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Abstract—In this paper, the Multi-access Edge Computing
(MEC) system architecture, as defined by the ETSI standards,
is modeled as a multi-agent system. MEC system management
services and application execution components are designed
as software agents, facilitating distributed artificial intelligence
capabilities in their operation and cooperation. Further, the
integration of current agent technologies into the standardized
MEC system is discussed. Lastly, a case study is presented on
how to integrate an existing Internet of Things agent framework
and agent-based edge application seamlessly to the MEC system.

Index Terms—Edge computing, Agent-based computing, Adap-
tive systems, Orchestration, Interoperability

I. INTRODUCTION

The predominant Internet of Things (IoT) system model
today is cloud-centric, with virtually unlimited computing
resources and data storage for Big Data applications. The
resulting architecture is three-tiered with cloud platforms at
the top, then middleware connecting cloud-based applications
to the data producing IoT devices, at the lowest layer. This
model introduces latencies into the application execution, as
data travels first upstream for processing and secondly the
results, i.e. control commands, travel downstream to to the
middleware and to the devices. In the system scale, centralized
management at the cloud is no longer feasible from such a dis-
tance, due to the opportunistic environment with intermittent
connectivity and low bandwidth for the data collecting devices.

Edge computing [1] is seen the next step towards the
future IoT systems and networks. Edge computing leverages
cloud resources into the network infrastructure components,
i.e. middleware, in the close proximity of the data producing
devices. This way, the communication latencies are reduced
with application-specific computing resources and data at the
edge. Moreover, privacy increased with localize data process-
ing. As a result, less data is transmitted in the backbone
network, which contributes towards scalability.

Multi-access Edge Computing (MEC) [2], [3] extends the
role of cellular network infrastructure components, e.g. base
stations, from forwarding the traffic to multi-tenant applica-
tion execution platforms with local data storage capabilities.
A distinct feature in MEC, in comparison with other edge
computing solutions, is that it offers real-time radio access
network information to enhance system optimizations with
fine granularity. MEC has recently drawn both industry and
academic attention, as an open multivendor platform, and is

becoming one of the key technologies for 5G. MEC is cur-
rently under standardization by European Telecommunications
Standards Institute (ETSI).

Artificial intelligence (AI), with machine learning (ML),
has emerged as a key technology for Big Data based appli-
cation development in the cloud. Recenty, such technologies
are being considered also for communication systems [4].
However, as Al solutions are largely centralized and cloud
based, the same challenges in latencies and handling massive-
scale data follow. Here, distributed Al technologies such as
software agents are one solution to handle these issues with
proven technology [5], [6]. Software agents possess well-
known capabilities for autonomous and intelligent operation
based on reactivity, adaptivity, mobility, reasoning, learning,
planning and proactivity. Moreover, such agents collaborate as
a multi-agent system (MAS) to solve problems that are outside
the capabilities of a single agent. These agent capabilities are
seen beneficial for the system components across layers in
IoT and for providing established interaction techniques for
cooperation [6], [7].

In this paper, we describe a MAS based system architecture
for the ETSI MEC system reference architecture as described
in [8]. We show how agent capabilities provide distributed
artificial intelligence methods for cooperation and resource
sharing to handle the dynamicity in the MEC system environ-
ment, in both individual components and in the system level,
with localized knowledge of operational environment. A case
study is presented, showing an existing IoT software agent
framework is seamlessly integrated into the MEC system.
Lastly, we discuss how current agent technologies could be
integrated into the MEC system and utilization of agent-based
computing (ABC) at the edge in general.

The rest of the paper is organized as follows. In Section
2, we discuss the related agent technologies for edge and
present the ETSI MEC system reference architecture. Section
3 presents the MAS based MEC system architecture and an im-
plementation of the functionality of MEC system components
with agent technologies. In Section 4, a case study is presented
with an agent-based MEC service. In Section 5, we discuss
the resulting MAS and identify challenges in the utilization
of agent technologies in MEC and future edge computing.
Section 6 concludes the paper.
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II. BACKGROUND

Software agent technologies and solutions that focus on
edge computing have already been introduced. The integration
and management of distributed services on heterogeneous
system components with agents was considered in [9], [10].
Particularly for MEC, the authors in [11] propose interface
agents to integrate disparate 3rd party cloud computing plat-
forms into the system and to manage interactions between the
platforms. Agent-based coordination of the 3rd party service
delivery to IoT systems is addressed in [12]. In [13], control
agents are utilized as a MAS to create adaptive and decen-
tralize services for Fog computing. Moreover, Fog computing
system orchestration with performance monitoring agents has
been introduced in [14]. The optimization of task assignment,
with negotiating agents, between cloud and edge platforms is
addressed in [5]. Lastly, in [15], collaborative microservices
are modeled as a MAS for IoT.

However, this paper specifically focuses on the whole ETSI
MEC reference architecture as a MAS and providing agent-
based roles for the MEC system components that collaborate
using the standardized interactions. As no implementation of
the reference architecture currently exists, our focus is on the
agent-based design of the expected functionality of the system
components.

A. MEC system architecture and operation

ETSI is currently standardizing a reference MEC system
architecture, system components, services and their interfaces
[8], as illustrated in Figure 1. Detailed information on MEC
system operation is available in the specifications, whereas
in this paper, an overview is presented for modeling the
system as a MAS. General guidelines are given on realizing
MEC systems atop the reference architecture and how to
implement the system services for uniform MEC operation
across application domains. A set of proof-of-concept use
cases for MEC are presented, such as device location tracking,
IoT gateways, content delivery and distribution and data- and
computation-intensive edge applications, such as augmented
reality and video analytics.

MEC system operation is based on a set of services for MEC
application enablement and lifecycle management, centralized
orchestration and management of the whole system, distributed
management of MEC platforms consisting of MEC hosts,
individual host management and managing the application
deployment atop the common virtualization infrastructure.
MEC hosts facilitate multi-tenancy, each application accessing
services provided in the host and in the platform.

The system operation is divided into system level and host
level management. On the system level, MEC applications are
initiated in two ways. First, as requests from the users, e.g.
through smartphone applications, by creating an application
context containing the configuration of application packages,
their operational requirements and the required services and
resources. Second, 3rd party developers and service providers
create contexts including the configuration, usage policies and
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Fig. 1. Outlined ETSI MEC architecture.

billing for provisioning their services. The contexts are authen-
ticated in the User Application Lifecycle Management (LCM)
Proxy and, regarding the required application packages, in the
Operations Support System (OSS). The OSS represents the
mobile network operator, providing information and managing
the integration of network services in the host site locations.
Through the LCM, user applications receive events related to
the application execution and can, for example, request its
relocation and termination.

The MEC Orchestrator (MEO) orchestrates the application
execution based on the provided contexts. MEO is the central
authority to control the system operation and has full visibility
in real-time across the whole system, its state and resources.
The MEO validates the application contexts, based on the
application requirements and host capabilities, e.g. applica-
tion load, available services and communication latencies.
If needed, MEO adjusts the configuration to comply with
system resources and operator policies. MEO prepares the on-
boarding of the application, selects the hosts for application
execution and commands by the Virtualization Infrastructure
Manager (VIM) to instatiate the packages. During the applica-
tion execution, MEO can trigger relocation and terminate the
application execution. OSS also has a role in the application
management by providing access to possible external cloud
and network services, e.g. for relocating external resources
into the MEC system.

At the host management level, MEC Platform Manager
(MEPM) controls the application lifecycle based on the in-
structions from OSS and MEO. MEPM manages platform
operations and resolves resource conflicts between the hosts
with regard to data traffic and use of services. The MEPM dis-
seminates application events, such as performance information
and faults to the MEO. In parallel, the platform VIM manages
and allocates the virtualized resources for applications, their
data storage and networking. When the application terminates,
VIM releases its virtualization resources. If authorized, VIM
also relocates the resources from external clouds by interacting
with the remote cloud platform manager.

MEC hosts contain the ME Platform component that pro-



TABLE I

MEC SYSTEM APIS AND GENERIC APPLICATION INFORMATION AS DEFINED BY ETSI

Management and application
lifecycle

Services to run the applications on platforms and hosts. Performance data of the virtualization environment with regard
to specific host or applications.

End-to-end mobility

Service interruption latencies, out-of-service time, topology of host deployments and application scope aspects.

Location API

User equipment and radio node locations in radio network associated with the host. User equipment movement
information. Location can be geolocation, cell identifier, etc., with different granularity.

Radio network management
API

Local and external measurement information and statistics, as defined in the 3GPP specifications. Information about
user equipments connected to the radio nodes in a host. Provides methods to inspect, modify and prioritize uplink and
downlink traffic and configure traffic rules. Granularity can be specified over a period of time for cell, user equipment

and QoS.

Bandwidth management API

Dynamic and static bandwidth requirements for each application or user equipment session.

User Identity API
aggregation patterns.

Application and policy information: authorization, access control and traffic rules, information flows and service

Authentication

Trusted MEC applications and authorizations to interact with external 3rd party resources.

TABLE II
MEC sYSTEM KPIS AS DEFINED BY ETSI

Functional KPIs (per service basis)

Service continuity, energy efficiency, end-to-end / one-way latencies, throughput / goodput, loss rate, jitter, out
of-order packets, QoS and MOS.

Non-functional KPIs

request delay, failed requests.

Lifecycle, boot-time, scalability, elasticity, availability, fault tolerance, MEC host load, number of API requests,

vides computational, network and persistent data storage re-
sources for the hosted applications and services, which are
executed in its own virtualization infrastructure. MEC hosts
support multi-tenancy for multiple applications and services
within a host, but also multiple and shared instances of the
applications. MEC host provides a service registry to discover,
access, offer and advertise the services across the platform.
The virtualization infrastructure includes a data plane, that is
controlled by the ME Platform, for routing the application
and service data across 3GPP, local and external networks.
MEC application images are provided as virtual machines or
containers, run on the virtualization infrastructure in the hosts.
The applications consume the services across the platform,
while interacting directly with the ME Platform and MEPM
regarding their lifecycle.

The standards specify a set of Application Programming
Interfaces (API) that provide mechanisms for application en-
ablement, deployment, mobility and lifecycle management.
Information is needed from two different perspectives: (1) the
whole system and operational environment state and resource
usage and availability and (2) the requirements of applications
with regard to location, computation and data. For this, the
system management components provide service APIs for the
application execution, management and orchestration of the
system and monitoring the system performance. A set of APIs
is briefly described in Table I, that is not exhaustive, as we
focused on the APIs directly used by agents.

ETSI also defines the sets of functional and non-functional
Key Performance Indicators (KPI) for evaluating the system
performance, as shown in Table II. The functional KPIs
include user equipment and other device connection param-
eters, Quality of Service (QoS) and service continuity. Non-
functional KPIs include indicators in resource availability,
scalability, application and host load and energy efficiency.

III. MEC AS A MULTI-AGENT SYSTEM

The opportunistic nature of edge computing systems justi-
fies distributed Al approaches. Centralized orchestration and
management, let alone optimization, requires a large number
of different data sources and complex algorithms for analysing
the collected massive-scale data. Such centralized algorithms
would be difficult to design, develop, deploy, maintain and
evaluate with regard to the system dynamicity. The distributed
and partitioned edge application execution is well aligned with
the general properties and capabilities of the software agent
paradigm and the established methodologies for ABC. Agents
provide means to distribute application-specific data analysis
and to extract and share relevant context-aware information. In
addition, well-known methods and protocols for agent-based
negotiation, collaboration, cooperation and competition have
been developed for MAS.

The goal of MEC is to have the applications at the right
place at the right moment, aiming to improve the Quality
of Experience (QoE) for the users and availability of the
distributed system resources. A key is to make the system
context-aware and less unpredictable. At the MEC system
level, challenges are introduced by multiple applications with
dynamically changing application contexts that compete for
the same resources. The authors in [2] identify challenges
in MEC system orchestration: (1) decision-making on ap-
plication offloading to MEC and distribution to minimize
its resource use, (2) the efficient allocation of the resources
within a platform, and (3) mobility management overhead
and minimizing application migrations on the backbone. On
the network level, MEC is a complementary technology to
the Software-Defined Networking (SDN) architecture, reusing
the same network infrastructure. Common SDN architecture
considers network controllers based on software agents, e.g.
to implement application-aware system control [16].
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Fig. 2. The MEC system as a multi-agent system.

ETSI models the MEC applications as a set of autonomous
and loosely-coupled microservices [17], based on containers.
The containerized application functionality can be partitioned
and easily distributed in the system, as each microservice can
be developed with different technologies by different stake-
holders and deployed independently. As in [15], microservices
can be considered as agents.

The standardized interaction mechanism in MEC is the Rep-
resentational State Transfer (REST) architectural principles
[8]. The system services, applications and 3rd party com-
ponents are required to provide REST-based API. In REST,
the main abstraction is a resource that is named and given a
unique identifier and an address (an URI). The resource has
representation of its current value, e.g. a service content. REST
then provides a simple interface to access and manipulate the
resource, e.g. with Web technologies the standardized HTTP
methods (e.g. GET, POST, PUT and DELETE). REST-based
interactions follow the client/server model, as in the modern
Web. Therefore, the agents are expected to follow the REST
paradigm in their interactions with the system components.

A. Agent-based MEC system architecture

Next, we outline the MEC reference system architecture
based on a MAS, where the system components are modeled
as software agents. These agents interact through the MEC

APIs to facilitate system-wide cooperation and expose their
own MEC service APIs. The ETSI defined KPIs provide
system-wide information for the agents to plan, evaluate
and improve their behavior towards individual and common
goals with regard to the expected system operation. However,
we dont assume that all MEC system components are to
be designed as software agents. Instead, we envision that
agent capabilities are utilized wherever distributed Al is seen
beneficial by the stakeholders.

To describe the MEC system as a MAS, we present the
agents realizing the roles of MEC system components and
their interactions. The software agents are deliberative, with
capabilities for reactive and adaptive behavior, reasoning and
planning towards their individual goals, evaluating their be-
haviors and learning to exhibit proactive behavior. The agent
behaviors are derived from the MEC specifications, based on
the agent’s role in representing the particular system com-
ponent. As this paper presents an initial architectural design,
security and trust in ABC are not considered. For reference,
the utilized agent abbreviations are listed in Table III.

Figure 2a shows the user- and client-side components,
where we place the User Authentication Agents that autho-
rize the requests for application execution and control. After
authorization, the Application Management Agents (AMA)



create and/or maintain the application contexts. Here, it is
beneficial for the agents to evaluate the requests and appli-
cation contexts collaboratively, e.g. if multiple users access
the same application or multiple applications are accessed
by the same user. In such a case, agents could operate as
a representative to the aggregated requests in the system-side,
maintaining the contexts provided by the users and operating
as an intermediate towards the OSS and MEO. Such an agent
reduces the need for synchronous connections with the user
application and further operates as an intelligent proxy in the
opportunistic environment.

For the application or service provisioning, Service-Level
Agreement (SLA) and Billing Agents represent the service
providers that, with the client-side AMA agents, make agree-
ments for their service usage. The benefit, in comparison
with non-agent approaches, is the capability to utilize the
well-known negotiation and for example auctioning protocols
developed for agents. The service providers could then be
easily abstracted as brokers in such scenarios.

The role of the OSS (Figure 2b) is to handle the request
from AMA and to authorize the application contexts for the
deployment. This is done by the Application Authentication
(APA) Agents that collaboratively, and with the AMA agents,
assess the multi-user or multi-application requests and the
requirements in the contexts. This is beneficial to reduce
overlapping and duplicate requests by the same of different
stakeholders. The Application Management Agents (APMA)
check the rationality of the contexts in collaboration with the
Network Operator Agent (NOA). The NOA represents the
mobile network resources, e.g. operator policies and host site
locations. At best, the cooperation of APMA and NOA agents
leads to deployments, where the agents can proactively come
up with common plans for providing the functionality for the
applications. Agent-based ML can be used to evaluate and
optimize the plans further with the performance information
received from MEPM. The APMA and AMA agents can be
internally organized as MAS.

The MEO is the most complex component in the system.
The ETSI specifications allow it to be a distributed component,
but no further details are given. Naturally, its functionality
could be designed as a MAS, where individual agents or sub-
MAS represent the subsystems (Figure 2b). The Validation
Agents checks that the application contexts with their KPIs
can be met. The System Management Agent (SMA) is the
authority to make decisions on the system level regarding
application lifecycle, directing the VIM and MEPM and on
the system resource usage, with regard to the required KPIs.
The SMA needs to contain all the system information as
outlined in the specifications. However, the information is to
be distributed according to the agent roles in the MAS, each
agent providing its own refined context-aware information
for the decision-making. This is where the agent paradigm
shows its strengths, as a number of organizational, planning,
orchestration and learning strategies are available for MAS
in general. Therefore, the SMA architecture is hierarchical
and hybrid, consisting of sub-MAS and agents with different

TABLE III
LI1ST OF THE MEC SYSTEM AND AGENT ABBREVIATIONS

ACA Application Control Agent

AMA Application Management Agent
APA Application Authentication Agent
APMA | Application Management Agent
LCM User Application Lifecycle Management
LMA Lifecycle Management Agent

MEO MEC Orchestrator

MEPM | MEC Platform Manager

MHA MEC Host Agent

MHVA | MEC Host Virtualization Agent
NOA Network Operator Agent

OSS Operations Support System

RMA Resource Monitoring Agent

SMA System Management Agent

VIM Virtualization Infrastructure Manager
VMA Virtualization Management Agent

roles. Due to the internal complexity, learning of SMA is a
combined effort, where agent-based ML with limited goals
are facilitated for the subsystem optimization. The Application
Control Agent (ACA) handles the system level lifecycle man-
agement of the applications. The Resource Monitoring Agent
(RMA) maintains the overall view of the system performance
and resource use, deployed application packages and logical
network topologies. The ACA and RMA can be designed
in a number of ways as a MAS, e.g. based on application-
specific agents, platform- or host-specific agents or resource
type-specific agents.

On the MEC platform level, the agent-based MEPM is de-
scribed as illustrated in Figure 2d. The Lifecycle Management
Agent (LMA) receives application execution instructions from
the SMA and makes the decisions on their realization. The
autonomy of the LMA is therefore limited, but it is responsible
for platform-level resource usage, application execution and
relocation, service provisioning and data routing. The LMA
can also be a hybrid MAS, where MEC Host Agents (MHA)
represent hosts to make the decisions collaboratively based on
different organizational strategies. The MHAs are depicted as a
part of LMA, to emphasize collaboration in a MAS, even when
they are considered semi-autonomous authorities on the hosts.
The LMA reports the application performance information,
e.g. latencies and possible conflicts, to the MEO.

The agent-based VIM (Figure 2d), consists of the Virtu-
alization Management Agent (VMA) including MEC Host
Virtualization Agents (MHVA) that represent the platform
hosts. The VMA receives the instructions of the deployment
and relocation of the application packages from the LMA and
SMA, thus it has limited autonomy. Moreover, VMA includes
Instantiation Agent (IA) that represents the SMA, controls
the deployment of application packages into the virtualization
infrastructure with MHVAs. The virtualization infrastructure
monitoring is performed by the Monitoring Agent (MA) that
reports back to the SMA. It collects the historical information
about performance and can suggest optimization and strategies
for the deployment within the platform.



The MEC hosts, depicted in Figure 2c, are controlled by the
MHA and MHVA. The MHA is a part of the platform-level
LMA, but also exhibit limited autonomy based on the on-site
deployment rules from the NOA. The MHA collaborates with
MHASs on other hosts, as a MAS, to execute the requests as
control plan actions. Moreover, MHA controls the host data
traffic on the data plane for the applications and services.
Additional agents can be deployed to represent the applications
and services in the host, which collaborate with the MHA
and possibly other agents in their own execution. However,
in agent-based MEC host, it is mandatory also to host non-
agent applications and services by using the standardized
mechanisms.

B. Agent technologies for MEC

Foundation for Intelligent Physical Agents (FIPA) has spec-
ified a set of standards' for agent system architectures and
services, agent platforms and agent communication languages
and interaction protocols. The FIPA specifications address
message transport services in agent systems, including the use
of HTTP as a message transport protocol, where XML-based
envelopes are used to describe the agent interactions. This
combination allows rich vocabulary and ontologies for agent
interactions, that are encapsulated into structured documents.
This approach is closely related to the Service-Oriented Ar-
chitectures (SOA) paradigm and Web service specifications as
WS-*.in SOA, XML-based Simple Object Access Protocol
messages are transmitted in the HTTP message payload. In
SOA-based MAS, the services for agents and exposed by the
agents are exposed through a XML-based description language
that details the service functionality and access methods.
These services in agent platforms are then accessed with RPC
mechanisms.

However, from the agent perspective, REST in MEC is
fundamentally different paradigm as SOA in FIPA. The agent
interactions and their semantics must be reconsidered through
the resource abstraction and the small set of HTTP methods. A
solution could be to provide wrapper interfaces that translate
agent communication language messages into REST-based
requests as in [18]. Well-known agent platforms, such as JADE
[19], provide these wrappers to utilize HTTP as the agent
message transport protocol. Nevertheless, solutions are needed
to maintain the semantical interoperability of the messages as
in [20]. A step towards full agent-based Web applications is to
utilize the native Web technologies as agent architecture, e.g.
HTMLS [21]. However, such agents are tightly-coupled into
the transferred Web documents.

A fully REST and FIPA compliant agent architecture and
ROAgent framework for IoT was presented in [22]-[24]. The
resource abstraction is built-in into the agent architecture,
the agent platform operation and interactions and to the
services provided by the framework. These agents are therefore
natively and seamlessly integrated into the Web, through
a RESTful API for interactions with agents, services and
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Fig. 3. MAS-based crowdsensing service for MEC.

other Web components. This framework was extended towards
edge computing in [25], [26]. However, these agents are
largely reactive, without the deliberative capabilities leading
to autonomous intelligent operation, e.g. reasoning, planning,
making decisions and learning from the system behavior.

Solutions towards deliberative agents have been presented.
In [27], an example if given how cognitive modules for agents
can be integrated into existing agent platforms, i.e. JADE.
Integration of such solutions would lead to an MAS based
on heterogeneous hybrid agents with reactive and deliberative
capabilities as needed for the task at hand and according to
the resources available. As an example for agent-based ML,
reinforcement learning is widely utilized for online learning in
MAS [28]. Challenges include how to define common learn-
ing goals and how to distribute and coordinate the learning
between agents.

IV. CASE STUDY

We demonstrate the MAS-based edge service in MEC
system, based on our previous work in [25]. An agent-based
edge service provides user mobility traces, based on how their
devices are connected to the edge system, and detects flocks
of users moving to the same direction. The flock information
is provided as service content for crowdsensing applications
running at the edge.

Figure 3 illustrates agent-based system architecture design
atop the MEC system architecture. As the user devices, i.e.
smartphones, are connected to a MEC host through an AP
under its domain, their location is known and reported by the
MEC Location API. The Flock agent implements the flock
detection service logic, based on the information it receives
through the Location API. The crowdsensing application is
implemented and deployed as a MEC application. Therefore,
it needs to describe the Flock Agent as one of the required
MEC services on the host. Such applications can then query
available flocks that meet their requirements, e.g. user in a
geographical area at given time. The application the controls
the sensing task execution on the user devices in collaboration
with the Phone Agents [29].



Further, the Flock agents can operate as a Flock MAS to
provide collaborative large-scale MEC service, i.e. mobility
traces across the whole system. Simultaneously with the Flock
agent, the information provided by the Location API is utilized
by the MEO and MEPM to orchestrate the service, e.g.
instantiate or terminate Flock agents in the hosts, based on
the requirements of the crowdsensing applications.

As described in detail in [25], the agent-based service is
implemented with the ROAgent framework. Therefore, the
agents already interact through RESTful interfaces, which
provides seamless integration into the MEC system and gives
access to its services. The Flock Agent exposes a RESTful
API that the MEC system components can utilize. In addition,
the Crowdsensing application and Flock Agent are expected
to implement the requires contexts and the required standard-
ized MEC APIs. To fully integrate the ROAgent framework
into MEC system, the Distributed Resource Directory (DRD)
peer [30] is integrated into the MEC host service discovery
component. Through the DRD, the agents register themselves
to the agent framework as resources and to the MEC system
as services.

This straightforward case study shows how REST-based
agent framework can be seamlessly integrated into the stan-
dardized MEC system reference architecture. The benefit is
that interactions between agents and MEC system components
are all based on the REST paradigm, with no extra effort
in implementing interface wrappers for REST or proxies for
protocol translation.

V. DISCUSSION

Al on the edge is seen to have increasing importance in
realizing distributed IoT applications [1], [4]. Also the ETSI
specifications consider use cases, where Al is seen beneficial
in the context of MEC. The challenges of the opportunistic
environment needs to be addressed, at best proactively by
distributed intelligent system management. Resource conflicts
and the evident user mobility in such a dynamic environment
needs collaborative intelligence across system layers and com-
ponents to maintain the required KPIs. Moreover, integration
of 3rd party services facilitates widespread MEC resource
utilization, increasing the need for content-aware operation.

The utilization of agent technologies in IoT requires efforts
at agent standardization and technologies for interoperability
between agents and IoT systems. Recent solutions have been
proposed, e.g. [22], that addressed interoperability between a
standardized IoT framework and well-known agent standards,
e.g FIPA. Moreover, steps are already taken towards utilizing
the deliberative capabilities of agents in edge computing [11].
ML is an important agent capability towards autonomous
operation, facilitating proactivity. MEC standards offer a set
of KPIs for the functional evaluation of application execution
with focus on network parameters, such as latencies. The non-
functional KPIs, such as elasticity, offer means to evaluate
the cognitive capabilities of agents. Lastly, the underlying
communication technologies in edge computing are utilizing
agents in similar roles, as with SDN [16]. Integration of these

network level agents into the MEC system opens up pos-
sibilities for fine-grained optimization based on cooperation
between agents.

In [31], the requirements for future Al-enhanced edge
computing platforms are outlined. In this respect, the agent
based MEC system facilitates partial autonomy and intelli-
gence for the individual system components with local and
global data, standardized means for interoperability across
hosts, platforms and systems, on-demand (logical) network
topologies for distributed applications and context-awareness
to address challenges in environment dynamicity.

VI. CONCLUSION

This paper proposed the modeling of the ETSI MEC sys-
tem reference architecture as a MAS, that brings distributed
Al capabilities for MEC system operation and optimization,
particularly for the system orchestration. With the software
agent properties, such as autonomy, reactivity, adaptivity,
cooperation, learning and proactivity such intelligence can be
embedded in the system components. A case study demon-
strated how an existing agent framework can be integrated
seamlessly to the MEC system through the REST architectural
principles.

Software agent capabilities contribute towards future Al-
enhanced edge computing, where ETSI MEC is now con-
sidered as a part of 5G standardization. Our future work
aims at real-world prototypes, atop our real-world 5G edge
computing testbed in the premises of the University of Oulu
[32], for studying the different agent and MAS capabilities in
distributed MEC systems.
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