
CollabLoc: Privacy-Preserving Multi-Modal
Localization via Collaborative Information Fusion

Vidyasagar Sadhu, Dario Pompili, Saman Zonouz, Vincent Sritapan∗

Department of Electrical and Computer Engineering, ∗Cyber Security Division
Rutgers University, ∗Department of Homeland Security Science & Technology Directorate
{vidyasagar.sadhu, pompili, saman.zonouz}@rutgers.edu, vincent.sritapan@hq.dhs.gov

Abstract—Mobile phones provide an excellent opportunity for
building context-aware applications. In particular, location-based
services are important context-aware services that are more and
more used for enforcing security policies, for supporting indoor
room navigation, and for providing personalized assistance.
However, a major problem still remains unaddressed—the lack of
solutions that work across buildings while not using additional in-
frastructure and also accounting for privacy and reliability needs.
In this paper, a privacy-preserving, multi-modal, cross-building,
collaborative localization platform is proposed based on Wi-Fi
RSSI (existing infrastructure), Cellular RSSI, sound and light
levels, that enables room-level localization as main application
(though sub room level granularity is possible). The privacy is
inherently built into the solution based on onion routing, and
perturbation/randomization techniques, and exploits the idea of
weighted collaboration to increase the reliability as well as to
limit the effect of noisy devices (due to sensor noise/privacy).
The proposed solution has been analyzed in terms of privacy,
accuracy, optimum parameters, and other overheads on location
data collected at multiple indoor and outdoor locations.

Index Terms—Room-level Localization, Cross-Building, Multi-
Modal, Privacy, Collaboration, Mobile Systems, Experiments.

I. INTRODUCTION

Mobile phones have become ubiquitous in our everyday
lives. Today’s research is progressing towards maximizing the
potential benefits offered by mobile devices [1]. They range
from outdoor navigation and real-time traffic prediction to
remote patient monitoring and personal assistant technologies
like Apple Siri and Google Now.

Motivation: Many of today’s location sensing techniques
for location-based services still face many open-research chal-
lenges: 1) Infrastructure: Indoor localization solutions are not
ubiquitous as of now due to the need for extra infrastructure
or other complex requirements. 2) Very few cross-building
solutions: Majority of the localization solutions fall into either
outdoor or indoor categories. While the former works only
outdoor and the latter only indoor (works only for one building
at a time), there are not many hybrid solutions that can work
across buildings (possibly with reduced granularity such as
room or building level). 3) Room-level granularity is sufficient:
In certain security applications such as [2], policies are defined
based on the device’s context (location, time, etc.). Policies
define allowed behavior such as whether recording or making
a call is allowed or not and can depend on room-level
location. To give an example, if a device is found to be in
the “Meeting Room,” policy A—which does not allow any
calling or recording—will be enforced. Conversely, if a device
is found to be in the “Lobby,” policy B— which does not
impose any restriction on calling/recording—will be enforced.

���������

���������	���
���

������

�����������

	
����	
�

��	
�����

��	
�����

��	
�����

������������	���

������	
�	��
�	

�������	�����

����������	
���	�

�����		
��

Fig. 1: An overview of CollabLoc framework.

It is apparent how, in such applications, it is not necessary
to have fine-grained accuracy as it is in indoor localization
scenarios, and room-level granularity is sufficient. Secondly,
we believe finding the correct room is the major task in
indoor localization. Once the the correct room is identified,
in most cases humans can themselves navigate the room
without any external assistance. Unless needed, having fine-
grained accuracy will come at an additional cost (e.g., power
consumption). 4) Privacy: Many of the existing localization
solutions ignore this important aspect raising concerns among
users. Users are worried that the locations obtained by these
solutions will be used in ways that may compromise their
privacy. For example, some people opt out of Google’s Wi-Fi
database [3] feature as they fear the location data gathered by
Google can be used to localize them. 5) Reliability: Location
obtained through collaboration is likely to be more reliable
than the one obtained by a single device—reasons being lack
of enough sensors in a single device, sensor noise, etc.

Our Approach: In order to address these challenges, we
propose a unified multi-modal location determination frame-
work (as a mobile application) that tries to address each of
the above mentioned issues (Fig. 1). Our framework can be
readily deployed in the real world without the need for extra
infrastructure (other than the already existing Wi-Fi Access
Points (APs)) as we base it on users’ smartphones. Our
solution is based on Wi-Fi Received Signal Strength Indica-
tor (RSSI) measurements but we augment it with additional
sensor data such as sound level, light level, cell signal level,
etc. to boost the granularity. This also helps in areas with
lower Wi-Fi AP density and to distinguish among different

ar
X

iv
:1

71
0.

08
30

6v
1

 [
cs

.N
I]

 2
9

Se
p

20
17

regions/rooms within the area covered by a single (or set of)
Wi-Fi AP(s). Though we target our solution mainly for room-
level granularity, the granularity can also be adjusted to be
either more or less than room-level granularity by a parameter
called Wi-Fi similarity threshold (see Sect. III). As mentioned
above, having more than needed granularity comes at an
additional cost. As such, our solution neither competes nor
is comparable with other indoor localization solutions. Unlike
indoor localization solutions, our solution is pervasive (i.e., not
limited to a single building)—we do not build a map of the
building or identify important fixtures (such as elevators). We
tag different locations in and around buildings by a location
label using the location-specific signatures/features (such as
Wi-Fi APs and their strengths, sound, light, cell signal levels,
etc.) as tags. In addition, we make privacy as an integral part
of our solution (rather than an addon) for which, we propose
data perturbation and randomization techniques and also a ToR
network [4] composed of smartphones using our solution. To
address the last issue on reliability, we obtain location through
collaboration from multiple devices. Collaboration not only
helps in improving accuracy (by reducing the amount of noise
added by virtue of privacy) but also in knowledge sharing from
one device to another. It is worth emphasizing that we have
not used any local collaboration (i.e., collaboration among
devices in the vicinity) as such approach will violate their
privacy. Also, it is not necessary that all the people who know
about that location are present in the vicinity. Additionally, we
make use of weighted fusion to further improve accuracy. To
reduce energy footprint, we make use of Wi-Fi scan data most
of the time, which is automatically generated by the mobile
Operating System (OS) when the Wi-Fi is ON.

Our Contributions:
• We propose a privacy-preserving multi-modal cross-

building room-level localization framework (sub-room
level possible). To the author’s best knowledge, ours is
the first such solution. The various multi-modal features
considered are Wi-Fi RSSI values, Cell ID, Location
Area Code (LAC), sound level and cell-signal RSSI
values. Privacy is preserved via ToR routing and pertur-
bation/randomization techniques.

• We developed a custom two-step classifier, Number of
Feature Matches (NFM) that is shown to perform better
than Multinomial Logistic Regression (MLR).

• We use the idea of weighted collaboration in order
to increase accuracy as well as to filter out the noise
introduced because of privacy requirements.

• We evaluated our solution on real location data to show
the trade-offs among accuracy, privacy and other over-
heads by developing an Android application to collect
the above location features.

Paper Outline: The reminder of this paper is structured as
follows. In Sect. II we compare our approach with some of the
related work in location sensing, especially in collaborative
sensing and privacy-preserving localization. In Sect. III, we
elaborate on different components of the proposed solution.
In Sect. IV, we evaluate our solution both theoretically and
experimentally on real location data. Finally, in Sect. V, we
conclude the paper and discuss future directions.

II. RELATED WORK

There are existing solutions that store databases of cell
IDs and Wi-Fi Access points. An example of the former is
the Open Cell ID project [5], which provides GPS positions
of GSM cell stations based on Cell ID, Mobile Country
Codes (MCC), and Mobile Network Codes (MNC). Examples
of the latter are WiGLE [6] and Google Maps Geolocation
API [3], which provide the GPS coordinates (along with some
radius of uncertainty) of the Wi-Fi access point from its
SSID and MAC address. Both these solutions are centralized
and thereby prone to single point of failure and to scaling
problems. In our solution the location data is distributed across
mobile devices and is not stored at a single location. Also, in
the case of Open Cell ID, the location is not known exactly
but only to a cell tower level; whereas in the case of WiGLE,
the major problem is privacy, because of which some people
may not be willing to share their Wi-Fi AP details with others.

There are some privacy-preserving localization solutions
in the literature. For example, Gedik and Liu [7] present
a location-privacy method that makes use of general k-
anonymity model. Here, a person’s location is indistinguish-
able from that of k − 1 anonymous people around him/her.
However, in our collaborative setting this would result in a
large communication overhead as the locations of k−1 people
have to be known. Kassem and Kang [8] provide techniques to
address location tracking, profiling, and identification threats
on Android OS. Conversely, since in our scenario more than
one device is involved, we propose techniques to preserve
privacy during collaboration between location providers and
requester. There is some existing work on local collaboration
such as [9], [10] to increase accuracy. These solutions neither
preserve privacy nor consider the effect of noisy devices in
the collaboration process. Also since collaboration is limited
to only local devices, these approaches lack the advantage
of our approach where any device can become eligible for
collaboration, provided it has some information about that
place, or near by places.

There is also existing literature on indoor localization and
floor-map reconstruction with minimal infrastructure and hu-
man intervention. For example, Wang et al. [11] propose a so-
lution using the combination of dead-reckoning, user-activity
recognition from mobile sensors, and WiFi-based partitioning
of an area. Rai et al. [12] make use of crowdsourcing to
gather Wi-Fi signatures and determine the signature location
using sensor activity recognition and a map of the floor
plan. These techniques, unlike ours, do not consider privacy,
and are mostly limited to a single building (albeit achieving
high granularity) and cannot scale to work across buildings.
There are also certain room-level localization solutions. For
example, Shen et al. [13] propose a technique that uses a
combination of RSSI measurements and room specific user
activity and dwell times. Kyritsis et al. [14] make use of RSSI
readings from BLE beacons fixed in the rooms along with the
geometry of the room. All of these solutions are designed to
work only in a single or at most a few buildings and incur
considerable overhead to pervasively work across buildings.
Moreover they do not preserve user privacy. In summary, the
following features distinguish our work from others—ability to

work across multiple buildings (pervasive), privacy preserving
and using collaboration to increase accuracy.

III. PROPOSED SOLUTION

Our solution, which is available as a mobile application,
can be divided into three components (see Fig. 1). The first
one involves each device building local database consisting of
multi-modal location features and location labels; the labels
are predominantly acquired from collaboration sessions. The
second component involves the location requester contacting
the location providers in a secure and privacy-preserving
manner via ToR network. The third component consists of
fusing the results of multiple providers to return the result to
the requester. Each of these components are explained below.

Local Learning: Each mobile phone using our solution
maintains a local database consisting of location features
and the corresponding location labels. Local learning is a
continuous phase (happens continuously) where the device
updates its location database with new location features and
labels. Location features consist of “list of Wi-Fi Access
Points (APs),” “sound-level,” “light-level,”, “geo-magnetic sig-
nal”, “cell tower ID,” “Location Area Code (LAC),” “cell
signal strength,” etc. Examples of location labels can be
“Conference Room A” (in a conference hotel),” “Room 213”
(in a library),” etc. These location labels are publicly known
names (i.e., not personalized ones like home, office, etc.) and
entered manually only once by the location natives. To ensure
uniformity among all labels and to remove ambiguity, we
will make use of an ontology based framework [15] for the
labels that takes user input and converts them into standard
labels that are hierarchically defined (e.g., country, zip code,
street, building number, room name). The framework will also
include a functionality based on machine-learning techniques
to detect incorrect/malicious entry of data by certain users.
Also, to further reduce the one-time manual entry of labels:
(1) we utilize the well-known Wi-Fi-location databases such
as WiGLE [6] to obtain GPS coordinates and then location
labels from Google Maps; (2) the newer Android OS, Android
6.0, provides venue name (such as ‘San Francisco Airport’)
if published by access point using ScanResult.venueName
attribute. Other devices acquire these labels automatically
through collaboration when they visit those locations.

The features other than the “list of Wi-Fi Access Points
(APs)” (which we call ‘additional features’) are used to further
distinguish different regions within the range covered by a
single/set of APs. For example, within the same AP range, it
is possible to have two rooms with different sound levels such
as a meeting room and a lobby. Because of the advancements
in smart phone sensor technologies, some phones now have
pressure and temperature sensors, which can be valuable
additions to our feature list. We call a tuple of location features
and corresponding location label as an entry. The method of
populating this database with new entries is outlined below.
Our solution needs Wi-Fi to be ON as it relies on Wi-Fi
scan results. The application utilizes system scans when the
device is not connected to any Wi-Fi network. If the device
is connected to a Wi-Fi network, the OS does not initiate
scans, so the app initiates the scans. In this case, scans are
requested only during the transitions from active to inactive

periods detected using accelerometer data and dead reckoning
to conserve energy. These transitions convey that the user
has settled down at some place after temporary movements.
After receiving the scan results, the app checks to see if it
is similar to any of the entries in its database. We define a
metric called similarity measure between two lists of APs
to identify how significantly the two regions are similar to
each other. Let us denote the list A of access points obtained
at time t = a as [AP

(a)
1 , AP

(a)
2 , . . . , AP

(a)
m] with each term

indicating the signal strength (in W) of that particular AP
(identified using MAC address). Let list B at time t = b be
[AP

(b)
1 , AP

(b)
2 , . . . , AP

(b)
n]. We make use of cosine similarity

to define the similarity measure between these two lists as,

sim =

∑m
i=1

∑n
j=1AP

(a)
i AP

(b)
j δij√∑m

i=1AP
(a)
i

2
√∑n

j=1AP
(b)
j

2
, (1)

where δij = 1 if APi = APj (i.e., their MAC addresses
are same), else 0. If the similarity measure is found to be
lower than a certain threshold value (sim < simth) (new
location) or if sim ≥ simth, but at least one of the location
features is different compared to the entries in database, the
app initiates a location request (explained in later sections)
with the location features collected at that moment. These
location features include additional sensor features which are
averaged over a small time window (to account for temporal
fluctuations), in addition to Wi-Fi AP list. The requester
upon receiving the location label distribution (as a response
to the request) considers the location label with the highest
probability but also with a value beyond a certain threshold
(e.g., 0.5) as the correct location label. A new entry is then
made to the database using those features and that location
label. We would like to reiterate that sampling of additional
sensor data happens only in the above mentioned scenario
(i.e., not continuously), thereby reducing power consumption.
Moreover, this information is stored in the device only (not
transferred to cloud) thereby posing no privacy problems too.

If no response is returned to the request (i.e., none of the
devices know about that location) or if the obtained location
label does not meet the above requirements (e.g., too many
malicious or privacy concerned users), the application waits
to see if the location is a significant location for the user. If
the list of Wi-Fi APs remains the same (i.e., sim > simth)
for a duration greater than a threshold value (tth = 2 hours,
for example), the application recognizes the location as a
significant location for the user and prompts at t = tth
to enter manually the publicly-known label of that location
(this happens only once per location) which is processed by
the ontology framework. There is also another advantage to
waiting for t = tth before asking to manually enter the label—
the same location can be significant to many users, if at least
one of them has entered it manually, rest of them can simply
obtain it in the process of collaboration. Since most of the
places are significant to some or other user (who are in fact
natives of those places), we believe this is a good approach to
one-time manually label them by the natives.

Finally, we can see that the database in each device will
almost saturate after some time. This is because each user

��
�

��
�

��
�

��
�� ��

��

��
�� ��

��

��
��

��
��

��������	
����	

�����

����

��

��������	

�
�
�
�
���

����
�
�
�
����

���
����

�	�����	�

��������	���

���������	
��
�

���������	
���

���
�

���
�

�

����	����

��
�

Fig. 2: An overlay ToR network consisting of Phone Masters (PMs) (which
are also smartphones) at different levels and other user devices. The path
taken by an example location request is shown in dashed arrows.

is usually associated with only a few places for most of the
time. This drastically reduces the need for collaboration until
the user visits new places. Hence, for most of the time, the
location information is readily available for use in location-
based services. We also note that there is a trade-off between
the similarity threshold (as in (1)) and the size of database. If
the threshold is more, granularity increases but there are more
entries in the database and vice-versa.

Protecting Requester/Provider Privacy: In this section,
we describe how the requester and providers privacy is pre-
served (partly). Rest is mentioned in next section.

1) Area Level Privacy: We will first introduce the concept
of “Phone Masters” (PMs). As shown in Fig. 2, PMs are
present at different levels forming an overlay network on top of
TCP/IP: Country, State, County, City, Cell Tower. This can be
extended further down (e.g., Access Point level) but we have
stopped at Cell Tower level in this paper because cell tower
IDs are readily available and a mobile phone can easily find
the cell tower ID of its registered cell tower. There are multiple
PMs for each level to avoid problems akin to centralized
solutions and also for load balancing. To enable uniform load
balancing for all PMs, the number of duplications is higher
at top levels (e.g., Country level) than at bottom levels (e.g.,
Cell Tower level). Some of the user devices themselves act as
these PMs as we will describe later. Each device acting as a
requester/provider/PM in our solution has an ID that uniquely
identifies it. Each PM stores the IDs of its children in its
repository similar to a Domain Name Server (DNS) system.
The last level of PMs, namely the Cell Tower PMs (CTPMs)
store the IDs of the location providers that have opted to
remain anonymous in that area (we call this database, the
repository of that CTPM). A repository is used by CTPM to
pick providers to respond to location requests it receives. A
provider is given a choice for this area level privacy in the
application’s privacy preferences. The objective of this privacy
option is to anonymize the provider’s history of locations to
an area level of his/her choice. A provider who wants to

remain anonymous within a cell tower region would opt for
cell-tower level privacy. His/her ID will be included in the
repository of that CTPM. This also means he/she is willing to
receive location requests from any requester currently located
within that cell-tower area. Similarly, a provider who wants
to remain anonymous within a city region would opt for
city-level privacy. Since a city has multiple cell towers in
general, his/her ID will be included in the repositories of
all CTPMs of that city like provider P1 in Fig. 2. So s/he
will be receiving requests from devices located in any of
those cell tower regions. There is an obvious trade off here—
higher the privacy level, more the requests and vice-versa. A
requester device with a location request corresponding to a cell
tower, first contacts one of the top-level (Country) PMs; the
request is then forwarded down to PM of that cell tower using
the overlay network of PMs. The CTPM will then pick the
appropriate providers from its repository to help answer the
request through weighted collaboration. The answer is finally
sent back to the requester using the same path. We describe
below how this process is anonymous as the above overlay
network acts as a ToR network.

2) ToR Network: In our scenario, the overlay network
of PMs form the ToR (Onion Routing) network [4] which
provides anonymous connection between two parties over a
network of nodes (network of PMs in our case). Since our
solution works at application level, we need either a mapping
from device IDs to IP addresses or the IP addresses themselves
can be used as device IDs. One may be of notion that IP
addresses reveal location information. However, IPs do not
provide accurate location information, especially for mobile
devices. Additionally, existing techniques such as IP spoofing
can be used to prevent location information disclosure. A
requester conceals its location features (corresponding to a
cell tower) in the onion packet with final destination being
the PM of that cell tower. Requester also generates a public-
private key pair (PuR, P rR) for each request and includes the
public key, PuR, along with the onion packet in the request
(Fig. 2). It sends this request to a topmost level PM and
each PM then forwards the request to appropriate children
until it reaches the CTPM it is destined to. Once the CTPM
receives the request it queries the providers in its repository
to find the final location distribution. It then encrypts this
distribution with PuR and sends back to the device from
which it received the request originally (each PM does the
same), finally reaching the requester. The encryption by CTPM
is to ensure that Country PM which knows requester’s ID does
not know the location information of the requester. Moreover,
when the providers provide location labels to CTPMs, their
location history will be known to CTPM (which is less severe
than the current location in case of requester). This issue can
be addressed using secure Multi-Party Computation (MPC)
protocols [16] such as Garbled Circuits or Shamir’s secret
sharing between providers and CTPM. An example path taken
by a location request is shown in Fig. 2.

Final Distribution Generation: A CTPM upon receiving
the location request first picks j devices (providers) at random
from its repository to answer the location request. Algorithm 1
summarizes the procedure followed by each of the j devices

Algorithm 1: Location Distribution Generation (LDG)
Input: Database D : W,F1, F2, ...Fn, L (size m); Input

I : w, f1, f2, ...fn; Privacy levels: p1, p2; k, (r1, r2)
Output: Location Label Distribution: V (length k)

1 M = S1 = R = V = ∅; sum = 0
2 foreach wi ∈W do if sim(wi, w)! = 0 then

M ←M ∪ index(wi)
S1 ← S1 ∪ {S1[li] = sim(wi, w)}

3 S2 ← NFM(D[M], I); S1 ← Normalize(S1)
4 S ←WeightedAvgFusion({S1, S2}, {r1, r2})
5 R ← Generate p1 random labels & Initialize probs to 0; V ← S ∪R
6 foreach li ∈ V do V [li]← V [li] +N(0, p2)
7 Scale and Normalize V
8 Sort V by probabilities in decreasing order
9 return V = {V1, V2, ...Vk}

to generate their distribution tailored to their privacy levels.
It consists of (i) generating correct (without adding noise)
distribution by applying two-step classifier on their databases,
(ii) introducing noise to the distribution by adding a certain
number of random labels and then a random noise to the prob-
abilities. (iii) picking the top k labels. The k-label responses
from all such providers are then fused by the CTPM using
weighted average fusion to generate final distribution.

1) Two-step Classification: Each of the j providers picked
by CTPM runs this algorithm to return correct distribution over
their database labels given the location features. It consists
of the following steps: (1) Each device runs a similarity
check (using (1)) between the input Wi-Fi AP list and the
lists(entries) in its database. (2) If the similarity returned is
0 for all entries, it returns “NA” indicating “I don’t know”.
We note that there may be a considerable number of such
devices (out of j) because of two reasons: first, “Area-level
privacy” preferences mentioned above (e.g., the device might
not have visited any place in that cell tower area but its
ID is listed in that CTPM’s repository due to its city-level
privacy requirements) and second, the fact that many of them
have not visited that particular location in the past even
though they have visited other locations in that cell tower
area. (3a) If not, an NFM classifier (described below, also
as Algorithm 2) is trained over the additional features (other
than Wi-Fi) belonging to these entries that have non-zero
similarity measure. Then the additional features in the input
are queried against this classifier to generate a distribution
over the labels corresponding to these entries. (3b) A second
probability distribution is generated over the same set of labels
by normalizing the similarity measures. (3c) The distributions
in (3a), (3b) (thus two-step) are fused using weighted fusion.
Weights, (r1, r2), can be determined empirically or through
prior knowledge. (3d) Remaining labels in the database are
also added to the distribution in (3c) with probability zero
which is the output of two-step classification. The idea behind
considering devices with non-zero similarity measure is to
identify devices which have at least some knowledge about
the query location (e.g., nearby locations with a common Wi-
Fi AP).

2) Number of Feature Matches (NFM) Classifier: We de-
veloped a classifier based on the number of feature matches
(Algorithm 2) as we found the existing techniques not well-
suited/give low accuracy. Even though Multinominal Logistic

Algorithm 2: NFM Classifier (NFM)
Input: Training Set T : F1, F2, ...Fn, L (size m); Input

I : f1, f2, ...fn
Output: Location Label Distribution: V (length m)

1 count[m] = sum = 0;V {m} = ∅
2 foreach feature vector Fi do if class(Fi) == numeric then

Form Categories Ficat 3 boundaries = means of adjacent entries
3 for i in 1 : m do for j in 1 : n do if fj ∈ Fjcat then

count[i] = count[i] + 1; sum = sum+ count[i]
4 foreach li ∈ Ln do V [li] = count[i]/sum

5 return V

Regression (MLR) suits our problem, NFM is found to per-
form better than MLR. NFM takes only those entries with
non-zero similarity with the input Wi-Fi list as training data.
These entries correspond to adjacent areas such as rooms in
a building. Given the training data (consisting of ‘additional’
features and labels) and query features, the classifier generates
a distribution over the training labels using the following
steps: (1) Maintain a count for each entry/label (2) For each
‘additional’ feature column generate categories corresponding
to feature values such that the category boundaries are at the
mean of two adjacent feature values (e.g., for (1, 5, 6) feature
values, three categories are (−∞, 3), (3, 5.5), (5.5,∞)) (3) For
each entry update the count as follows - for each feature value,
if the query feature value falls in its category, increment the
count. (4) Normalize the counts for all entries to generate a
probability distribution over the labels.

3) Distribution Perturbation: The distribution generated by
the two-step classification procedure is enlarged, perturbed
and then truncated before sending back to CTPM. First, p1
additional random labels are added to the list with probability
values set to zero. These labels are sourced randomly from a
database containing location labels belonging to the provider’s
Area-level Privacy region. This database which can be built
one-time from Google Maps is stored locally in each device.
Second, random noise, n ∼ N (0, p2) is added to all the labels
in the distribution which is then scaled and normalized. Both
p1 and p2 are set by the privacy level needed by the devices.
The higher these variables are, the more noise is added to
the distribution. It is clear to see that for high values of p2,
we obtain a uniform distribution. The app then selects the top
k labels with highest probabilities and sends them back to
the CTPM. Until the desired number (l) of non-NA responses
are obtained, the CTPM repeats the process, each time, by
doubling the number of devices (jnew = 2jold) picked from
the remaining providers.

4) Weighted Information Fusion: The l non-NA responses
are fused using weighted average with the weights as the utility
values of the devices to generate the final distribution, which is
sent back to the requester using the same path as the request.
Here the utility, U , consists of two components: a noise
component (Un) and a time component (Ut): U = Un × Ut.
Un estimates a device’s utility in terms of providing useful in-
formation (considering noise/privacy/maliciousness). Devices
acquire these values based on past feedback they received from
CTPMs, similar to aggregating global reputation scores from
local feedback in a peer-to-peer system [17]. Ut, on the other
hand, indicates that more weight has to be given to the latest
entries as the Wi-Fi APs might have changed over time. The

(a)
5

10
20

50
10

0
20

0
50

0

Amount of duplication for Country PMs
N

o.
 o

f r
eq

ue
st

s
pe

r
C

ou
nt

ry
 P

M
 p

er
 d

ay

●

●

●

●

●

●
●

●
●

●

●

Reqs./dev./week=1
Reqs./dev./week=3
Reqs./dev./week=5
Reqs./dev./week=7
Reqs./dev./week=11
Reqs./dev./week=15

10^5 3*10^5 5*10^5 7*10^5 9*10^5

(b)

1000 2000 3000 4000 5000

8
9

10
11

12

Number of Providers In A Cell Tower (m)

N
um

be
r

of
 It

er
at

io
ns

 N
ee

de
d

by
 P

M
 (

r)

●

●

● ●

●

● ●
●

●

●

●

l=2
l=4
l=6

l=8
l=10
l=12

(c)
Fig. 3: (a) Floor map of Student Center showing data collection spots. (b) Number of requests received by Country PM per day vs. PM duplication and new
requests made by requester per week (c) Number of iterations by CTPM vs. size of its repository and number of collaborators needed.

probabilities in the final distribution give confidence estimate
of the respective labels. This is especially helpful in partial
coverage areas (e.g., only 30% of the rooms are labeled).

IV. PERFORMANCE EVALUATION

We first explain our experimental setup, then present theo-
retical results followed by experimental results on real location
data in terms of privacy, accuracy, collaboration metrics.

Experimental Setup: Since our solution is pervasive (i.e.,
works across buildings), we collected data at two separate
regions (totaling fifteen locations/buildings) separated by a
cell tower distance. Four of these locations are located in a
campus region while the rest are located in a downtown region.
We used seven Android mobile devices in our experiments
out of which four are phones and three are tablets. Within
each of these locations, a person with the app installed on
his device moved around these regions. Whenever the app
detects that the received Wi-Fi scan results are dissimilar (we
used a threshold value of 0.05, see (1)) with the entries in the
phone’s database (initially database is empty), the application
recorded the following location features—(1) list of Wi-Fi
Access Points (APs) along with SSID, BSSID (MAC Address)
and signal strengths (we limited it to 15), (2) sound level, (3)
cell tower ID, (4) Location Area Code (LAC), (5) cell signal
strength (in dBm). One location out of the 15, is a student
center shown in Fig. 3a. Both red and black stars indicate the
places where the app recorded location features (any two of
these places have a Wi-Fi similarity of less than 0.05).

Each device is able to record on an average of 50 entries
corresponding to different rooms/places in and around the
above fifteen buildings (this is not exhaustive coverage, as
it represents a typical user’s usually visited places). In case
of large buildings (like campus buildings, library), multiple
entries are recorded (as the user spends more time and explores
more rooms/places in those buildings), while in case of small
buildings with one or two small rooms (like Starbucks), only
one entry is recorded. As we can see, each phone is not limited
to a single building as in indoor localization solutions but
collects data from different places it visits. We have made the

following observations during our experiments: Granularity
(1) can be increased or decreased depending on the similarity
threshold. More is this value, we have more granularity and
vice versa; however other location features could limit this
granularity if they do not exhibit significant changes in their
values (due to two-step classification). (2) depends on the
device’s ability to capture the surrounding APs. For the same
similarity measure, a device with advanced Wi-Fi radio chip
is able to distinguish well between the regions than a less
capable device. We referred to this as one of the sources of
sensor noise earlier. (3) depends on the density of APs in the
region. In an urban setting where there is more density of Wi-
Fi APs, more granularity is possible compared to a sub-urban
or rural area with less density.

Sound level is recorded as the median value of the maximum
amplitude (getMaxAmplitude() in Android), which indicates
the loudness of the sound, of three consecutive one-minute
intervals. Cell signal strength is recorded as the mean signal
strength over two-minute interval. We believe these intervals
are sufficient enough to account for fluctuations. These two
features are considered numeric values while the cell tower
ID and LAC as categorical values. For each of these features
in the database, we entered the label manually. We would like
to clarify that this is for evaluation purposes only. In actual
deployment, the app would first attempt to acquire this label
through collaboration via the ToR network of PMs.

Theoretical Results. Currently there are about 200 million
smartphone users [18] out of which we assumed 10% =
20e6 = nR to use our solution considering progressive
adoption. Figure 3b shows the number of location requests
received by a Country PM per day (nreqPMc) vs. number of
Country PMs (nPMc

) and the number of requests generated
per week per requester (nreqR) assuming the following re-
lation: nreqPMc

= nR.nreqR/(7.nPMc
). We note that only

in the beginning of app install there will be high number of
requests (such as 15 per week), but from second week onwards
it will be < 5 as many places are already known. This is
because our app tries to localize only when the user’s location

1 2 3 4 5 6 7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Number of Devices In Collaboration (n) [k=60, p2=0.3]

A
cc

ur
ac

y
(R

oo
m

−
Le

ve
l)

●

●
●

●

●

●

●

●

p1=100
p1=200
p1=400

p1=600
p1=800
p1=1000

(a)

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

Number of Devices In Collaboration (n) [p1=500, k=60]

A
cc

ur
ac

y
(R

oo
m

 L
ev

el
)

●

●

●

●

●
●

●

●

p2=0
p2=0.2
p2=0.4

p2=0.6
p2=0.8
p2=1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

Randomization Noise Variance (p2) [p1=300, n=4]

A
cc

ur
ac

y
(R

oo
m

 L
ev

el
)

● ●
●

●

●

●

●

●

●

● ●
●

k=5
k=10
k=20

k=40
k=60
k=80

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Randomization Noise Variance (p2) [k=60, n=4]

A
cc

ur
ac

y
(R

oo
m

−
Le

ve
l)

●

●
●

●

●

●

●

●

●

●

●

●

p1=100
p1=200
p1=400

p1=600
p1=800
p1=1000

(d)

20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

Number of Top Labels Used (k) [p1=300, p2=0.3]

A
cc

ur
ac

y
(R

oo
m

 L
ev

el
)

●
●

● ●

●

● ●

●

●

●

●

●

n=3
n=4
n=5
n=6
n=7

(e)

200 400 600 800 1000

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Random Labels Added (p1) [n=4, p2=0.3]
A

cc
ur

ac
y

(R
oo

m
−

Le
ve

l)

●

● ●
●

●
●

●

●

●

●

●

k=10
k=20
k=40

k=60
k=80
k=100

(f)
Fig. 4: Experimental results showing how accuracy varies for different values of design parameters—n, p2, p1, k.

is stable for a certain amount of time. We can observe that even
for nPMc

= 1e5, the maximum nreqPMc
≈ 400 which is still

manageable. For most of the later weeks, nreqPMc < 100,
considering 3 new location requests per requester per week.
These results are also applicable to PMs at other levels due
to uniform number of PMs at all levels. Figure 3c shows the
number of iterations, r, to be done by a CTPM to obtain the
desired number of collaborators, l, as the size of its provider
repository, m, varies from 500 to 5000. We remind that the
collaborators are the devices that present non-NA response to
CTPM. Besides showing r needed for a given l,m, we can
also observe that r does not change much as the number of
collaborators increases, which shows that it is best to choose
a high number of collaborators since the number of extra
iterations required is low. All the results plotted in this paper
with confidence intervals are averaged over 48 runs, which
guarantees statistical relevance. In each of the 48 runs we
randomized the n devices picked (out of 7) for collaboration.
For example, if n = 4, 7 choose 4 = 35 combinations are
possible and 48(> 35).

Experimental Results: We considered two accuracy levels:
exact/fine (approximately room level) and coarse (building
level). Here we would like to clarify the difference between
accuracy and granularity. Granularity of our system is set by

the similarity threshold used (1), which we have set to 0.05 to
get approximately room level granularity (around 5 meters).
This number can be varied to get room-level or sub-room level
granularity. Accuracy on the other hand is determined by the
percentage of test cases that are classified correctly to be the
same region/room label. If the algorithm is able to detect the
exact room/place in a building, we call it room-level accurate
(which is also building-level accurate), while if it detects it
to be another room/region within the same building, we call
it building-level accurate (but not room-level accurate). If the
classification is to a place in another building, it is neither-level
accurate. We remind that building-level accuracy is sufficient
for coarse location-based services (reason for considering this)
and room-level accuracy can be used, for example, to enforce
security policies as mentioned earlier. To test the algorithm,
we collected location features at 15 places (out of 50 places in
training data), which is used as test data. Black stars in Fig. 3a
show test data points for Student Center. For each of these test
places, a location label is found from collaboration as per n
(number of collaborators = l), k (number of top labels used
in the fusion process), p1 (number of random labels added to
the distributions), p2 (randomization noise) values.

Privacy evaluation. In the following results, we evaluate the
privacy features of our framework (excluding the ToR/PM

1 2 3 4 5 6 7

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

No. of Collaborating Devices (n) [p1=500, p2=0.3, k=60]

A
cc

ur
ac

y

●
●

●

●

●

●
●

●

Building, NFM
Building, MLR

Room, NFM
Room, MLR

(a)

1 2 3 4 5 60.
60

0.
65

0.
70

0.
75

0.
80

0.
85

No. of Devices With Non−zero p2[p1=700, k=25]

A
cc

ur
ac

y
(R

oo
m

 L
ev

el
)

●

●

●

●

● ●

●

p2=0.1,uniform
p2=0.1,weighted
p2=0.9,uniform
p2=0.9,weighted

(b)

Library Student Center Gym Office building

Room, p2=0 Room, p2=0.3 Building, p2=0 Building, p2=0.3

A
cc

ur
ac

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)
Fig. 5: (a) Room- and Building-level accuracies with NFM and MLR classifiers vs. number of collaborating devices (n) (b) Effect of weighting and p2 on
accuracy. (c) Room- and Building-level accuracies for different buildings and p2 values

network) by studying how accuracy varies with key privacy
parameters, k, p1, p2 and n, number of collaborators. We used
equal weights for all n devices in collaboration and plot only
room-level accuracy as it is more fine-grained. Similarly we
used NFM classifier as it is more accurate than MLR classifier
(shown later).

Figure 4a shows the accuracy vs. the number of devices in
collaboration for different cases of p1. We can note the general
trend that as n increases accuracy increases. Trend for p1 is,
however, interesting. We can see that if n = 1 lower p1 is
better, and for n > 2 higher p1 is better. This is because, for
n = 1, more p1 leads to more noise in terms of number of
random labels occupying the top k slots, and this noise is not
removed due to lack of collaboration. However, the same noise
is beneficial for n > 2 as the noise added is disjoint across
devices canceling out in the fusion process, thus making the
correct labels stand out (i.e., the competition among database
labels is reduced). Note that this behavior is slightly against
intuition.

Figure 4b shows the accuracy as n is increased for different
cases of p2. We can appreciate the expected behavior w.r.t. n
and p2. Another interesting observation is the reduction in
uncertainty (confidence intervals) as the number of devices
increases. This result proves that collaboration not only en-
hances accuracy but also improves the confidence of the result.
We can draw interesting inferences from this figure—e.g., to
obtain 60% accuracy we need either three devices with average
p2 = 0.4 or seven with average p2 = 0.6.

Figure 4c shows the accuracy as p2 is increased for different
values of k (number of top labels used in fusion). We can see
the expected trend of reduction in accuracy as p2 is increased.
When the noise (p2) added is low, using more labels (k)
increases competition among the database labels resulting in
accuracy reduction. This explains the low accuracy for high
k when p2 is low. However, if p2 is higher most of the top
labels are random labels, so taking more of them during fusion
increases the chances of finding correct labels in the fusion
output (as the random labels are disjoint across devices and
hence cancel out). This explains the interesting criss-cross
behavior also observed before in Fig. 4a.

Figure 4d shows the accuracy versus p2 for different cases
of p1. Apart from the general behavior of reduction in accuracy
with the increase of p2, we again observe criss-cross behavior
w.r.t. p1. When p2 is small, less noise is added to distribution.
In this situation, adding fewer random labels means that few
of them are present in the top k labels, which in turn leads
to more competition among database labels resulting in low
accuracy. However, when more noise is added, adding more
random labels decreases accuracy as they kick the correct
labels out from the top k slots (so small p1 is better).

Figure 4e shows the accuracy vs. number of labels used in
fusion and n. Again, we can see that the uncertainty reduces
as n increases and vice-versa. We observe a slight increase-
decrease behavior with k. This is because for small k there is
less chance for correct labels to appear in top k slots (reducing
accuracy) and for large k there is more competition from
database labels again reducing accuracy. This means that there
is an optimum k—this can be seen in the figure and seems to
be approximately same for most of the devices equal to 20-30.
Again, this behavior is beyond intuition.

Figure 4f shows the accuracy as the number of random
labels (p1) added is increased for different values of k. We
can observe that as p1 increases, accuracy increases which
is against intuition. This is because, more p1 leads to more
noise in terms of number of random labels occupying the top
k slots. This noise however is beneficial (for n > 2) as the
noise added is disjoint across devices thereby canceling out
in the fusion process, and making the correct labels stand out
(i.e., the competition among database labels is reduced). This
particular trend however diminishes as k is decreased (notice
k = 10 curve). This is because the disjoint randomization
created by p1 is limited by k. Also, for small k, there is more
chance that the correct labels are not captured in the top k
slots reducing accuracy. It is interesting to note that some of
these results are against/beyond intuition. From these figures
it is possible to obtain optimum values for k, p1. For k as
mentioned before (Fig. 4e) 20-30 is a good number. For p1,
consider Fig. 4f, assuming a k value of 20 or 40, we can see
that p1 > 400 provides good accuracy. Since we need p1 to

be greater to preserve privacy, it is best to choose large value
for p1 without affecting accuracy.

NFM vs. MLR classifiers. Figure 5a compares NFM and
MLR classifiers as number of devices in collaboration (n)
increases. We can see that NFM performs at least as good as
MLR. Similar result of NFM performing better than (or at least
as good as) MLR is observed when the randomization noise
variance (p2) is changed (not shown due to space limitation).

Room and building level accuracy. We can also observe in
Fig. 5a, building-level accuracy is always higher than the
room-level accuracy. Both of them increase as n increases and
decrease as p2 is increased. The reasons for lower room-level
accuracy are: (1) changing Wi-Fi signal strengths, (2) sensor
noise—unable to detect some APs; Android OS returning
previous scan results as current ones (we have observed this in
our experiments), and (3) possibly low amount of training/test
data (i.e., more data can enhance accuracy).

Effect of weighting. Figure 5b shows the effect of weighing
(by utility values) in collaboration on the accuracy for different
values of randomization noise, p2. The devices with non-zero
p2 values are given a weight of 0.1 against the weight of 1
for p2 = 0. From the figure we can observe that when p2
is low and the number of devices with non-zero p2 (other
devices have p2 = 0), nnoisy , is low, there is no much benefit
from weighting as expected. However when nnoisy is high,
we can see that weighting gives more accuracy (about 4%)
than the base case (uniform weighting). Similarly when p2 is
high and nnoisy is from 2 to 5, we can see that weighting
gives advantage (about 5% for nnoisy = 5). However when
nnoisy = 6, there are too many noisy devices (around 86%)
(we assume this will not happen in reality) that weighting
is unable to provide extra accuracy than the uniform case.
We intentionally omitted the confidence intervals (which are
within 2%) in order to show the points clearly.

Accuracy by building type. Figure 5c shows the room-level
and building-level accuracies for different types of buildings
with different p2 values (results for p1 are similar). The lower
accuracy for ”Library” and ”Student Center” cases is due
to limited test data and possibly lack of additional feature
variability. We note that these results are only to show the
proof of feasibility and can be improved considerably with
more amount of training and test data. We also mention that,
apart from collaboration, coverage of each provider (places the
provider has visited) also affects accuracy of the solution. One
can imagine that as number of places visited by the providers
(i.e., database entries) increases, the accuracy of the framework
increases. Even though we have this result we could not
include due to lack of space. Finally, we have not compared
our solution against other indoor localization solutions for
the same reason we mentioned in Sect. I—our solution neither
competes nor is comparable with indoor localization solutions.

V. CONCLUSION AND FUTURE WORK

We presented a privacy-preserving, multi-modal, collabo-
rative cross-building room-level localization framework.The
proposed approach can achieve sub room level granularities
though it is tested for room-level (≈ 5m) granularity. The
results show that the proposed approach has the potential for

wide-spread public usage (including integration into mobile
OS) for privacy-preserving pervasive localization.

As future work, we will perform the following: (1) increase
the solution’s current granularity by considering Geo-magnetic
signal, and further exploiting the microphone of the device to
both actively and passively probe the surrounding environment
via sound signals (Channel State Information (CSI) cannot be
used as ours is mobile based solution); (2) evaluate requester
↔ CTPM↔ providers communication along with ToR routing
and secure MPC in a network simulator such as ns-3; (3)
dynamically modify similarity threshold based on APs density.

Acknowledgments: We thank the Department of Homeland
Security (DHS) Science & Technology Directorate (S&T)
Cyber Security Division for their support under contract
No. D15PC00159.

REFERENCES

[1] H. Viswanathan, E. K. Lee, I. Rodero, and D. Pompili, “An Autonomic
Resource Provisioning Framework for Mobile Computing Grids,” in
Proc. of ACM Intl. Conference on Autonomic Computing (ICAC), San
Jose, CA, 9 2012.

[2] G. Salles-Loustau, L. Garcia, K. Joshi, and S. Zonouz, “Don’t just
BYOD, Bring-Your-Own-App Too! Protection via Virtual Micro Secu-
rity Perimeters,” in IEEE/IFIP International Conference on Dependable
Systems Networks, 6 2016.

[3] “The Google Maps Geolocation API,” https://developers.google.com/
maps/documentation/geolocation/intro.

[4] “Tor project,” https://www.torproject.org/.
[5] O. C. I. Project, “Opencellid,” http://opencellid.org/, online.
[6] “WiGLE: Wireless Network Mapping,” 2017, https://wigle.net/.
[7] B. Gedik and L. Liu, “Protecting Location Privacy with Personalized k-

Anonymity: Architecture and Algorithms,” IEEE Transactions on Mobile
Computing, vol. 7, no. 1, pp. 1–18, 1 2008.

[8] K. Fawaz and K. G. Shin, “Location Privacy Protection for Smartphone
Users,” in Proc. of the 2014 ACM SIGSAC Conference on Computer
and Communications Security - CCS ’14. New York, New York, USA:
ACM Press, 2014, pp. 239–250.

[9] J. Mantyjarvi, J. Himberg, and P. Huuskonen, “Collaborative context
recognition for handheld devices,” in Pervasive Computing and Com-
munications, 2003. (PerCom 2003). Proceedings of the First IEEE
International Conference on, 3 2003, pp. 161–168.

[10] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu,
and A. T. Campbell, “Darwin Phones: The Evolution of Sensing and
Inference on Mobile Phones,” in Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, ser. MobiSys
’10. New York, NY, USA: ACM, 2010, pp. 5–20.

[11] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choud-
hury, “No need to war-drive,” in Proceedings of the 10th international
conference on Mobile systems, applications, and services - MobiSys ’12.
New York, New York, USA: ACM Press, 2012, p. 197.

[12] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: zero-
effort crowdsourcing for indoor localization,” in Proceedings of the 18th
annual international conference on Mobile computing and networking -
Mobicom ’12. New York, New York, USA: ACM Press, 2012, p. 293.

[13] J. Shen, J. Cao, X. Liu, J. Wen, and Y. Chen, “Feature-Based Room-
Level Localization of Unmodified Smartphones,” in Smart City 360.
Springer, Cham, 2016, pp. 125–136.

[14] A. I. Kyritsis, P. Kostopoulos, M. Deriaz, and D. Konstantas, “A BLE-
based probabilistic room-level localization method,” in 2016 Interna-
tional Conference on Localization and GNSS (ICL-GNSS). IEEE, 6
2016, pp. 1–6.

[15] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology Based
Context Modeling and Reasoning using OWL,” in Proceedings of
the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, Washington D.C., USA, 2004, pp. 18–22.

[16] T. Dugan and X. Zou, “A Survey of Secure Multiparty Computation
Protocols for Privacy Preserving Genetic Tests,” in 2016 IEEE First
International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE). IEEE, 6 2016, pp. 173–182.

[17] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, pp. 460–473, 4 2007.

https://developers.google.com/maps/documentation/geolocation/intro
https://developers.google.com/maps/documentation/geolocation/intro
https://www.torproject.org/
http://opencellid.org/

[18] “How Many Smartphone Users Are Officially Addicted? - eMarketer,”
2017, http://www.emarketer.com/Article/How-Many-Smartphone-Users-

Officially-Addicted/1012800.

	I Introduction
	II Related Work
	III Proposed Solution
	IV Performance Evaluation
	V Conclusion and Future Work
	References

