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Abstract—The paper examines the development of production 
systems from automated to data analysis-supported process 
control. In current concepts, process optimization is carried out 
by data analysis with the help of a decision support system after 
the production process. Prescriptive automation envisages 
controlling the process before and autonomously on the basis of a 
prescriptive analytics model. The development of an IT 
architecture is identified as an essential part of the overall 
concept. On the basis of expert interviews and current literature 
reviews, the question is answered, which requirements an IT 
architecture for prescriptive automation has to fulfill. These 
requirements are opposed to solution components with the goal 
of a modular architectural concept. On basis of the requirements 
and therefore needed solution components, a reference 
architecture is identified on the assumption of the data 
processing resources. The main processing components of this 
architecture are a combination of edge and cloud computing. 

Keywords—edge computing; cloud computing; framework; 
industry 4.0; smart manufacturing; internet of things; data 
analytics; prescriptive analytics; prescriptive automation 

I.  INTRODUCTION  
Currently, the control of production facilities follows a 

fixed logic, whereby dependencies and correlations are 
considered on a mostly outdated data basis [1]. Digitalization 
opens up new possibilities to improve decision making with 
up-to-date and comprehensive data. Presently, existing research 
in the field of production control with the help of prescriptive 
analytics mainly deals with general requirements and 
challenges for individual aspects (e.g. data processing) or 
individual technologies (e.g. cloud computing). In addition, the 
extraction of process data for data analysis is often considered, 
but the analysis and optimization takes place after the 
production process in form of a decision support system. 
However, this supporting system still requires a human 
decision maker and a manual executer [2]. In order to eliminate 
this deficit, two requirements must be implemented: 

1. Control prognosis model: An autonomous and 
proactive control of the production process is necessary to 
adapt and optimize the process parameters with the help of 
prescriptive analytics, a so called prescriptive automation. 
Therefore, it is important to know what happens, what will 
happen and how to react proactively and autonomously without 
the human decision maker by the control prognosis model [2]. 

2. Model recalculation: Production conditions usually 
change over time and require an independent adaptation of the 

operative control prognosis model. For this purpose, new 
information has to be gathered continuously of completed 
process executions and the control prognosis model has to be 
newly trained and updated. 

To enable those two requirements, it is necessary to 
develop an integrated framework for the acquisition, 
processing and provision of information for machines and 
objects. However, enabling the targeted use of large amounts 
of data (big data) for operational decision-making processes 
create far-reaching demands on the IT architecture. The main 
processing components of the architecture are a combination of 
edge and cloud computing. Since the authors already 
summarized related work, regarding smart manufacturing with 
prescriptive analytics, this paper won’t expand on the 
details [2]. 

From this point forward, the paper is structured as follows: 
Section II provides an overview of the state of the art. Section 
III is divided into five categories: control, data acquisition, data 
processing, connectivity, and data storage. In these five 
categories, we enumerate the requirements and solution 
components for the IT architecture. In Section IV, all solution 
components are summarized and presented in one architecture. 
Finally, Section V concludes the paper. 

II. STATE OF WORK 

A. Machine control in industry 4.0 
Manufacturing has been shaped by three industrial 

revolutions in the last decades. Currently the production 
environment is facing a further change, known as the fourth 
industrial revolution. The objective is to enable all elements of 
a production facility and supply chain to form a cyber-
physical system by merging physical resources with 
computers and networks [3, 4]. In this way, information 
processes are further linked in order to make production 
systems more intelligent and autonomous using learning 
systems. The aim is to design machines and production 
systems in such a way that they independently adapt their 
procedures to different situations effectively [3]. 

B. Smart Manufacturing 
Smart manufacturing is a concept for industry 4.0-based 

control that aims to advance machine control and use data 
analysis to improve process performance. For this purpose, 
advanced sensor, control, modeling and platform technologies 
can optimize production processes [5, 6]. There is a literature 
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consensus that production systems which implement smart 
manufacturing and which are interconnected are more 
efficient, productive and intelligent than their unconnected 
equivalents [6, 7]. As a result, the industrial internet of things 
(IIoT) and distributed computing are pioneers of smart 
manufacturing [8-10]. As part of smart manufacturing, smart 
control enables intelligent control of production facilities by 
real-time interaction. Once a control execution model has been 
determined, control and optimization methods based on data 
analysis can be applied [8]. 

C. Industrial Internet of Things 
The IIoT, also known as 'industrial internet', is 

characterized by the integration and cooperation of machines, 
analytics and people. The aim is to further link the information 
processes such that objects communicate together beyond 
their physical boundaries and data is collected that previously 
could not be captured [11,12]. In the production context, for 
example, machines, robots, transport systems, workpieces and 
programmable logic controllers (PLC) communicate with each 
other and achieve a higher degree of integration. The 
enormous amount of data enables comprehensive process 
transparency. As a result, manufacturing processes are more 
efficient, costs are reduced and quality is increased by 
adapting the machine procedures to the respective situation [3, 
11, 13]. 

D. Distributed Computing 
Automation systems have only limited possibilities to 

collect, store and analyze a large amount of data in distributed 
environments in real-time. The use of data analytics requires 
computing power which can be provided using the concept of 
distributed computing [14]. 

1) Cloud Computing 
Cloud computing is a concept for ubiquitous on-demand 

network access to a pool of computing resources. These can 
be deployed quickly with minimal management effort and 
include computing power, storage, databases, and software 
[15, 16]. From a security point of view, there are two types, 
private and public clouds. A public cloud describes the service 
of a provider that is freely accessible via the internet. In 
contrast, with an private cloud, companies prefer to operate IT 
services by themselves [17]. 

2) Edge Computing 
The concept of edge computing drives the collection and 

processing of data further into the immediate vicinity of 
physical devices in production. Therefore, industrial PCs are 
implemented in the production environment. This provides 
advantages in terms of autonomy, as such an edge device can 
operate independently of a central system and can make local 
decisions [18-20]. Edge computing also simplifies the 
communication chain and reduces potential sources of error by 
connecting physical assets directly and collecting, analyzing 
and processing data directly. An edge device also enables first 
order operations, such as filtering and aggregating raw data, 
and it can significantly reduce the transport of large amounts 
of raw data to the cloud for further analysis [21]. 
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Figure 1. Three steps of specific IT architecture derivation 

III. REQUIREMENTS AND SOLUTION COMPONENT ANALYSIS 
Enabling the targeted use of data for prescriptive 

automation creates wide-ranging requirements for the IT 
architecture. The definition of the requirements and solutions 
for the architecture are described in the following chapters. 

A. Method 
Knowledge of the requirements is the basis for an overall 

system understanding for a proactive and autonomous control 
of the production process. Therefore, the objective is a 
structured collection of requirements, classified according to 
the main categories relevant for prescriptive automation [2]. In 
order to collect these, the method is based on the V model, as 
shown in Fig. 1. The main categories serve as a starting point. 
From these, more specific requirements are derived regarding 
an IT architecture for prescriptive automation. In a second 
step, solution components are compared with the sub-
requirements. Finally, these components form together a 
reference architecture. 

The collection and preparation of the requirements was 
carried out using two complementary procedures: through 
semi-structured expert interviews as well as through an 
analysis of the defined requirements and solution components 
within the scientific contributions from the literature research.  

B. Requirements and Solution Components for Prescriptive 
Automation 

Based on the semi-structured expert interviews and the 
literature research the sub-requirements of the main categories 
control, data acquisition, data processing, connectivity and 
data storage are listed in detail below. Additionally, the 
requirements are fulfilled by appropriate solution components 
detailed in the following chapters. This corresponds to the first 
two steps of the IT architecture derivation, as shown in Fig. 1. 

 
1) Control 

Requirements and solution components that are assigned 
to the control of the production are considered below. The 
determined data basis is to apply by a suitable application of 
the control prognosis model for an optimized production 
control. 

PROACTIVE PROCESS RESPONSIVENESS 
Requirement: Proactive control of processes to react to 

current states and process deviations must be ensured under 
real-time requirements. 

Solution component: The execution of a control prognosis 
model makes it possible to respond permanently to changes 
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and optimize production. The control by an edge device, an 
industrial PC, is recommended. This device has to be located 
as close as possible to the production process. The spatial 
proximity and performance of the edge device allows low 
latency times to be achieved and production facilities to be 
controlled directly via control outputs. 

CONTROL AUTONOMY 
Requirement: The edge device should be able to execute 

autonomous operations in order to proactively adapt the 
process to the current execution context without human 
intervention. Using data analytics and machine learning 
algorithms, production process relationships are to be 
determined in order to achieve autonomous process adaptation 
and product quality assurance in the event of process 
changes [22].  

Solution component: Based on big data, a model is 
developed and made available in an executable form for 
operative control on the edge device. This control prognosis 
model enables a consideration of decision alternatives and a 
correspondingly optimized decision. A continuous 
recalculation of the model ensures that a changing context is 
taken into account without human interaction and is included 
in the control process [22]. 

CHANGEABILITY CONTROL 
Requirement: Production conditions usually change over 

time and require an independent adjustment of the operational 
control model. This requires the continuous acquisition of new 
knowledge from the collected data of the completed process 
executions in order to make these operationally usable. The 
optimization of the control and thus the self-optimization of 
the production requires that a change of the control 
intelligence is cyclically implemented into the control during 
operation [23, 24]. 

Automating the integration and delivery processes of the 
control prognosis model enables fast, reliable and repeatable 
software deployment. This allows the deployment of the 
model in the production environment with low risk and low 
manual effort. The continuous integration/continuous 
deployment (CI/CD) process provides an approach that 
reduces the risk of software updates in production through a 
high level of automation [25]. 

CONTROL RELIABILITY AND STABILITY 
Requirement: Production safety requires the reliability and 

stability of the control system. The failure of a production 
plant is only tolerable in rare cases, because failures 
significantly reduce the overall equipment effectiveness of a 
plant. However, this can only be achieved through reliable 
operational control. 

Solution component: Based on the resilient software 
design, two factors are decisive for reliability and stability: 
mean time to failure (MTTF) and mean time to repair 
(MTTR). In order to extend the MTTF, three solution modules 
can be shown: Firstly, the control hardware must be based on 
industrial hardware with high availability. Secondly, the 
reliability of the model within the CI/CD process is ensured. 
Thirdly, the controllers are isolated from each other by 
virtualization, so that the failure of one control node does not 

mean a failure of the entire system. MTTR is determined by 
the maintainability of the control system. Two procedures 
must be implemented for this purpose: Processes that must be 
dynamically controlled via operational control must be 
switched off in the event of a malfunction. On the other hand, 
less critical processes can be secured by taking over the 
control from a PLC with a fallback control. This enables a 
further production operation through a defined static process 
execution [22]. 

INDEPENDENCE OF CONTROL HARDWARE 
Requirement: Independence and interoperability of the 

edge device is important for the operational control function. 
This ensures that the control model is not dependent on special 
hardware in order to avoid vendor lock-in, i.e. the binding to a 
hardware system or manufacturer using proprietary 
technologies [26]. 

Solution component: Hardware independence makes it 
possible to guarantee longer availability than with today's 
control platforms [22, 27]. It is recommended to use standard 
hardware in combination with virtualized software execution. 
Under the general condition of interoperability, docker 
containers makes it easy to deploy software on an edge device 
[23, 24]. 

PROCESS AND CONTROL VISUALIZATION 
Requirement: The visualization and communication of the 

implemented optimizations is important for the notification of 
employees and can be elementary for the acceptance of an 
autonomous system by the employees [5]. 

Solution component: For visualization, an HMI must 
usually be implemented close to the production system and 
connected to the edge device. If necessary, the functionality of 
the operational control can also be checked with the aid of an 
HMI and, in special cases, instructions can be given to a 
machine operator or maintenance personnel. [21, 28, 29]. 

 
2) Data acquisition 

Requirements and solution components that are assigned 
to the data acquisition are considered in the following. It is 
essential to have production data available in order to identify 
errors and make dynamic decisions to correct them in the 
production process. 

DATA AVAILIABILITY 
Requirement: Continuous data availability ensures a 

consistent process transparency. Operationally critical as well 
as non-critical process and machine data have to be collected 
continuously in order to be able to convert each data record 
into a comprehensive historical and complete data basis [30]. 

Solution component: A short-term in-buffering of raw data 
serves to ensure data continuity and has to be implemented 
especially for cross-network data transfer. The location of the 
buffer must be selected centrally in the edge device and close 
to the data source [31].  
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TABLE I. REQUIRED DATA TYPES FOR PROCESSING CATEGORIES [37] 
 

Use case 
Datatype 

MES-
data 

Process 
data 

Machine 
data 

Quality 
data 

Logistic 
data 

Defect detection and 
prevention 

 � �   

Condition 
monitoring 
production process 

 � � �  

Proactive control of 
the production 

� � � � � 

Model recalculation � � � � � 

COMPREHENSIVE PROCESS TRANSPARENCY 
Requirement: A comprehensive digital image of the 

production is required. A sufficiently large amount of data 
from the field level as well as the procurement of metadata 
from superimposed control systems are decisive for 
comprehensive process transparency [32]. 

Solution component: Different data categories and sources 
captures production as a whole, as shown in Table I. 
Depending on the application or processing type, five different 
data types may be used [32]. 

 
3) Data processing 

Requirements and solution components assigned to data 
processing are considered in the following. Collected and 
stored data must be processed in the form of big data for 
model recalculation using data analytics and machine learning 
algorithms [17, 22]. 

SCALABILITY MODELING PERFORMANCE 
Requirement: The application of data analytics and 

machine learning algorithms on the basis of the collected 
production data depends on the processing effort and the 
development of future resource requirements. For this 
purpose, an appropriate processing resource is required 
[17, 22]. 

Solution component: Cloud computing offers the 
advantage of simple resource scaling. A distinction must be 
made between a private and a public solution. A private cloud 
is advantageous for data with special protection and for a high 
model recalculation cycle on a daily to weekly basis. A public 
cloud is used for non-critical basic protection data and a 
weekly to monthly model update cycle [17]. 

DECOUPLING DATA STREAM AND PROCESSING LOGIC 
Requirement: Connecting a variety of real-time data 

sources to a cloud requires centralized data capture to ensure 
efficient and scalable connections between local production 
and the cloud as the data processing and model recalculation 
system. Decoupling the data stream from the processing logic 
is essential to ensure system robustness and data processing 
performance [34, 35]. 

Solution component: An important feature of a service-
orientated architecture (SOA) are separate modules that are 
coupled with each other via a broker. For example, if a service 
does not meet its response times, the broker can buffer the 
requests. Therefore an Apache Kafka message broker is a 
robust and widely used publish/subscribe (pub/sub) system 

that is designed for high performance in terms of message 
throughput and latency [35-37]. 

 
4) Connectivity 

Requirements and solution components assigned to 
connectivity are considered below. Connectivity is beside 
control the central requirement category, since prescriptive 
automation requires machines, sensors and processing units to 
be connected and a data exchange via a variety of 
communication channels. 

SCALABILITY AND INTEROPERABILITY 
Requirement: Prescriptive automation requires a simple 

scalability of the IT architecture in order to adapt the ongoing 
interconnection and thus increasing data load with the least 
possible invasive methods. In addition, a growing number of 
different devices must be integrated through an interoperable 
architecture [5]. 

Solution component: A scalable architecture enables an 
increasing load by adding new hardware. This allows to 
constantly stabilize latency and data throughout. For this 
purpose, the architecture is a flexible and interoperable 
architecture based on modular components. The SOA is a 
solution for this purpose. This clear separation creates scalable 
system interfaces that make it possible to scale by providing 
an additional instance of the service when the data load is high 
[14, 22]. 

REAL-TIME CAPABILITY OF THE PHYSICAL CONNECTION 
Requirement: To exchange data efficiently, 

communication between production hierarchies must increase 
significantly in order to enable prescriptive automation. The 
design of physical connection of sensors, machines, 
controllers and control systems is interoperable by a broad 
physical connectivity. In addition, it is essential to take real-
time requirements into account. The exchange of the 
operational control function is subject to a hard real-time 
requirement, since exceeding the deadlines can have 
considerable consequences for the control reaction [5, 20]. 

Solution component: The transmission medium and data 
transmission protocol influence significantly the real-time 
capability. Hard real-time requirements usually exist for the 
control of machines, requiring a wired Ethernet connection to 
the production network. A soft real-time requirement allows 
wireless connection via industrial WLAN, but in this case, a 
wired transmission medium is usually preferable. Advantages 
of a wired connection are reliability and bandwidth, especially 
in a latency-restricted environment. In addition, in an 
industrial environment, wireless connections may cause 
interference to devices.[5, 20, 38, 39]. 

VERTICAL AND HORIZONTAL INTEGRATION 
Requirement: A central goal of prescriptive automation is 

the horizontal and vertical integration of production systems 
and resources. Horizontal integration requires the 
interconnection of production systems. Vertical integration 
serves to connect the hierarchical levels of the automation 
pyramid [22, 28, 29]. 

Solution component: Four types of logical subnetworks 
allow a vertical and horizontal integration: sensor, control, 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:39:41 UTC from IEEE Xplore.  Restrictions apply. 



compound and information networks. These networks together 
build a two-dimensional communication network. In the 
vertical direction, data can be transferred from the field level 
to the model recalculation in the cloud. Data is exchanged 
horizontally between the edge devices. The sensor network 
connects external sensors, whereby protocol adapter enable 
the connection with devices using proprietary protocols. The 
control network serves to connect the operative edge device 
indirectly via a PLC or directly to sensors and actuators. The 
compound network connects edge devices (C2C), which 
improves the interoperability of the control systems. In 
addition, the decentralized connection of HMIs and 
manufacturing execution system (MES) to the controller is 
made possible. The information network serves the data 
exchange between edge devices and the cloud [21, 22]. 

INTEROPERABLE FIELD AND CONTROL COMMUNICATION 
Requirement: Field and edge devices must be connected 

by proven industrial standard protocols in order to ensure 
manufacturer-independent interoperability and platform 
independence with regard to communication. In addition, the 
connection of existing devices and systems for the subsequent 
integration of prescriptive automation into a production 
system must be ensured [21, 22]. 

Solution component: A large number of transmission 
protocols exist for communication at field and control level. 
The protocols Open Platform Communications Unified 
Architecture (OPC UA) and Message Queuing Telemetry 
Transport (MQTT) meet the requirements for the 
interoperable connection of edge devices and PLCs. OPC UA 
is characterized by its focus on interoperability and safety 
aspects, its sustainability through extensions and the integrated 
information model according to IEC61131-3. OPC UA 
provides an information model for describing the data of 
complex systems and simplifies the connection. In addition, an 
OPC UA server can be integrated directly into an edge device 
or gateway and offers the option of buffering data for data 
continuity in the event of interruptions. For these reasons, 
OPC UA with its time-sensitive networking (TSN) and 
Pub/Sub extensions is recommended for connecting field 
devices and controllers.28 MQTT, on the other hand, is 
lightweight and optimized for use on devices with limited 
resources, such as low performance, low storage capacity and 
network bandwidths. This enables integration on small and 
simple sensors [40, 41]. 

VERTICAL CONNECTION BETWEEN NETWORKS 
Requirement: Field devices in the production network, the 

edge device and the cloud need to be able to communicate 
bidirectionally across network boundaries. A large number of 
devices must be connected centrally. In addition, compatibility 
with communication protocols must be ensured through the 
use of standard protocols for vertical data transport [41]. 

Solution component: A gateway is a central link that 
enables communication between different systems and 
networks. A gateway can be used between the edge device and 
the cloud for model recalculation as an information gateway. 
MQTT and HTTP are recommended as protocols for vertical 
transport between the edge device and the cloud, as they are 

the most commonly accepted protocols for vertical 
connections. 

DATA PREPROCESSING 
Requirement: Not all data can be sensibly transported via 

the communication channels within and especially outside the 
production network. The data volume may be too large or the 
data content too sensitive. The amount and type of data that 
needs to be transported must therefore be modified by 
preprocessing. The requirement is not to send all generated 
data, but only the required and meaningful data [10, 20, 42]. 

Solution component: Data preprocessing is recommended 
in an edge device. The type of preprocessing should be based 
on the application of simple logic, such as checking a value 
change and invalid data, or on more complex data 
aggregation, e.g. for data reduction. This ensures that only 
meaningful and suitable data is transported [9, 20].2 

 
5) Data storage 

Requirements and solution components assigned to the 
data storage are considered in the following. Due to 
comprehensive process transparency, structured, semi-
structured and unstructured data must be stored and made 
available for application-specific processing [24]. 

OPERATIONAL DATA STORAGE 
Requirement: The edge device unit must be able to 

efficiently store and manage 'active' data of operative 
production via real-time access [24]. 

Solution component: For the edge devices that sometimes 
have limited resources and need to store and use data reliably 
despite disruptions, the solution is a database system. As 
structured data has to be used for the operational control 
function, a structured query language (SQL) database is 
recommended. The literature recommends MySQL and 
PostgreSQL databases for caching metadata for the 
operational control function. An in-memory database realizes 
data storage with very low latency in industrial control 
systems. In this case, MySQL as relational database 
management system (RDBMS) is to be preferred. The storage 
is located in the edge device. After pushing the date to the 
cloud, it is important to have a cleaning process in the server 
to remove the daily data to prevent filling up the local storage 
[24, 43, 44]. 

LONG-TERM DATA STORAGE 
Requirement: A consistent long-term documentation and 

provision of historical data is required to generate knowledge 
about correlations and causes of problems for model 
recalculation [22, 45]. 36 

Solution component: A big data database system is 
required for the implementation of long-term data storage. 
Therefore, NoSQL databases should be used as they are able 
to store unstructured data sets and are very effective in terms 
of performance compared to relational databases. The open 
source database management system Apache Cassandra is best 
suited for use in a prescriptive automation system. [10, 46]. 
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IV. DERIVATION OF REFERENCE ARCHITECTURES 

In this section, as shown in Fig. 2, a reference architecture 
is derived on the basis of requirements and solution 
components defined in Section III. A reference architecture 
forms a uniform basis for the development of system 
architectures with the aim of creating a common basic 
structure. In addition, it provides a method for moving from a 
general architecture to an application-specific architecture. 

The following reference architecture, as illustrated in 
Fig. 2, is based on edge computing for operational control and 
cloud computing processing resources for model recalculation. 
The field and control layers are directly connected to the edge 
device. An information gateway is used for cross-network data 
transfer between the edge device and the cloud. 

V. CONCLUSION 
This paper presents the development of an IT architecture 
based on edge and cloud computing for prescriptive 
automation. This architecture enables network-based, 
interoperable process control. Furthermore, it offers the 
possibility of comprehensive data processing to continuously 
increase the productivity of the production process. We 
defined general requirements based on scientific publications 
and expert interviews. These requirements were compared 

with solution components. These solution components were 
finally combined and resulted in a reference architecture. 
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