect the
incorrect forwarding and send NACKs in return. The result of
the theorem is independent of whether the topology is static
or dynamic or the FIBs are consistent or not.

To discuss the correctness of Interest forwarding in
OCEAN, we say that an Interest loop of h hops for an NDO
with name n(j) occurs when one or more Interests for n(j)
are forwarded and aggregated by routers along a cycle L =
{v1, v2, ..., vh, v1} such that router vk receives an Interest for
NDO n(j) from vk−1 while waiting for a response to the
Interest it has forwarded to vk+1 for the same NDO, with
1 ≤ k ≤ h, vh+1 = v1, and v0 = vh.

Theorem 4.1: Interest loops cannot occur and be undetected
in a network in which OCEAN is used.

Proof: Consider a network in which OCEAN is used.
Assume for the sake of contradiction that nodes in a loop L
of h hops {v1, v2, ..., vh, v1} send Interests for n(j) along L,
with no node in L detecting the incorrect forwarding of any
of the Interests sent over the loop.

Given that L exists by assumption, vk ∈ L must send
I[n(j), hI(vk), ID

I(vk), dart
I(vk)] to node vk+1 ∈ L for

1 ≤ k ≤ h − 1, and vh ∈ L must send I[n(j), hI(vh),
IDI(vh), dart

I(vh)] to node v1 ∈ L. For 1 ≤ k ≤ h − 1,
let h(vk, n(j)

∗)L denote the value of hI(vk) when node vk
sends I[n(j), hI(vk), ID

I(vk), dart
I(vk)] to node vk+1, with

h(vk, n(j)
∗)L = h(vk, n(j)

∗, vk+1). Let h(vh, n(j)∗)L denote
the value of hI(vh) when node vh sends I[n(j), hI(vh),
dartI(vh)] to node v1 ∈ L, with h(vh, n(j)

∗)L = h(vh, n(j)
∗,

v1).
Because no node in L detects the incorrect forwarding of

an Interest and no Interest aggregation occurs in OCEAN,
each node in L must send its own Interest as a result of
the Interest it receives from the previous hop in L. This im-
plies that vk ∈ L must accept I[n(j), hI(vk−1), ID

I(vk−1),
dartI(vk−1)] before RT (PIvkn(j)) expires for 1 ≤ k < h,
and v1 ∈ L must accept I[n(j), hI(vh), ID

I(vh), dart
I(vh)]

before RT (PIv1n(j)) expires.
According to OCEAN, if vk sends I[n(j), hI(vk), ID

I(vk),
dartI(vk)] to vk+1 as a result of receiving I[n(j), hI(vk−1),
IDI(vk−1), dartI(vk−1)] from vk−1, then it must be true
that hI(vk−1) > h(vk, n(j)

∗)L = hI(vk) for 1 < k ≤ h.
Similarly, if v1 sends I[n(j), hI(v1), ID

I(v1), dartI(v1)] to
v2 as a result of receiving I[n(j), hI(v1), dart

I(v1)] from vh,
then hI(vh) > h(v1, n(j)

∗)L = hI(v1).
It follows from the above argument that, for L to exist and

be undetected when each node in the loop uses IFR to send
Interests asking for n(j), it must be true that hI(vh) > hI(v1)
and hI(vk−1) > hI(vk) for 1 < k ≤ h. However, this is a
contradiction, because it implies that hI(vk) > hI(vk) for
1 ≤ k ≤ h. Therefore, the theorem is true.

Theorem 2 addresses the ability for routers to demultiplex
NDO messages and NACKs correctly and send the responses
to the correct consumers using only the information stored in
their DARTs, ONTs, and DNTs, whether or not Interest loops
occur. The theorem assumes that all transmissions are sent
correctly.

Theorem 4.2: OCEAN ensures that, in the absence of fail-
ures, NDO messages and NACKs are sent correctly to the
consumers who submitted the corresponding Interests.

Proof: From the operation of OCEAN, a router can
forward an NDO or NACK back towards the source of an
Interest only if it receives the Interest correctly and stores
forwarding state in its DART. Hence the proof can assume that
all the routers from the source of an Interest (s) to a router
answering the Interest (d) have established some forwarding
state in their DARTs, and have established the necessary state
in their ONTs.

It follows from Algorithm 1 that the result is true if a router
can resolve an Interest from a local consumer (s = d). The
rest of the proof must show that each router from d to s
can demultiplex correctly the NDO messages and NACKs that
traverse paths established by Interests delivered from s to d.

Let h be the number of hops in the path traversed by an
NDO or NACK in response to an Interest originated at router
s and answered by router d or another router on the path to
d, and let fi denote the router at the ith hop from d to s.

Basis Case: Let h = 1. In this case s = f1. Router s labels
its Interest with a dart assigned uniquely for its one-hop route
to d and a nonce assigned uniquely to the local consumer that
created the content request. From Algorithms 2 and 3, router
d responds to the Interest from s directly to s and includes the
dart and nonce in its response. At s, the dart in the response
is associated with s as the origin of the route, and the nonce
is associated uniquely with a local consumer. It follows that
the basis case is true.

Inductive Step: By assumption, when a router fj in a
path from s to d receives the first Interest from neighbor
fj+1 requesting content advertised by d and containing dart
dartI(fj+1) = dtj+1

j (d), it creates an entry in DART j with
the mapping [fj+1; dt

j+1
j (d))] ↔ [fj−1; dt

j
j−1(d)], and with

d as the anchor. The successor dart dtjj−1(d) is a locally-
unique identifier that fj uses only for Interests received from
fj+1 with the predecessor dart dtj+1

j (d) and forwarded to
the same next hop fj−1 towards anchor d. When router fj
receives an NDO message or NACK from fj−1 with a dart
equal to dtjj−1(d), it obtains from DART fj the mapping
[fj+1; dt

j+1
j (d))] ↔ [fj−1; dt

j
j−1(d)] (Algorithm 2) and for-

wards the NDO message or NACK to fj−1 with a dart equal
to dtjj−1(d) (Algorithms 4 and 5).

The Interest from s either traverses a loop or a simple path
towards d or a router that can respond to the Interest when
h > 1. If the Interest traverses a simple path, it must reach d
or a router with the NDO in its CS. If the Interest traverses
a loop, it follows from Theorem 1 that a router must issue a
NACK with CODE = loop.

Assume that each router up to k − 1 hops away from d or
a router that responds with an NDO message or a NACK for
the Interest from s receives such a response correctly. We need
to show hat the result is true for h = k. From the argument
above, when router fk−1 forwards an NDO message or NACK
originated by d for an Interest created by s to router fk, its
message must state the dart that fk used in Interests originated
at s and directed towards d. Accordingly, it must be true that
fk is able to forward the NDO message or NACK to router
fk+1 by accessing DART fk+1 .

If follows that an NDO message or NACK traverses cor-
rectly the path of length k hops from either d or a router
with the requested content or detecting a loop back to s.
Furthermore, the nonce stated in the NDO message or NACK
is the one stated in the Interest sent by s on behalf of a
local consumer (Algorithms 2 to 5). Because s associates
each nonce it creates uniquely with a local consumer, s can
forward the response to the correct local consumer. Therefore,
the theorem is true.

V. PERFORMANCE IMPLICATIONS

The performance of OCEAN is much the same as that of
NDN and CCN regarding the optimality of content delivery,
as long as Interest do not traverse loops. OCEAN has a small
advantage over NDN and CCN in the presence of loops in
FIBs. NDN and CCN must rely on Interest lifetimes expiring
before Interests can be retransmitted if they traverse loops
that go undetected. By contrast, routers in OCEAN forward
Interests over paths that avoid the loops or send NACKs
back to consumers within one round-trip time, which is far
shorter than an Interest lifetime of seconds. However, the big
advantage of OCEAN over NDN and CCN is the small storage
overhead it incurs with DARTs compared to the PITs needed
in NDN and CCN.

Assume that a network has N routers, all of which can serve
as anchors (advertise name prefixes), that each router has D
neighbors, and that there are C NDOs that are being requested.
NDN and CCN require a router to store the list of pending
Interests. The number of PIT entries is O(C). Each PIT entry
stores the name of an NDO (and a nonce in the case of NDN),
and the identifiers of the neighbors from which the Interest is
received and the neighbor to which the Interest is forwarded,
which is order O(D). Hence, the storage complexity of NDN
and CCN is SNDN = O(CD).

By contrast, in OCEAN, the number of entries in a DART
is the number of routes that can traverse a router from any
neighbor to any other neighbor towards any anchor. This
means O(D2N) DART entries. Independently of the number
of neighbors a router has, each DART entry consists of three
router identifiers (anchor, predecessor and successor), two
local identifies (processor and successor darts), a hop count
and a lifetime. Hence the storage complexity of OCEAN is
SOCEAN = O(ND2).

Given that N << C and that D < N or D << N , OCEAN
results in enormous storage savings compared to NDN.

VI. CONCLUSIONS

We introduced OCEAN, the first approach to Interest-based
content-centric networking that supports Interest forwarding
without revealing the sources of Interest and with no need to
maintain forwarding state for each Interest traversing a router.
OCEAN replaces the PITs introduced for CCN and NDN with
Data Answer Routing Tables (DART) that establish forwarding
state for each route traversing the router over which many
Interests are multiplexed, rather than for each different Interest
using the routes traversing the router.

OCEAN can enjoy the same content security features of
CCN and NDN, because it makes no modifications to the way
in which content is protected or a name can be securely linked
to the payload of an NDO.

We proved that Interests cannot traverse loops in a network
running OCEAN without some content router detecting the
loop and sending a NACK, and that NDO messages and
NACKs are forwarded over the correct paths back to con-
sumers. The delays and signing overhead in OCEAN and NDN
are similar, but the storage complexity of OCEAN is orders
of magnitude smaller than that of NDN.

The design of multi-path forwarding schemes for routers to
establish multi-paths (e.g., [6], [12], [15]) to anchors and for
routers to send responses over such multi-paths is an area that
deserves further study.

REFERENCES

[1] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for ns-3”, University of California, Los Angeles, Tech. Rep, 2012.

[2] B. Ahlgren et al., “A Survey of Information-centric Networking,” IEEE
Commun. Magazine, July 2012, pp. 26–36.

[3] AT&T, “The Quality of Internet Service: AT&T’s Global IP Network
Performance Measurements,” 2003.
http://ipnetwork.bgtmo.ip.att.net/pws/paper.pdf

[4] L. Ciavatone, A. Morton and G. Ramachandran, “Standardized Active
Measurements on a Tier 1 IP Backbone,” IEEE Comm. Magazine, June
2003.

[5] Content Centric Networking Project (CCN) [online].
http://www.ccnx.org/releases/latest/doc/technical/

[6] J.J. Garcia-Luna-Aceves, “Name-Based Content Routing in Information
Centric Networks Using Distance Information,” Proc. ACM ICN 2014,
Sept. 2014.

[7] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Enabling Correct
Interest Forwarding and Retransmissions in a Content Centric Network,”
Proc. ACM/IEEE ANCS ‘15, May 7–8, 2015.

[8] J.J. Garcia-Luna-Aceves, “A Fault-Tolerant Forwarding Strategy for
Interest-based Information Centric Networks,” Proc. IFIP Networking
2015, May 20–22, 2015.

[9] V. Jacobson et al., “Networking Named Content,” Proc. IEEE CoNEXT
‘09, Dec. 2009.

[10] A.K.M. Mahmudul-Hoque et al., “NSLR: Named-Data Link State Rout-
ing Protocol,” Proc. ACM ICN ‘13, 2013.

[11] G. Markowsky and F.H. Moss, “An Evaluation of Local Path ID
Swapping in Computer Networks,” IEEE Trans. Commun., Vol. COM-
29, pp. 329-336, March 1981.

[12] M. Mosko and J.J. Garcia-Luna-Aceves, “Multipath Routing in Wireless
Mesh Networks,” Proc. IEEE WiMesh ‘05, Sept. 2005.

[13] NDN Project [online]. http://www.named-data.net/
[14] J. Rindle, “TYMNET 1: An Alternative to Packet Technology,” Proc.

3rd IEEE Int. Conf. Comput. Commun., Aug. 1976
[15] S. Vutukury and J.J. Garcia-Luna-Aceves, “A Simple Approximation to

Minimum-Delay Routing,” Proc. ACM SIGCOMM ‘99, Aug. 1999.

