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Abstract—The architectures of large-scale Internet
servers are becoming more complex each year in order to
store and process a large amount of Internet data (Big Data)
as efficiently as possible. One of the consequences of this
continually growing complexity is that individual servers
consume a significant amount of data even when they are
idle. In this paper we experimentally investigate the scope
and usefulness of existing and proposed dynamic power
management strategies to manage power at core, socket,
and server levels. Our experiment involves four dynamic
voltage and frequency scaling policies, three different work-
loads having different resource consumption statistics, and
the activation and deactivation of different sockets (packets)
of a multicore, multi-socket server. Moreover, we establish
a quantitative relationships between the workload (w) and
the estimated power consumption (p̂) under different power
management strategies to make a quantitative comparison
of the different strategies and server configurations.

Index Terms—Dynamic power management, DVFS,
energy-efficient computing, multicore processor

I. INTRODUCTION

The pace at which the amount and complexity of
data increases that are presently stored in and processed
and transferred by large-scale Internet servers and data
centres has induced the research community and the
IT industry to label the phenomenon as the Big Data
phenomenon. In order to deal with this phenomenon
processor, server, and network architectures are under-
going a considerable evolution at a fast rate. As far
as multicore processor architectures are concerned, the
efficient integration of a large amount of cores in a single
chip, complex shared cache hierarchies, fast and effi-
cient simultaneous multi-threading, non-uniform cache
architecture, and advanced branch prediction strategies,
among others, are being endeavoured both by the in-
dustry and the research community. The idea is to
significantly increase the number of instructions that can
be fetched, decoded, dispatched, issued, and executed
simultaneously [1]. Likewise, novel server (mainboard)
architectures are being developed to enable the fast and
efficient integration of multiple multicore processors and
random-access memories in a NUMA architecture.

The energy-proportionality (the ratio of consumed
energy to work done) of these architectures has in

general been steadily improving because the resource
and power utilisation of a server can be adapted, at
least theoretically, at core, processor, socket, and server
levels. Moreover, presently available processors have
more operation frequencies and voltages to scale than
their predecessors. Regardless of these possibilities, how-
ever, due to the proportionality between the capacity
and power consumption of the hardware subsystems, the
average power consumption of typical Internet servers is
still considerably high.

Both the research community and the industry have
been working on dynamic power management strategies
for decades. For example, the Advanced Configuration
and Power Interface (ACPI) specification defines an open
industry standard for configuring, managing, and moni-
toring the power consumption of hardware subsystems
in servers at runtime. Likewise, a substantial body of
work exists on dynamic voltage and frequency scaling
(DVFS) to adapt the operation frequency and voltages
of processors in accordance with the expected idle time
duration between two jobs and job completion deadlines
specified by applications. Nevertheless, the scope and
usefulness of these strategies depend on how quickly
and how well they adapt to the ever evolving processor
and server architectures. Two of the premises of dynamic
power management are that the workload of a server is
not constant; rather, it fluctuates over time. Secondly,
different workloads have different resource demands (for
example, some workloads are predominantly IO-bound,
some are CPU-bound, and some are memory-bound).
Consequently, an efficient power management strategy
attempts to balance the demand for and the supply of
resources in a server by switching-off idle resources
and by appropriately scaling the operation speed of
underutilised resources [2].

In this paper, we experimentally investigate the perfor-
mance of different dynamic power management strate-
gies using a medium-scale multicore, multiprocessor
server architecture. The server consists of four CPU
sockets which are interconnected in a mesh topology.
Each socket houses a quad core Intel Xeon E5-4603
processor (having 4 physical and 8 logical cores), 16
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GB memory in a NUMA architecture (4 GB for each
socket), 10 Gbps Intel NIC, and an XFS-formatted 6 TB
hard disk RAID with a theoretical sustained data rate
of ∼465 MB/s (the data rate reduces to ∼300 MB/s
during heavy contention). We generated different CPU-
bound stochastic workloads to dynamically vary the inter
job interval (idle state) at the processors. The rest of
the paper is organized as follows: In Section II, we
summarize related work; in section III, we introduce our
experiment set up; in Section V, we present and discuss
experiment results and share the insight we obtained from
the experiment results. Finally, in Section VI, we give
concluding remarks and outline future work.

II. RELATED WORK

The idle power consumption of Internet servers be-
comes significantly high as their complexity and capacity
increases. Consequently, different approaches have been
proposed and implemented to deal with idle power con-
sumption. The Advanced Configuration Power Interface
(ACPI) specification serves as a platform-independent
conceptual framework for the seamless integration of
different dynamic power management strategies into an
operating system for managing the power consumption
of the different subsystems of a server. It has three
conceptual layers, the software, the ACPI, and the hard-
ware layer. The hardware layer consists of the hardware
subsystems the power consumption of which should be
managed. Each hardware subsystem defines different
operating modes having different power-utility charac-
teristics. The ACPI layer exposes to the dynamic power
management strategies the parameters and functions of
each hardware subsystems that can be modified and
invoked. The parameters are exposed as ACPI registers
and function pointers. The software layer consists of
two vital power management components, the Operat-
ing System-directed configuration and Power Manage-
ment (OSPM) and the ACPI driver (AML interpreter).
The former contains an instance of a dynamic power
management strategy for each dynamic reconfigurable
hardware subsystem. Therefore, an instance of OSPM,
once initiated, takes an exclusive control of all aspects
of power management and device configuration, as far as
a hardware subsystem is concerned. The AML interpreter
(ACPI driver) translates the OSPM language into a
language understandable by the functions that interact
with the managed hardware subsystem.

Similarly, emerging computer architectures aim to pro-
vide rich dynamic power management opportunities. For
example, the IBM’s PowerX multicore architecture aims
to integrate flexible and ACPI compatible dynamic power
management features into present and future multicore,
multiprocessor server architectures [3]. One of these
features is providing separate phase-locked loops (PLL)

to individual cores so that their voltage and frequency can
be scaled independently. Likewise, some generations of
AMD processors provide separate PLL for each core [4].
The increasing number of cores within a single processor
package makes dynamic power management essential
not only to save energy but also to reduce the thermal
effect of high circuit density, which inhibits cores from
operating with optimal performance. A high thermal
design power (TDP) not only reduces the performance of
individual cores but also may damage the whole system.
The effect of TDP can be minimised by employing an
active cooling mechanism; however, active cooling also
introduces its own power consumption. Hanumaiah and
Vrudhula [5] aim to minimise the effects of TDP by
combining different approaches such as performance-per-
watt efficiency as a trade-off between performance and
power consumption, DVFS, thread migration, and active
cooling.

Maiti et al. [6] investigate the consequences of con-
figuration mismatch between core frequencies and core
states and propose a framework for core selection, thread-
to-core mapping and DVFS. The aim is to select the best
distribution of jobs and the appropriate DVFS. Unlike
the approach in [5], here optimisation serves one of the
two purposes: Either the energy of a server is minimised
under performance constraints or its performance is
maximised under power constraints. Unfortunately this
model considers multicore processors and not multi-
socket systems. Brihi and Dargie [7] and Dargie [8]
experimentally investigate the scope and usefulness of
dynamic voltage and frequency scaling in different AMD
and Intel multicore processors dealing with IO- and
CPU-bound workloads. One of their contributions is
directly measuring the power consumption of the proces-
sors by intercepting their power lines and by establishing
a relationship between power consumption and CPU
utilisation. Similarly, Rossi et al. [9] investigate the
scope of three DVFS policies (performance, on-demand,
power-save) and propose a multi-linear regression model
to estimate the power consumption of a processor based
on its CPU utilisation, frequency set by a DVFS policy,
and time to finish a job.

III. SETUP

Most existing dynamic power management strategies
aim to minimise the idle states of some of the subsystems
of a server, because they consume a significant amount of
power even when they are idle. For frequency sensitive
subsystems (such as processors), the idle state can be
minimised by letting them operate at a slower speed
(this is the essential aspect of voltage and frequency
scaling). Alternatively, workloads can be aggressively
processed, so that the subsystems can be put into a
deep-sleep state or switched off entirely. In the latter

Final edited form was published in "International Conference on Computer Communications and Networks (ICCCN). Vancouver, 2017". ISBN 978-1-5090-2991-4. 
https://doi.org/10.1145/2236584.2236587

2 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



case, the different components of the subsystem can be
switched off when they are not needed, even though the
subsystem as such is regarded as active. For example, in
a processor core, various idle components (such as the
memory controller, load store unit, fixed point processor,
etc.) can be separately turned off. Foreseeing these two
possibilities, the ACPI specification defines the C and P
states. In the context of multicore processors, the C state
corresponds to managing individual cores by selectively
switching off different sub-architecture components and
the P state corresponds to operating the various cores
at different frequencies. Hence, the scope of a dynamic
power management strategy depends on the extent to
which the components of a subsystem can be selectively
switched off, the number of distinct power modes that
can be achieved, and the accuracy with which the ex-
pected idle state of the subsystem can be estimated.

A. Dynamic Voltage and Frequency Scaling

For our analysis we identified four types of DVFS
policies which can be integrated into a Linux environ-
ment (server edition). These are power-save, on-demand,
conservative, and performance policies (governors) [7],
[8], [10]. The power-save policy operates cores at the
lowest frequency while the on-demand and conservative
policies adapt the clock frequency to the change in the
workload of the servers. The last two policies estimate
the utilisation of the processor using a moving average
technique, predict its future workload (for the next time
slot), and scale-down or scale-up the processor’s speed
accordingly. The essential difference between the two is
that the on-demand policy scales up the CPU frequency
to the maximum whenever an increment in the core’s
activity is predicted whereas this is done gradually in the
conservative policy. The performance policy operates a
core at the maximum frequency. The aim is to complete a
task as fast as possible and put the core into a deep sleep.
On the system side, the server integrates 16 physical
cores into 4 sockets but because of HyperThreading R© ,
the operating system (Ubuntu server edition, version
12.04) recognises 32 logical cores. The available fre-
quencies for scaling are: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9 and 2.0 GHz. The corresponding processor voltages
are set automatically and vary in the range from 0.6 to
1.35 V based on the temperature, leakage, power delivery
load-line and dynamic capacitance.

At a socket level, the frequency of operation for
individual cores can be different from the one set by
a governor. A governor residing in the operating system,
based on its knowledge of the present and anticipated
workload of each core, may set the optimal operation fre-
quency for each logical core separately. But this decision
may not be realised directly by the hardware which has
often some restrictions. For example, two HyperThreads

Table I
TRANSCODING DURATION WITH SEVERAL SOFTWARE SET
FREQUENCIES. TRANSCODING ALWAYS RUN ON CORE 1.

Core 1 Core 2 Core 3 & 4 Duration [s]

2 GHz sleep
sleep

44.5
1.2 GHz sleep 61.9
1.2 GHz 2 GHz 44.4

running on the same physical core cannot have different
frequencies. In order not to exceed any deadline, the
core will select the highest frequencies of its active
HyperThreads. Secondly, on Intel processors, there is
only one phase-locked-loop (PLL) for all cores belonging
to a single package (socket) [11]. Consequently, all cores
belonging to one and the same package will operate at
the same frequency. Once again, the highest frequency of
all the active cores will be chosen by the clock frequency
controller. We verified this aspect by transcoding a video
several times with different configurations (see Table I).
Firstly, we set the maximum frequency via a governor
for a single core which carried out the transcoding task;
the video was transcoded in 44.5 s. Secondly, we set
the operation frequency to a minimum level and carried
out the same transcoding task, which took 61.9 s to
complete. In the first two cases, all the other cores were
disabled. Thirdly, we activated an additional core within
the same package and set its operation frequency to
maximum whilst keeping the frequency of the other to
minimum and carried out the transcoding task of the
same video with the same core; the task was completed
in 44.4 s. Hence, even if different cores belong to the
same package may have different loads, they will have
the same operation frequency which is determined by the
highest workload. To minimise the inefficiency that arises
due to the restriction on DVFS, individual cores can be
forced to enter into a deep sleep or can be switched-off
altogether.

B. Workload

How well the future workload of a processor can be
predicted and how fast its operation frequency (speed)
can be set depends on the dynamics of the incoming
workload. For this reason and in order to carry out
repeated and reproducible experiments, we generated
stochastic workloads. Each physical core (leaving Hyper-
Threading unused) was given a video transcoding task,
which always required 100 % CPU utilisation. We em-
ployed (FFMPEG1) to transcode a video from one format
to another. By the end of each experiment, the throughput
of all policies would be equal (i.e., the amount (in byte)
of videos they transcoded would be equal). Transcoding
tasks were given to the cores at fixed intervals, but

1https://www.ffmpeg.org/
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Figure 1. Exemplary workload/video size for each 30 s interval and
core when three packages are used.

the sizes of the videos for each interval were random
variables with a known distribution function, mean, and
variance. As a result, the video transcoding time, and,
hence, the idle time between the completion of a task
and the arrival of the next task were random variables as
well. This is illustrated in Fig. 1.

As can be seen, a transcoding task is given to the
cores every 30 s. But the size of a video assigned to
a core is randomly selected from a known distribution
(normal, exponential, uniform). Consequently, when re-
garded along the time axis, the idle time of a single core
has random duration; likewise, when regarded across
multiple cores, the idle time has a random duration. The
duration of a single time slot is determined by the time
required to complete the transcoding of the longest video.

Thus, we produced the following workload distribu-
tions:

• Exponential – E (λ = 15 MB); 0.5 % of the videos
have the maximum video size, which is 80 MB for
all the experiments.

• Normal – n (µ = 15 MB, σ = 7.5 MB); 2.3 % of the
videos have zero size (no video was assigned for the
entire time interval) and approx. no video has the
maximum video size.

• Uniform – U (0, 30) – The size of the videos
assigned to a core varies uniformly between 0 and
30 MB.

C. Measurement

We gradually increased the number of packages in-
volved in our experiments. Thus the workload was started
on 1, 2, 3 or 4 packages. We run each experiment for one
hour and used YOKOGAWA WT210 digital power anal-
ysers to measure the power consumption of the server at
a rate of approximately 10 Hz and DSTAT2 to measure

2http://dag.wiee.rs/home-made/dstat/
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Figure 2. The cumulative distribution function of the power consump-
tion of the server (p) when the exponential transcoding workload was
being processed with the four dynamic power management strategies.

the CPU utilisation at a rate of approximately 1 Hz.
Altogether we conducted 48 experiments, 4 different
socket configurations, 3 different workload types, and 4
different DVFS policies.

IV. ANALYSIS

We employed the cumulative distribution function
(CDF) to investigate how the statistics of the CPU
utilisation and the power consumption of the server
changed over time as its workload fluctuated. Except for
the power-save policy, which utilised the least amount
of resource and consumed the least amount of power,
we did not observe an appreciable difference between
the CDFs of CPU utilisation of the different scaling
policies. Which means, the CPU utilisation is affected by
the statistics of the workload rather than by the scaling
policies (alternatively, the CPU load average is not a
good indicator of the CPU activity at a time granularity
less than 1 s). The diversity was the least in the expo-
nential workload with a single socket and the most in
the normal workload with all the cores activated. The
power-save policy often violated transcoding deadlines
(a transcoding task should complete within 30 s, which
is the interval between the arrival of two consecutive
transcoding tasks), which clearly indicates that energy
saving can be made only to a certain extent beyond which
there is a penalty. Similarly, from the power consumption
statistics of the server (refer to Fig. 2 and 3), it can be
seen that operating all cores at maximum frequency (with
the performance policy) did not yield any performance
gain as a result of a high power consumption (both on-
demand and conservative have kept deadlines despite
power saving).

The on-demand and conservative policies produced
workload-aware, adaptive, comparable and reproducible
results. Whilst the difference in the statistics of their
power consumption (mean and variance) is insignifi-
cant, the on-demand strategy of switching the opera-
tion frequency to the maximum whenever an increment
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Figure 3. The cumulative distribution function of (p) when the
normally distributed transcoding workload was being processed with
the four dynamic power management strategies.

in the workload of a processor is anticipated appears
to be the best strategy (this observation is consistent
with previous observations where the on-demand policy
produced better results under different workload types
and workload statistics [7]). In contrast, the gradual
increment in the operation frequency produced an extra
frequency-switching cost.

V. POWER VS. CPU UTILISATION

One of the desirable features of a dynamic power
management strategy is its predictability. The existence
of a quantitative relationship between the workload of a
server, on the one hand, and the resource demand and the
power consumption of the workload, on the other enables
to predict the outcome of a dynamic power management
policy. When a quantitative relationship exists under each
power management strategy, it is is possible to identify
and choose the best one that suits a given workload type
and workload statistics. Interestingly, the three DVFS
policies (on-demand, conservative, and performance pro-
duced reproducible, linear relationships between the CPU
utilisation and the power consumption of the multicore,
multi-processor server. The existence of such a relation-
ship has been claimed before (Möbius et al. [12] and
Dargie [13]), but the claim was made in the absence of
any dynamic power management strategy. The parame-
ters of the linear regression varied slightly for different
workloads and socket configurations, but this variation
was insignificant. Fig. 4 shows the relationship between
the CPU utilisation and the power consumption of the
server for the normally distributed workload under the
on-demand policy. The corresponding error is displayed
in Figure 5. The power consumption of the server could
be estimated from the CPU utilisation with an estimation
error of below 2.5% for all the cases.

One of the consequences of the existence of a quan-
titative relationship between the power consumption and
the CPU utilisation of the server is that, if the statistics
of one of the quantities is known, it is possible to
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Figure 4. A linear regression of the power consumption p over the
CPU utilization w for the normal workload under the on-demand DVFS
policy.
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Figure 5. The difference between the predicted power consumption
(p̂) and the actual or measured power consumption (p) for the normal
workloads under the on-demand DVFS policy.

express the statistics of the other in terms of the known
statistics. Suppose, for example, we have the statistics
of the CPU utilisation (which we regard as a random
variable, w) under a given DVFS policy. Hence, the
distribution function of w, F (w), is expressed as:

F (w) = P {w ≤ w} (1)

where w is a positive real number signifying the work-
load being below w%. Similarly, the density function,
f(w), of w can be determined by differentiating F (w)
with respect to w. Once F (w) and f(w) are determined,
then useful parameters such as the variance and mean of
w can be determined as well. Moreover, since we have
experimentally determined that (refer to Fig. 4):

p̂ = a ·w + b

The CDF and pdf of p̂ can also be determined, because
we have,

F (p) = P {p̂ ≤ p} = P {a ·w + b ≤ p} (2)

Rearranging terms in Equation 2 yields:

F (p) = P

{
w ≤ p− b

a

}
= Fw

(
p− b
a

)
(3)
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where Fw (p) implies the distribution of w expressed in
terms of p. From Equation 3, it is possible to derive the
density function, the mean, and variance of p̂. So, it is
clear that once the statistics of w is available, the power
required to handle the workload under a given power
management policy can be approximated.

VI. CONCLUSION

In this paper we investigated the scope and usefulness
of different dynamic power management policies in a
multicore, multi-processor server architecture. The server
with which we experimented was a four socket system,
each socket housing a quad-core Intel Xeon E5-4603
processor. We considered different workload statistics,
DVFS policies, and server configurations. Our experi-
ment results reveal that the scope of power management
at a socket level is limited by the shared phase-locked
loop (PLL) which manages the clock frequency for
each core. The Intel Xeon E5-4603 processor provides
a single PLL as a result of which cores belonging to
the same package operates at the maximum frequency
set by the DVFS policies to that package. In general,
the DVFS policies we examined yield predictable, re-
producible, and linear relationships between the total
CPU utilisation and the overall power consumption of
the server. The relationships enabled us to estimate the
statistics (distribution and density functions) of the power
consumption of the server when the statistics of the
workload of the server is known. This aspect is useful
for predicting power consumption, for identifying the
best power management strategy, and for scheduling
workloads. In this work, tasks were manually assigned to
cores in order to examine the relationship between power
consumption and CPU utilisation under different DVFS
policies. In future our aim is to dynamically assign tasks
based on the idle time distribution of cores and to find
an optimal configuration that combines heterogeneous
power management strategies.
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