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Abstract—Accurate and robust localization is crucial for
wireless ad-hoc and sensor networks. Among the localization
techniques, component-based methods advance themselves for
conquering network sparseness and anchor sparseness. But
component-based methods are sensitive to ranging noises, which
may cause a huge accumulated error either in component
realization or merging process. This paper presents three results
for robust component-based localization under ranging noises.
(1) For a rigid graph component, a novel method is proposed to
evaluate the graph’s possible number of flip ambiguities under
noises. In particular, graph’s MInimal sepaRators that are neaRly
cOllineaR (MIRROR) is presented as the cause of flip ambiguity,
and the number of MIRRORs indicates the possible number
of flip ambiguities under noise. (2) Then the sensitivity of a
graph’s local deforming regarding ranging noises is investigated
by perturbation analysis. A novel Ranging Sensitivity Matrix
(RSM) is proposed to estimate the node location perturbations
due to ranging noises. (3) By evaluating component robustness via
the flipping and the local deforming risks, a Robust Component
Generation and Realization (RCGR) algorithm is developed,
which generates components based on the robustness metrics.
RCGR was evaluated by simulations, which showed much better
noise resistance and locating accuracy improvements than state-
of-the-art of component-based localization algorithms.

Keywords-Component-based localization, location robust-
ness, ranging noise, graph rigidity, sensor network

I. INTRODUCTION

A general scenario is There maybe few anchors to define
the global coordinate system, and the distance measurements
among the nodes maybe sparse. The problem of network
localization has drawn great attentions[9]. It is to estimate the
locations of nodes based on the inter-node range measure-
ments, which generally adopts a graph realization model[1].

Existing results on network localization can be roughly
divided into two categories. The first category investigated
the localizability problem [20][19], i.e., given the settings of
anchors and the distance matrix obtained from the network,
researchers investigated whether the whole network or indi-
vidual node can be uniquely localized or not.

The second category focus on algorithms of network
localization, which can be further divided into 1) semi-
definite programing (SDP) based, 2) trilateration-based, and
3) component-based. SDP-based method adopts centralized
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optimization algorithm[2][12]. The trilateration-based and
component-based method can be fully distributed[10]. In par-
ticular, the trilateration-based method calculates the locations
of some localizable nodes by anchors, and sequentially lo-
calizes the other nodes by treating the newly located nodes
as anchors[6][10]. Its main limitation is that each localizable
node need to be directly connected to three anchors, which
is actually not necessary in the optimal case[19][1]. Error
accumulation is also a main drawback of trilateration-based
method because of the sequential localization process[18].

Component-based methods, recently proposed in
[5][13][14][15][23] partition the nodes into rigid components.
Locations of nodes in each rigid component are calculated
by trilateration or biliteration. Multiple realization candidates
were preserved when the component is not uniquely
localizable. Then each component is treated as a basic unit.
Edges between components help to merge the units and
anchors in different units can collaborate to convert the local
coordinate systems of components to a global system. As
a result, component-based method can localize the nodes
which are not localizable in trilateration, and it reduces error
accumulation by the collaboration of distributed components.

But both the localizability problem and the localization
algorithms face challenges when distance measurements are
noisy, which is inevitable in real applications. The essential
difficulty is that graph rigidity analysis is based on bars and
joints with exact lengths[7], which is the key for guaranteeing
localization solution uniqueness. But, because of the noises of
distance measurements, the true location of a node maybe at
a point near the estimated location, or at a flipped position
(called by flip ambiguity) far from the estimated location. The
solution uniqueness becomes difficult to verify under ranging
noises. Furthermore, the noises can seriously worsen the error
accumulation in sequential localization process.

To deal with noises, bounding the worst-case locat-
ing error becomes an important problem in existing
studies[13][10][17][16]. In trilateration-based method, [10]
proposed robust four-node quadrilateral as the smallest pos-
sible unit whose flip ambiguity probabilities can be bounded.
In [18], trilateration confidence was proposed to evaluate the
quality of trilateration. But error accumulation is still serious
in sequential localization, even if we select robust quadrilateral
or confidential trilateration in each step. [13] investigated
how to bound the worst-case location error in component-
based localization by robust component merging. They pro-
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posed efficient algorithm to achieve error-bounded component
mergence for four special scenarios. Existing practical indoor
localization approaches also proposed dynamic time warping
method [22] and radio signal strength based voronoi method
[21] for conducting robust localization to dealing with ranging
and radio signal strength noises.

But, due to error accumulation in sequential localization,
how to guarantee the localization error in a component to
be small is still challenging. It is highly dependent on the
component topology. The local error in a component may
include both discontinuous flipping errors and continuous
deforming errors. To tackle error accumulation in component
merging, methods are needed to evaluate the reliability of the
realized component. Efficient metrics to evaluate the trustwor-
thy of components and efficient methods to avoid the error
accumulation are highly desired.

This paper presents novel quantitative metrics to evaluate
the risk of flip ambiguity and the sensitivity of local deforming
of a realized component under noises, and efficient algorithm
to avoid error accumulation by utilizing the proposed quanti-
tative metrics. The main contributions are in three aspects:

1) For a generated rigid component under noises, efficient
method was proposed to find possible number of flip ambigui-
ties. MInimal sepaRator that are neaRly cOllineaR (MIRROR)
is proposed as the potential cause of flip ambiguity. Each
MIRROR is modeled by a band for noise tolerance, which
indicates the nearly collinear vertex separator of the graph.
Efficient algorithms are proposed to detect the MIRRORs. The
number of MIRRORs indicates the number of possible flip
ambiguities.

2) The sensitivity of location deforming regarding to rang-
ing noises is investigated by perturbation analysis. A novel
Ranging Sensitivity Matrix (RSM) is proposed, which builds a
linear equation between the location perturbation of nodes and
the ranging noises. The condition number of RSM indicates
the sensitivity of the graph’s local deforming regarding to the
ranging noises.

3) By integration of the flip ambiguity and the local de-
forming sensitivity metrics, a Robust Component Generation
and Realization (RCGR) algorithm is developed. It realizes
components selectively based on trustworthy to reduce error
accumulation. RCGR is implemented and verified by simula-
tions. It forms more robust components than state-of-the-art
method, leading to better location accuracy, which is nearly
comparable to the centralized approach.

The rest sections of this paper are organized as following.
The preliminaries are introduced in Section II. Flip ambigu-
ity analysis is presented in Section III. Sensitivity of local
deforming is analyzed in Section IV. RCGR is introduced in
Section V. Simulation results are presented in Section VI and
conclusion with remarks are presented in Section VII.

II. PRELIMINARY

A. Terminology

The network to be localized is described by a graph
G = (V,E), where each vertex vi ∈ V denotes a node

and each undirected edge (i, j) ∈ E stands for a distance
measurement between two nodes vi and vj . The measured
distance is denoted by di,j . Distance between i and j can be
measured if di,j < R, i.e., the maximum ranging distance. No
specific distribution is assumed to the ranging noises, but we
can assume the measurement noises have high probability to
be smaller than an upper bound C.

A small portion of nodes have calibrated locations, which
are anchors, denoted as {v1, v2, · · · , vm}. Distances among
all anchors are perfectly known without noise. The other n−
m nodes are ordinary nodes to be localized. The estimated
location of nodes are denoted by {pi, i = m+1, · · · , n}. The
problem is to estimate the locations of the ordinary nodes, so
that the distances among all the vertexes best match the noisy
distance measurements.

B. Network Localization Approaches

We briefly review the component-based localization meth-
ods, and the approaches for localization robustness.

1) Component-based Localization: Component-based lo-
calization contains three steps: component generation, com-
ponent realization, and component merging[14][15].

1) The component generation is to partition the network
into a set of rigid components. Each component is
initialized by a triangle (not necessarily to be anchors),
which initializes a local coordinate system. Then other
nodes are added if there are two edges connecting the
node to the component.

2) Component realization localizes nodes in the component
sequentially by trilateration or bilateration. It keeps
multiple realization candidates of the component if the
realization solution is not unique.

3) Component merging is to merge the components to one
coordinate system, by the anchors in each component
and the links between the components. It treats each
component as a rigid body merge them by transition
and rotation[15]. So nodes in all components can be
localized. As anchors integrate in the mergence process,
which may make two unrealizable components be a
realizable one.

The advantage of component-based approach is that it
has capability to localize unlocalizable nodes in trilateration-
based localization. As an example shown in Fig.1. The black
nodes are anchors. No nodes can be localized by trilateration
because any node has at most two neighboring anchor. But the
component can be localized as a whole, since there are three
anchors to locate this rigid component.

C. Approaches To Deal With Noises

Measurement noises are inevitable in real applications.
Tackling noises is critical problem in network localization.

1) In Node-based Approach: Moore et al. [10] proposed
robust four-vertex quadrilateral as the smallest possible sub-
graph that can avoid flip ambiguity error under noise, so robust
quadrilateral is selected for trilateration in each step. Yang et
al. [18] proposed quality of trilateration. The trilaterations with



Fig. 1. Component-based localization vs. node-
based localization
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Fig. 2. Discontinous ambiguous regions caused by
noises
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Fig. 3. Continuous ambiguous region caused by
noises

the highest quality should be selected in each step. But note
that the error accumulations may still cause large error in the
later steps.

2) Dealing Noises in Component-based Localization: [13]
studied robust component merging problem under noises.
They characterized four patterns in which components can
be robustly merged. But an assumption of their approach is
that the node locations in each component are trustworthy
under noises. This is hard to satisfy in practice because of
the error accumulation in sequentially localizing the nodes in
the components.

D. Type of Errors

In a rigid graph, ranging noises may cause either discontin-
uous or continuous localization errors. Since the upper bound
of noise is denoted by C, the location of vi should satisfy the
following constraints:

∀j, if ∃(i, j) ∈ E
s.t− C ≤ ‖xi − xj‖2 − di,j ≤ C

(1)

That is, xi is in the intersected region of the annulus
regions centered at {xj ,∀(i, j) ∈ E}, with radius in the range
[di,j − C, di,j + C]. This region is called ambiguous region
(AR) of xi. Fig.2 and Fig.3 give examples to illustrate how
the estimation results may be blurred by noise.

In Fig.2, when the reference points are nearly on a common
line, the ambiguous region is separated into two isolated
sub-regions. In this case, if x′ is the estimated location by
the noisy measurement and x is the true location, there is
discontinuous location error between x and x′, which is called
flip ambiguity[7].

In Fig.3, when the reference points are very close comparing
to the ranging distance, the ambiguous region is long and
narrow. The true state x may be deformed to x′, which is
called “continuous local deforming error”. For the worst-case
localization error of x to be bounded, we need to avoid the
flip ambiguity and to avoid large local deforming error.

E. Error Accumulation

When the component is generated sequentially, error accu-
mulation is a serious problem, which may cause later located
node suffer huge localization error.

Fig.4 shows an example of the impact of error accumulation.
Fig.4a) shows true positions of five nodes and their inter-node

distance measurements. Suppose we have known the locations
of a, b, c as reference points. Fig.4b) shows the result when d is
trilaterated by a, b, c in the first step and e is trilaterated by a,
b, c, d in the second step. Since d has little triangulation error,
the result of e also has small location error. Fig.4c) shows the
result when e is calculated firstly and d is calculated secondly.
Since the location error of e is large, the location result of d
is also large caused by the location error of e.

Therefore, to reduce the accumulated error in the component
generation, we should select the nodes with small risk of error
with high priority. At the same time, in component mergence
process, the components with low risk of flip ambiguity and
small local deforming error should be chosen with higher
priority. In the following two sections, novel methodologies to
evaluate the risk of flip ambiguity and the sensitivity of local
deforming for a given rigid graph component are presented,
which are foundation for robust network localization methods.

III. RISK OF FLIP AMBIGUITY

Considering a generated rigid graph component under noise,
we consider the problem to evaluate its risk of flip ambiguity.
The locations of some ordinary nodes may flip together, i.e.,
a subgraph may flip. The risk of flip should be evaluated on
the graph level. Therefore, we propose an novel and efficient
method, which is to find all the MInimal sepaRators that are
neaRly cOllineaR (MIRROR) in the graph. A subgraph may
flip over a MIRROR to a wrong position. The total number
of MIRRORs that can be found in the graph indicates the
possible number of flip ambiguities of the considered graph.

A minimal separator S of a graph G, is a subset of vertexes
whose removal separates G into at least two disconnected
components. A separator is said to be a minimal separator
if the removal of any vertex in S will cause S no longer
a separator[8]. Listing all minimal separators is one of the
fundamental enumeration problem in graph theory, which
has great practical importance in network reliability analysis
[8][11].

A. MIRRORs Under Noise

First, we look at an example to understand the problem. In
a rigid graph component shown in Fig.5(a), we check where
flip ambiguity can happen. Since noises are presenting, the
generated locations may vary in a small neighborhood when
noise values change. Therefore, as shown in Fig.5(b), we



Fig. 4. (a) true locations of five nodes and their inter-node distances. (b) d
is generated in the first step and e is in the second step; (c) e is generated in
the first step and d is in the second step

can find three potential MIRRORs, i.e., {1, 9, 5}, {4, 1, 8},
{2, 1, 6}, across which the graph can flip. Note that {8, 6}
is also a minimum vertex separator, but because 7 is nearly
collinear with {8, 6} and they are on the boarder of the
graph, the flip of the whole graph over {6, 7, 8} is a rigid
transformation. So {8, 6} should not be counted as a MIRROR.

Therefore, an efficient algorithm is proposed to find MIR-
RORs under noise. It can be seen that, there are two conditions
to detect a MIRROR: 1) the vertexes on a MIRROR are
nearly collinear under noise; and 2) the removal of them
can separate the graph into two disconnected components.
Traditional methods that find the minimal vertex separators
by graph theory[3] did not consider the collinear property nor
the noise impacts. In this paper, each noisy, nearly collinear
vertex separator is modeled by a band, whose width indicates
the tolerance to the noises. Efficient algorithm is proposed to
find the bands, whose removal can separate the graph, which
are the detected MIRRORs.

B. MIRROR Finding Algorithm

1) Band Generation and Mergence: Note that every two
points can determine a line segment. The n nodes with known
coordinates can form n(n − 1)/2 line segments. Since the
nodes’ locations are noisy, the width of the line segments
is increased to convert the line to a band. Each band Bi is
centered on the line, determined by the coordinates of the
firstly added two nodes, and has width 2c. c indicates the
location error range and the center line is denoted by l(Bi).
Then vertexes covered by a band are nearly collinear and will
be merged into one band. After band generation and mergence,
each band is charactered by a set of nearly collinear vertexes,
i.e., Bi = vi,1, ...vi,|Bi|.

2) Verifying whether a band is a MIRROR: For any band,
we evaluate whether it is a separator. We treat the band as a cut
by removing the vertexes in the band and the edges connected
to the removed vertexes. The other nodes that are not in the
band may either lie on one side of the band, or lie on two
sides of the band. The band is a MIRROR if the following
three conditions are all satisfied:

Definition 1 (MIRROR Detection Conditons):
1) The other nodes lie on two sides of the band.
2) There is no edge connecting the two separated groups.
3) At least one separated group does not have an anchor.
3) Example: An example is given to illustrate these con-

ditions. The three MIRRORs found in graph of Fig.5(a) are
illustrated by the three bands in Fig.5(c) . It can be seen that
by removing the vertexes in each band, the graph is separated

WWW.GETWHERE.NETFig. 5. (a) a rigid component generated by noisy measurements. (b) mirrors
formed by nearly collinear vertex cuts.

into two disconnected groups. There are no edges connecting
the two groups and no anchor exists in each group. Fig.5(d)
shows two examples when the band is not a MIRROR. For
the band characterized by {3, 1, 8}, its removal cannot separate
the graph, since {2} is connected to the graph by {4}. The
band characterized by {6, 7, 8} is not a MIRROR, because all
the other nodes lie on one side of it.

C. Algorithm Details and Analysis

1) Band Generation and Mergence Algorithm: Let B =
{B1, · · · , Bk} denote the set of k detected bands. Let N (Bi)
return all the nodes in the band Bi, i.e., nodes covered by
Bi. Let Bc(i) return the set of bands containing node i. Let
d(vi, Bj) indicate the distance from a node vi to a band Bj ,
i.e., the minimum distance from the point vi to the center line
l(Bj). Then for a node vj , the minimum distance from vj to
any band that covers vi can be expressed as:

[dj,bi , bi] = find min dis(vj , Bc(i)) (2)

where bi is the returned band covering vi and it is closest to
vj . dj,bi is the returned minimum distance from vj to bi. Then
the algorithm of band generation and mergence is shown in
Algorithm 1 .

In line 7, if the distance from vj to all bands covering vi is
larger than c, {vi, vj} is generated as a new band. Otherwise
vj is added into the closest band covering vi, i.e., vj is
merged into Bbi . We can see the worst case complexity of the
algorithm is O(n4), for the worst case complexity of finding
bands covering j is O(n2) where n is the number of nodes.

2) MIRROR Verification Algorithm: Given the generated
bands B, the algorithm verifies whether each band Bi is a
MIRROR by removing N (Bi) and the edges connected to
N (Bi). It checks whether the remaining graph satisfies the
MIRROR detection conditions.

Since the center line l(Bi) of band Bi is characterized by the
firstly added two nodes. Let’s denote the coordinates of these
two nodes ui and wi respectively. Considering another node



Algorithm 1 Band Generation and Mergence
Require: G = (V,E) and {pi, i = 1, · · · , n} the node

locations
Ensure: B the set of detected bands.

1: Initialize B = ∅; k = 0
2: for i = 1 : 1 : n do
3: for j = i+ 1 : 1 : n do
4: Bc(i) = find bands covering i.
5: [dj,bi , bi] = find min dis(vj , Bc(i))
6: if B == ∅ or dj,bi > c then
7: k = k + 1; Bk = {vi, vj}, B = B ∪Bk
8: else
9: Bbi = Bbi ∪ vj

10: end if
11: end for
12: end for

with coordinates pj . The following sign function indicates the
relative position between pj and l(Bi):

p=(wi,x−ui,x)(pj,y−ui,y)−(wi,y−ui,y)(pj,x − ui,x) (3)

If p = 0, pj is on the line. sign(p) = +1 means pj is
on one side, and sign(p) = −1, if pj is on the other side.
By this method, condition 1) can be efficiently checked; and
then condition 2) and condition 3) can be checked easily. The
algorithm details are given in Algorithm2.

Algorithm 2 MIRROR Detection
Require: G = (V,E), {pi, i = 1, · · · , n}, and B
Ensure: M : indicator of whether each Bi is a MIRROR

1: Initialize M = Ik as a length-k one vector.
2: for i = 1 : 1 : k do
3: for j ∈ V \Bi do
4: calculate the sign of pj by (3) .
5: end for
6: Let P+, P− be the point set of + (−) signs;
7: if |P + | == 0 or |P − | == 0 then
8: Mi = 0;
9: else if ∀i ∈ P+ and j ∈ P−, ∃ei,j 6= 0 then

10: Mi = 0;
11: else if both P+ and P− contain anchors then
12: Mi = 0;
13: end if
14: end for
15: return M and the zero norm of M , i.e., ||M ||0;

The algorithm initializes M as an all one vector with the
same length to B, and assigns Mi to zero if any MIRROR
detection condition is not satisfied for Bi. The sum of re-
maining ones in M , indicated by ||M ||0 gives the number
of detected MIRRORs. Since the most possible number of
bands is n(n−1)/2, the worst case complexity of Algorithm2
is O(n4), because for each band we need to check all links
between the separated point sets. So the number of possible
flip ambiguities of a given graph is indicated by ||M ||0, i.e.,
the detected number of possible MIRRORs.

IV. SEVERITY OF LOCAL DEFORMING

In addition to the discontinuous deforming, continuous
local deforming may also cause large error when noises are
presenting. As shown in Fig.3, due to topology illness of the
graph, the realized location x may derivate to x′ due to small
ranging noise. But evaluating the local deforming severity of
a graph by geometric-based method is not efficient. It involves
to solve a large set of quadratic inequality functions as stated
in (1) to characterize the feasible regions of each node. Note
that the feasible region of a node can be concave, which makes
directly characterizing the feasible regions difficult.

A. Overview and Notations

In this section, an efficient matrix perturbation-based
method is proposed to evaluate the local deforming sensitivity
of nodes regarding to ranging noises. It is derived to use only
the locations of the nodes and the edge lengths to construct a
ranging sensitivity matrix (RSM), and the condition number [4]
of the RSM can well predict the sensitivity of local deforming
over the ranging noise. Previous results investigated stiffness
matrix to evaluate the structure’s resistance to noise[24], which
considers the impacts of node movements. But it is the first
time that RSM is proposed for evaluating graph robustness
regarding to the ranging noises.

Since the edge lengths are noisy, the generated locations
of nodes may deviate from the true locations. What we are
interested is how serious may the deviation be due to the
ranging noise. We present a perturbation-based analysis to
evaluate how the variations of the edge lengths within a noise
range may change the possible locations of the ordinary nodes.

Let’s consider the generated graph G = (V,E). Suppose
there are m anchors in the component and n − m ordinary
nodes. Recall that the generated locations of these nodes are
denoted by {pi ∈ <2, i = 1, · · · , n}. The observed edge
lengths are denoted by {di,j ∈ <, (i, j) ∈ E}. Let vector
ẽi,j = pi−pj ; Then di,j = ||ẽi,j ||2. The perturbation of edge
lengths caused by noises are denoted by {∆di,j , (i, j) ∈ E},
and the perturbations of nodes’ locations caused by edge
length varations are denoted by {∆pi, i ∈ {1, · · · , n}}. The
new locations of nodes are denoted by p′i = pi + ∆pi. The
new edge vector is denoted by ẽ′i,j = p′i − p′j . Note that
the locations of the anchors are perfectly known and {∆pi
is always zero for i = {1, · · · ,m}. So we evaluate whether
the potential edge length variations will severely change the
locations of the ordinary nodes.

B. Location’s Sensitivity to Edge Length Perturbations

Let’s firstly consider one edge di,j and its two end vertexes
pi and pj . If we change the length of di,j by a sufficiently
small amount ∆di,j , the new locations of i, j change to p′i,
p′j . Let’s investigate the relationship among ∆di,j and ∆pi
and ∆pj .

As shown in Fig.6(a), suppose k, j are anchors, and i is an
ordinary node. pi is the original location before edge length
perturbation and p′i is the deviated location of i driven by
the edge length variations of di,j and di,k. ||∆pi||2 is the
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Fig. 6. Example of node location perturbation subject to edge length changes.

derivated distance of i. Let ρi ∈ < be the projected length of
||∆pi||2 onto the direction of ẽi,j . By linear projection, it can
be expressed as:

ρi =
〈ẽi,j ,∆pi〉
‖ẽi,j‖2 ‖∆pi‖2

‖∆pi‖2 =
〈ẽi,j ,∆pi〉

di,j
(4)

where 〈ẽi,j ,∆pi〉 is the inner product of ẽi,j and ∆pi.
Fig.6(a) illustrates the geometric relationship between ρi

and ∆di,j . Since the perturbation is small, the angle 6 p′ipjpi
is small. So:

∆di,j ≈ ρi =
〈ẽi,j ,∆pi〉

di,j
(5)

This sets up a linear relationship between ∆di,j and ∆pi. Fur-
ther, if both i, j are ordinary nodes, the geometric relationship
is shown in Fig.6(b). Since ‖∆pi‖2 and ‖∆pj‖2 are small,
ẽi,j and ẽ′i,j are nearly parallel. So:

∆di,j ≈ ρi + ρj =
〈ẽi,j ,∆pi〉

di,j
+
〈ẽj,i,∆pj〉

di,j
(6)

Note that ẽi,j = pi − pj = −ẽj,i, so (6) can be rewritten as

∆di,j =

〈
ẽi,j
di,j

,∆pi

〉
−
〈

ẽi,j
di,j

,∆pj

〉
(7)

The fact behind(5) (7) is that, under small perturbation of
∆di,j , ẽi,j and ẽ′i,j are always nearly parallel, which also
holds in more general cases. So the projection of ||∆pi||2
onto ẽ′i,j can be approximated by the projection onto ẽi,j ,
which can be calculated by the original coordinates of point i
and j. Therefore, for a graph containing |E| perturbable edges,
we can get |E| equations similar to (7). Note that they don’t
include edges among anchors, since their lengths are constant.

Let ∆pi,x and ∆pi,y be the deviations of ∆pi in the x−
and y− directions respectively, and let pi,x, pi,y be the x− and
y− coordinates of pi. The inner product can then be expended
and the |E| equations can be written as the equation shown in
Fig.7.
C. Ranging Sensitivity Matrix

The coefficient matrix has |E| rows and 2n columns. Each
row is corresponding to an edge. Every two columns 2i − 1,
2i are corresponding to the x and y coordinates of a vertex i.
Since each edge has only two vertexes, there are at most four
non-zero entries in each row. Suppose the kth row is corre-
sponding to ∆di,j , if neither i nor j is an anchor, there are:
ak,2i−1 =

pi,x−pj,x
di,j

; ak,2i =
pi,y−pj,y
di,j

; ak,2j−1 = −pi,x−pj,xdi,j
;

ak,2j = −pi,y−pj,ydi,j
; and ak,v = 0, if v 6= {2i − 1, 2i, 2j −

1, 2j}. If i (or j) is an anchor, ak,2i = 0, ak,2i−1 = 0,
(ak,2j = 0, ak,2j−1 = 0) correspondingly. So given the
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Fig. 7. Equation generated by perturbation analysis of |E| edges

generated graph with node locations, this sparse coefficient
matrix can be calculated efficiently.

Note that the location perturbations of the anchors are
always zero, i.e., {∆pi = 0 for i = {1, · · · ,m}. Therefore,
we can partition the coefficient matrix into two parts: B and
A. The first part B contains contains 2m columns and the
second part A contains 2(n−m) columns. Then:

∆D = [B,A]

[
0
∆P

]
= A ·∆P (8)

where ∆D is the vector of edge length perturbation and ∆P
is the location perturbations of the ordinary nodes.

Definition 2 (Ranging Sensitivity Matirx: RSM): The coef-
ficient matrix A derived from (8), which has |E| rows and
2(n−m) colunms is defined as the ranging sensitivity matrix
(RSM), which represents the linear mapping from the node
location perturbation to the edge length perturbation.

D. Sensitivity Indicated by Condition Number of RSM

Recall the linear algebra, for a linear equation Ax = b,
the condition number of A, denoted by κ(A) indicates the
maximum ratio of the relative error in x divided by the relative
error in b [4]. It measures how much the output value of the
equation x can be changed for a small change in the input
b. So in our problem, we can evaluate the sensitivity of ∆P
over ∆D based on the condition number of A. We first look
at a property of A:

Theorem 1: If the under investigating graph is infinitesimal
locally rigid, and there are m ≥ 2 non-collocated anchors,
then A has full rank 2(n−m).

Proof 1: Suppose A has rank less than 2(n − m), given
a ∆D, there will be infinite number of solutions of ∆P.
This contradicts with the condition that the under investigation
graph is infinitesimal locally rigid and have been sticked by
the m ≥ 2 anchors at the 2D plane (without the freedom
of continuous transition and rotation). So A has full rank
2(n−m) when m ≥ 2.

In graph generation in 2D space, we always need to name
at least two anchors to define the local coordinate system.
So m ≥ 2 in practice. Then by SVD decompostion of A,
we can get 2(n −m) number of non-zero eigenvalues of A,
denoted by σ1(A) ≥ σ2(A) ≥ · · · ≥ σ2(n−m)(A), which are
sorted in descending order. Then the condition number of A
can be calculated as following:



Fig. 8. (a) an example topology. (b) a topology which is more sensitive to
ranging error.

Definition 3 (Condition Number of A): κ(A) = σ1(A)
σ2(n−m)(A)

is defined as the condition number of A, which measures the
sensitivity of ∆P over ∆D.
κ(A) is an indicator of the location robustness of nodes

to the ranging noises. When κ(A) is large, it means A is ill
conditioned. Small changes in ∆D may cause large derivation
of ∆P . When κ(A) is small, the equation is well conditioned.
Small changes of ∆D will not much deviate ∆P, which
means the realized locations of nodes are robust to the ranging
noises.

E. Local Deforming Sensitivity Evaluation Algorithm

Given a generated graph, the sensitivity of local deforming
to ranging noises can therefore be efficiently evaluated. Note
that the most complex step is to calculate the eigenvalues,
which has complexity O(|E| (2(n−m))

2
). So the worst-case

complexity is O(n4), because there can be at most n(n−1)/2
edges.

Fig.8 gives two example graphs to illustrate their condition
numbers for better understanding the graph’s sensitivity to the
ranging noises. In the graphs, the nodes at (−20, 5), (−10, 5)
are used as anchors. By evaluating κ(A), the condition number
of the graph in Fig.8(a) is 13.68, while the condition number of
the graph in Fig.8(b) is 24.81. This coincides with our general
knowledge that the right graph is more sensitive to ranging
noises.

V. ROBUST COMPONENT LOCALIZATION

Based on the above analysis of risk of flip ambiguity and
sensitivity of local deforming, efficient scheme for robust
component-based localization can be designed. Given the
observed distance matrix D among nodes, traditionally, com-
ponent generation is to find rigid components to partition the
graph; component realization realizes each rigid component.
A rigid component is realized in a local coordinate system and
may have finite number of realization candidates. Component
mergence is to merge the candidate realizations of components
based on the links among the components to finally realize
the graph, if the graph is uniquely localizable[1]. The flow
of the traditional component-based localization is shown in
Fig.9(b). An example of the component generation and real-
ization is shown in Fig.9(a). Two components are generated
from the distance matrix. It can be seen that every node in
one component does not have two links connected to the
other component. The second component has two candidate
realizations because it may have a flip ambiguity.

The robust component mergence against noise was investi-
gated in [13]. Therefore, this paper focuses on how to generate
robust components, in which, the candidate locations of nodes

C

C ,

C ,

Fig. 9. (a) An example of component generation and realization. (b) Working
flow of component-based localization.

are robust against noise. It will be designed based on the flip
risk and RSM condition number evaluation.

A. Robust Component Generation and Realization (RCGR)

The evaluations of flipping risk and local deforming sen-
sitivity are integrated into the component generation and
realization process. The overall routine is that:

1) Component Generation: The set of components C is
initialized as ∅. Then from distance matrix D, we firstly select
three anchors with robust topology to initialize a component
C1, and then find nodes that have at least two edges connected
to C1 to expand C1. The process repeats to add node to C1

until no other nodes having two links with C1. The heuristic
method to select the initial triangle is to find three vertex in
G \ C, such that

{vi, vj , vk} = arg max
i,j,k
{di,j · di,k · dj,k} (9)

because a large equilateral triangle is robust to both flip and
local deforming errors.

2) Robust Realization: Node locations in C1 are realized
sequentially. The realized node set R1 starts from the anchors.
The remaining node in C1 with the smallest RSM condition
number will be realized firstly, and be added into R1. The
process repeats to realize the node with the smallest RSM
condition number one per time and adds it to R1. The process
stops when the condition number of all the remaining nodes
are larger than a threshold.

3) Component Refinement to Exclude Unreliable Nodes:
The remaining unrealized nodes in C1 will be excluded from
C1 to be returned to G \ C. C1 equals only to R1. Then
MIRRORs are found in the realization of R1 to list all possible
location candidates of {L(C1)}.

4) The Recursion: In G\C, another robust triangle will be
selected as anchors, to generate C2, and the process repeats
as from 1) to 3). The overall process repeats until no triangles
can be found in G\C .

B. The RCGR Algorithm

The algorithm flow is given in Algorithm3. Line 3 to 6
are for component generation; line 7 to 14 robustly realize the
nodes in the component. In line 15 to 16, the nodes that cannot
be robustly realized will be excluded from the component.
In line 17, candidate realizations are generated by finding
MIRRORs.
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Algorithm 3 RCGR Algorithm
Require: The graph G = (V,E), Distance matrix D.
Ensure: Components C = {C1, · · · , CK}; Realization candidates

for components {{L(C1)}, · · · , {L(CK)}}
1: Initialize C = ∅; k = 1; not grouped part Uk = G\C;
2: while Uk contains triangle do
3: Find a robust triangle as anchors to initialize Ck;
4: while (existing a node u in Uk\Ck having two edges connected

to nodes in Ck) do
5: Ck = Ck ∪ u;
6: end while
7: In Ck, add anchors to the realized node set Rk;
8: while (Rk having unrealized neighbors in Ck) do
9: for u be a neighbor of Rk (denoted by N(Rk)) do

10: Generate location of u by Rk and evaluate κ(u).
11: end for
12: if κ(uo) is the smallest in N(R) and ≤ Tκ then
13: Rk = Rk ∪ uo; Save location L(Rk).
14: end if
15: if min{κ(u), u ∈ N(R)} > Tκ then
16: Break the while loop of realization and exclude unreal-

izable nodes from Ck. Ck=Rk, Uk=Uk\Rk.
17: C = C ∪Ck. Find MIRRORs in L(Rk) to generate all

realization candidates for Ck.
18: end if
19: end while
20: k=k+1;
21: end while

VI. SIMULATION RESULTS

Simulations were conducted to evaluate the effectiveness
of the proposed metrics and algorithms. Since the number
of flipping ambiguity and the sensitivity of local deforming
are mainly used in the RCGR algorithm, we focus on their
impacts on the component generation and the contributions to
the location accuracy improvement.

A. Experiment Settings

We evaluate our proposed algorithm by comparing with two
state-of-the-art network localization algorithms. 1) Semidefi-
nite programming (SDP)-based localization algorithm in [2],
which used SDP-based approach with regularization to solve
the network localizaiton problem. Since it uses centralized
optimization, its location accuracy can be thought as the
upper bound that the component-based method can achieve.
2) Component-bAsed Localization aLgorithm (CALL) [14],
which is the state-of-the-art in component-based localization.

In simulation, we generate n nodes uniformly random in an
area of 100(m) ∗ 100(m). The ranging radius r of each node
varies to keep the distance matrix sparse. Based on the distance
matrix, components generation and realization are carried out
by RCGR and CALL respectively and their localizaiton results
are compared with that of SDP-based localization.

B. Robust Component Generation

For a network of 30 nodes, with ranging radius 30m, each
edge di,j is affected by multiplicative ranging noise, i.e.,
ni,j = di,j(1 + L1/10), where L1 ∼ N(0, 1). The network
topology is shown in Fig.10. The localization results given
by SDP-based method are shown in Fig.11, which shows
the centralized optimization gives rather accurate location
results. The localization results by CALL algorithm are shown
in Fig.12. The nodes are formed into one component and
the localization results of the nodes comparing to their true
locations are shown. The true locations are represented by
circles and the estimated locations are by stars. We can see
that the nodes far from the anchors, which are localized later
in the sequential localizing process suffer large accumulated
errors.

The location results and the formed components by RCGR
are shown in Fig.13. RCGR adaptively organizes the graph
into two components by online evaluating the component’s
local deforming sensitivity. The threshold for κ(A) was set
to 4 in experiments. The locations of the nodes in the two
components are accurately calculated via mergence by the
several links between the two rigid components[13]. It can
be seen the accuracy is nearly comparable to that of the
centralized approach. By extensive simulations, we find RCGR
can always adaptively organize components based on the
evaluated robustness of the components. It forms smaller
but robust components while keeping relative good localizing
accuracy in each formed component.

C. Location Accuracy Improvement

By varying node number from 30 to 50, we generate random
networks for 30 times, and run the localization algorithms
in each network. In each experiment, the location error of
each node is evaluated by the distance from its true location
to the estimated location. The cumulative error distribution
of the location errors of nodes in the thirty experiments are
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summarized in Fig.14. We can see the location accuracy of
RCGR is much better than CALL and only a little worse than
SDP. This shows the effectiveness of RCGR.

We also evaluate the localization performances for networks
regarding to different average node degrees. When the average
node degree varies from 8 to 18, the average localization errors
of the three algorithms are compared in Fig.15. It can be
seen that, as node degrees increase, the location accuracies
of all the three algorithms become better. This is because in
each step each node can be trilaterized by many localized
nodes. RCGR shows better performance than CALL, and SDP
has the best accuracy. But note that, as the average degree
increases, the accuracy performance of RCGR drops a little bit.
This is because larger components are formed due to denser
edge connections, which increases the error accumulation.
Experiments in larger scale networks show the similar results,
which will be not detailed for space limitation.

VII. CONCLUSION

This paper has presented two metrics to evaluate the ro-
bustness of a rigid graph under ranging noises: 1) a MIRROR
detection-based method to evaluate the possible number of flip
ambiguities in a rigid graph under ranging noises; 2) a method
to calculate the condition number of Ranging Sensitivity
Matrix to evaluate the graph’s sensitivity of local deforming
regarding to ranging noises. Based on these two metrics, a ro-
bust component generation and realization (RCGR) algorithm
was proposed, which can form robust components adaptively
based on the online component robustness evaluation and can
improve the accuracy of component-based localization. These
results can be further extended into network localization in 3D
space . The robustness metrics may also be exploited to other
problems that an be modeled by graph realization under noise,
such as robot group formation. It can also be investigated in
Simultaneously Locating and Mapping (SLAM) for dealing
with error accumulation while keeping low computing cost.
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