Abstract:
Multiple offloading techniques are used in today's communication systems. Most approaches rely on cellular offloading to reduce the burden on the cellular infrastructure,...Show MoreMetadata
Abstract:
Multiple offloading techniques are used in today's communication systems. Most approaches rely on cellular offloading to reduce the burden on the cellular infrastructure, especially in crowded situations. While the load on the cellular infrastructure decreases, network participants that are actively involved in the networking effort by device-to-device communication carry the load of a majority of devices. Though, by focusing on the cellular medium for offloading, the increased number of public available network access points remains mostly unused by most approaches. Incorporating access points for offloading entails numerous advantages, such as a reduced load on the cellular data plan of mobile users. In this work, the potentials of multi-dimensional offloading are assessed using the example of a state-of-the-art adaptive monitoring system that, so far, only employs cellular and device-to-device offloading. We show that the system can benefit from adding additional components and protocols that enable multi-dimensional offloading. Through an extensive simulation study we show that combining different offloading techniques leads to significant improvements regarding the achieved service quality (up to 15-fold) and the responsiveness (up to 5-fold), while reducing the load on the mobile nodes by at least 35% even in scenarios with good cellular connectivity.
Date of Conference: 01-04 August 2016
Date Added to IEEE Xplore: 15 September 2016
ISBN Information: