
Improving TCP Performance and Reducing
Self-Induced Congestion with Receive

Window Modulation
Francesco Ciaccia∗†, Oriol Arcas-Abella†, Diego Montero†‡, Ivan Romero†
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Abstract—We present a control module for software edge
routers called Receive Window Modulation - RWM. Its main
objective is to mitigate what we define as self-induced congestion:
the result of traffic emission patterns at the source that cause
buffering and packet losses in any of the intermediate routers
along the path between the connection’s endpoints. The controller
modifies the receiver’s TCP advertised window to match the
computed bandwidth-delay product, based on the connection
round-trip time estimation and the bandwidth locally available at
the edge router. The implemented controller does not need any
endpoint modification, allowing it to be deployed in corporate
edge routers, increasing visibility and control capabilities. This
scheme, when used in real-world experiments with loss-based
congestion control algorithms such as CUBIC, is shown to
optimize access link utilization and per-connection goodput, and
to reduce latency variability and packet losses.

Index Terms—Edge router, TCP flow control, self-induced
congestion, rate limiting.

I. INTRODUCTION

TCP is the protocol of choice for many of the distributed
application being developed. It provides guarantees in terms
of data integrity and delivery; it controls and modulates the
sending rate according to estimated network conditions by
means of two mechanisms: i) congestion control and ii) flow
control. The former is a sender mechanism aimed at adjusting
the sending rate, according to congestion events in the network
as estimated by the congestion control algorithm. The latter
provides the receiver with a mechanism to signal to the sender
the amount of data it can receive. In fact, TCP flow control re-
lies on explicitly signaling the available receive window in the
protocol header. It was designed considering slow receivers,
which were not able to process all the received data because
of constrained computational resources. However, TCP flow
control is rarely involved in a normal TCP connection in
modern Internet era, as processing power has increased dra-
matically since the protocol definition, preventing the receiver
to become the bottleneck. While network infrastructure has
evolved, TCP design choices in congestion control can still
represent a limitation in network resources exploitation.

Many congestion control proposals, e.g. CUBIC [1], act too
aggressively, contributing to what we define as self-induced

congestion: intermediate routers start dropping packets causing
consistent throughput reduction, especially in the presence of
loss-based congestion control algorithms. Buffering increases,
reducing the responsiveness of latency-sensitive concurrent
flows, such as those of interactive applications.

In order to address these problems, we present Receive Win-
dow Modulation—RWM, a control module for edge routers:

• RWM mitigates self-induced congestion and improves
end-to-end TCP performance, latency and fairness. Av-
erage application goodput is improved up to 70% and
latency is reduced by a 2.5x factor in some scenarios.

• RWM adjusts the advertised receive window of packets
traversing the edge router. This is intended to provide an
upper bound to the sender’s congestion window growth;
the window, which is an upper limit to the connection’s
bandwidth-delay product (BDP), is based on the router’s
locally available bandwidth, the estimated connection
RTT, and the policies for each class of traffic.

• This mechanism does not require any modification of
the TCP stack, as it is transparent to the end-points, nor
connections are terminated by a proxy.

• RWM preserves the characteristics of the sender conges-
tion control deployed in the end-point and does not inter-
fere nor substitute Active Queue Management strategies
deployed in the router.

The rest of the paper is structured as follows: Section II de-
scribes the related work, especially previous proposals for edge
router architectures and control strategies based on explicit
TCP packet modification in intermediate nodes. Section III
describes the controller architecture’s building blocks. Section
IV presents an experimental evaluation and analyzes the results
of RWM in a real Internet environment. Section V discusses
some improvement opportunities for the schema proposed.
Section VI summarizes the key contributions and discusses
future work.

II. RELATED WORK

In [2] an architecture for bandwidth fair sharing is proposed;
it focuses on home gateways and a credit-based resource
allocation system. The solution, although, requires some level
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of interaction with the ISP core network to negotiate the
amount of credits the gateway can spend during a congestion
period. They also envision a control mechanism based on TCP
advertised window modification, but it is not based on BDP
estimation. They adapt the TCP receive window by proxying
the connection and controlling the receive window at the
socket level in the gateway. Instead, RWM proposal for TCP
window modification is based on in-flight packet modification.

Other works have been proposed in the past that take
advantage of the TCP flow control mechanism to optimize the
connection behavior. Explicit Window Adaptation (EWA) [3]
also modifies the advertised window of TCP packets as a
means of congestion control in intermediate nodes. The goal
is to reduce buffer bloat and self-induced congestion due to
TCP’s window probing. Their testing environment is based
on TCP/IP connections over ATM virtual networks. The
value of the advertised window is a function of the available
buffer space in the ATM router, and the behavior of EWA is
compared against a typical Random Early Detection (RED)
buffer management mechanism. RWM extends this study in
several ways. Window adaptation is a powerful mechanism as
demonstrated in EWA with ATM networks, but this technology
has been largely superseded by IP-only networks. In this
paper, the effects of window adaptation are tested in a more
up-to-date environment where RWM is agnostic to the type
of network segments the flow will traverse. RWM does not
need to be deployed at the bottleneck as its objective is to
maximize end-to-end behavior of the TCP flows according to
the local resources available to the edge router. The feedback
function does not need to be exclusively coupled to the buffer
space though, as it can be dynamically derived from the
current locally available bandwidth and some user defined
traffic policies, computing a BDP value for each connection.
In addition, the benefits of window adaptation in this work are
not only focused on goodput and buffer utilization, but also
a study on the impact on latency is included. In [4] a similar
flow control based mechanism is proposed but the scheme is
developed with satellite networks in mind and its deployment
model foresees the controller to be right before the satellite
link bottleneck.

Recently, Google has proposed a new hybrid scheme for
congestion control called BBR [5]: its objective is to char-
acterize the current BDP of the connection. It accomplishes
so estimating the minimum RTT and the end-to-end available
bandwidth, by periodically inducing queueing and then drain-
ing the buffer. In [6] and [7] it has been demonstrated that
BBR is not fair towards loss-based congestion control flows
and its performance can fluctuate in presence of small buffers
on the path. Our solution, as of today, does not estimate the
available bandwidth between the connection endpoints; the re-
ceive window is set accordingly to the edge router access link
locally available capacity and the measured connection RTT,
providing an upper boundary to the sender congestion control.
It is not a substitute of the congestion control algorithm
deployed in the sender: the response of the sender algorithm
to transient network conditions is preserved. Given this, if our
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Fig. 1: Receive Window Modulation deploy schema. The
window advertised by the receiver is modified according to
the router’s locally available bandwidth and the estimated

RTT for the connection.

system is coupled to senders that use loss-based congestion
controls like CUBIC, the fairness of such an algorithm towards
other flows is retained. Finally, in contrast to BBR, this system
is targeted to routers and does not require modifying the end-
points.

III. ARCHITECTURE

The main idea behind RWM is to enforce an upper bound
to the sending rate of the sender, exploiting TCP flow con-
trol. This is achieved by modifying the receiver’s advertised
window of in-flight acknowledgement packets. This type of
control tries to mitigate some limitations of loss-driven con-
gestion control algorithms, which are still extensively used
nowadays. Tail drop in intermediate routers can be reduced
and bufferbloat avoided if the sending rate in the end-point
is adjusted to the path’s nominal BDP. The edge deployment
vantage point gives the router visibility on all the flows being
generated in the Internet access link, which allows a fair share
of the edge router resources in terms of bandwidth: the router
can throttle flows in case they exceed a specific policy or the
local resources of the router without the need to drop packets.

RWM computes the BDP value for each flow based on:
• RTT measurement during connection establishment.
• The router access link available capacity, where capacity

can refer to the router network card nominal line rate
or a user provided parameter indicating the bandwidth
throttling enforced by the ISP on the access link.

Figure 1 shows a typical functional schema of a RWM de-
ployment. Both edge routers implement RWM: the controller
can be deployed close to both the sender and/or the receiver. In
the scenario presented in Figure 1 the connection is already
established and both edge routers were able to estimate the
connection RTT based on the three-way handshake. Each of
them transparently modify the receive window advertised by
the receiver in the acknowledgement packets, in order to match
the locally available bandwidth. The sender will then conform
its sending rate to the enforced receive window in case its
congestion window exceeds it.



The control logic is triggered on a per-event basis: when a
new incoming flow is registered, it is associated a specific traf-
fic profile so that RWM can recompute the optimal value of the
receive window for all active flows; a data plane component
will then enforce it on the target flow. Particular attention is
put in extracting the Window Scaling factor negotiated by both
endpoints on connection establishment. Bandwidth allocation
is done on a per-class basis, where classes can be defined
by the user based on the application port. An upper limit is
assigned for the bandwidth of each class. The user is free to
allocate bandwidth to the classes within those limits.

Being C the capacity of the edge router link as previously
defined; P the allocation policy defined for a specific traffic
class j, expressed as percentage of the access link capacity;
i the i-th flow for the class j; RWM recomputes the receive
window RWND to be assigned to each flow i so that it always
respects the following relation:

∑
j

(
∑
i

RWNDi

RTTi
) ∗ Pj = C (1)

Equation 1 guarantees that the link capacity is distributed
equally between flows of the same class and that each class
is assigned the user defined share of network resources.
The operation of RWM’s logic implementing equation 1 is
described in Algorithm 1. Given the link capacity and the
traffic class policies, RWM computes the amount of link share
to provide to each class. Then it iterates over all classes
and their active flows, and computes the BDP associated
to each of them starting from an estimation of the round
trip time. It finally computes the receive window to enforce
on the acknowledging flow based on the window scaling
factor it registered at connection establishment. If the window
advertised by the receiver is smaller than the one computed,
the adjustment is not applied (see section V-A).

Algorithm 1 RWM operation

procedure NEW FLOW REGISTERED
C ← access link capacity
for c in traffic classes do

Pc ← class policy
Cc ← C · Pc

for f in flow table c do
if WSCALEf not recorded then

skip to next flow
end if
RTTf ← estimated flow rtt
BDPf ← (Cc ·RTTf )/len(flow tablec)
RWNDBDPf

← BDPf/2
WSCALEf

RWNDf ← min(RWNDf , RWNDBDPf
)

end for
end for

end procedure

A. Use Cases
RWM’s primary use case targets an enterprise edge gateway

or router for WAN links. Our proposed architecture allows for
dynamic adaptation of resource utilization, and combined with
policy definition and traffic classification, is a powerful tool
to be used in corporate networks. RWM is particularly appro-
priate to improve traffic control at ingress/egress WAN access
links, especially when they represent the bottleneck—e.g. in
site to site corporate communication. As previously exposed,
RWM specifically addresses cases of self-induced congestion;
while certain robustness in a real scenario has been proven
through experiments (further detailed in section IV), its behav-
ior has not been studied in networks where massive amount
of cross traffic is the cause of intermediate congested nodes
(see section V-C).
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Server
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Narrow link = 1Gbps

Fig. 2: Network topology and configuration for the
experiments (RWM only in the client-side router).

IV. EXPERIMENTS

A series of experiments were conducted to validate the
proposed architecture. The experimental evaluation addresses
a scenario where all the traffic flows handled by the router
are bulk data transfers belonging to a single traffic class.
The objective of the experiments is to validate the benefits
obtained when activating the controller in different network
scenarios in terms of Flow Completion Time (FCT), goodput,
total latency and fairness. In our testbed we emulate different
network conditions to generate a range of BDP scenarios.
In this evaluation we test the controller between two known
locations and deploy one single point of control in the edge
router close to the receiver; this edge router has the smallest
access link between the two locations. We do not have control
over the intermediate hops along the Internet path connecting
the two locations. As such the BDP computed in the edge
router is only dependent on the local bottleneck and does not
take into account possible variability in the inner section of the
network. To compensate, we define a ±δ around the locally
computed BDP value. We’ve set the value of δ to 10%, in
order to study the response of the control when under and
over estimating the network conditions.

A. Testbed
The testbed general configuration is shown in Figure 2. The

testing environment includes two pairs of nodes in different
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Fig. 3: Flow completion time for one (3a) and then four (3b) downloads starting simultaneously
with or without the controller for different values of RTT.

geographic locations. Each pair is composed of a node that acts
as a server or client and another one that acts as router/gateway
for the paired instance. The nodes involved are all virtual
machines running Debian Linux Stretch. One site has 1Gbps
WAN access link, while the other has a 10Gbps one. The
typical round-trip time over the Internet between the two sites
is 20ms±0.2ms. In the 1Gbps link site is located the client;
it connects to a web server connected through the 10 Gbps
link. The virtual machines with the access link of 10Gbps
are EC2 Amazon instances. Both instances are m5.xlarge type
which are guaranteed to run on Intel Xeon Platinum 8000
series processors, have 4 virtual CPUs assigned and 16GB of
RAM. The other two VMs with the 1Gbps access link run in
our lab environment; each VM has 4 virtual CPUs and 4GB
of RAM assigned. They are hosted on a server blade with
96GB of RAM, running an Intel Xeon CPU E5-2620 v4 with
8 physical cores with hyperthreading.

The only parameters modified at the endpoints are the
maximum receive and send buffer size of TCP, which have
been tuned to 60MB. This allows the endpoints to reach full
theoretical link utilization in all BDP scenarios and avoids
the endpoint receive window to become the bottleneck. The
congestion control algorithm at the sender is CUBIC (Linux’s
default). On the router close to the client we use the Linux
Traffic Control module called NetEm [8], to change the
environment network conditions. We add delay to the link,
while keeping the fixed capacity of 1Gbps. Latency introduced
has a variability of ±3ms; this variability induces some packet
reordering as consecutive packets scheduling can be delayed
or anticipated to emulate transient network variability. We do
not enforce any artificial loss through NetEm, relying on the
intrinsic variability of the Internet between the two sites.

B. Evaluation
The experiments consist of HTTP GET transfers performed

through the client with the wget tool. The server provides
1GB files through a nginx web server. The client acts as
receiver and the server as sender. We combine the following
parameters during testing:

• BDP of the path - varied by means of controlling the
latency in the client router. Total RTT varies between
20ms and 140ms.

• Number of concurrent transfers - one and four.
• Controller BDP set: i) exact BDP, ii) exact BDP−10%,

iii) exact BDP +10%, and iv) No Controller.
Each combination of parameters is tested 50 times for a

total of over 3000 tests. We study the FCT of the downloads.
We also recollect statistics from the endpoints by means of an
eBPF [9] based analysis tool. In particular, in the endpoints
we measure:

• The throughput of each download.
• The evolution of the RTT during the data transfer.
• The evolution of the receive window advertised by the

receiver and the actual receive window seen by the sender
(that could have been modified by our controller).

• The evolution of the congestion window of the sender.
We show the results of FCT using categorical boxplots (see

Figure 3). Each category represents all the tests performed
for a specific value of total RTT for a certain number of
concurrent transfers. In each category four boxes are shown:
three represent the results when enabling the controller and
providing it different values for the BDP estimation as previ-
ously described; the fourth box represents the results without
the controller.

1) Flow Completion Time: Figure 3a depicts the series of
tests with one single transfer. We can observe that the range
for the non-controlled scenario has considerable variability.
The controller improves the behavior of the flows by keep-
ing a more consistent rate during the whole transfer. While
improvement is clear for the 60ms and 100ms scenarios, we
can see that for 140ms the margin is reduced. Results suggest
that, when increasing the RTT, and thus the BDP, the amount
of in-flight data injected by the sender is enough to fill one
or multiple queues along the path. This holds true even when
controlling the receive window to match the nominal BDP.
As a matter of fact we start measuring tail drop in our own
router’s buffer.
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Fig. 4: Throughput of four concurrent transfers. In 4a a legacy TCP CUBIC scenario. In 4b the
same experimental environment is being controlled by RWM.

On the other hand, we can see from Figure 3b that when
adding multiple traffic sources the aggressiveness of the con-
gestion control algorithm at the sender is enough to incur in
a consistent performance penalty even at lower latencies. At
140ms of RTT is possible to observe that the 50th percentile
for the FCT of the uncontrolled scenario is almost 1.5 times
higher than the controlled scenario. The difference between
the different levels of control applied is marginal with a clear
trend: an underestimation of the BDP of 10% brings less
variability but average higher values for FCT, while the best
results are obtained when controlling at the ideal BDP point;
overestimation shows lower 25th percentile values for higher
RTT values, but brings more variability to the overall statistic.
In this representation each data transfer counts as independent
event. We computed the distance between the 50th percentiles
of the different categories: RWM improvement in term of FCT
in the one transfer scenario is up to 46%, while in the 4
transfers scenario the improvement goes up to 70%. Another
relevant observation can be done by looking at the 140ms
category in the scenario of Figure 3b: the 75th percentile of
any of the controlled tests is better than the 25th percentile of
the non-controlled case.
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Fig. 5: Maximum flow completion time of each set of four
concurrent downloads with or without the controller, for

different values of RTT.

2) Fairness: In figure 4 we compare a non controlled
experiment using CUBIC in the endpoints, with the same
scenario deploying RWM in the receiver’s edge router. Four
downloads start simultaneously; total RTT is of 60ms. Fig-
ure 4a shows the throughput of the four connections having a
very varied behavior with inconsistent performance. One of the
flows is greedier and finishes faster, penalizing the congestion
windows of the other three flows. The final FCT for the set
is around 70 seconds. In Figure 4b the throughput for the test
performed using the controller is shown. The throughput is
consistent along the whole duration of the data transfer and
the congestion windows always works above the level of the
receive windows being enforced. The four flows reach fair
sharing of the link capacity and all finish at the same time,
taking around 40 seconds.

In Figure 5 we repropose the results seen in Figure 3b but
this time considering only the FCT of the slowest of the group
of four simultaneously started transfers. Figure 5 confirms the
trend seen in the previous section but also provides stronger
validation for the fairness properties of RWM.

3) Latency: Table I summarizes the statistics for the RTT
of a subset of combinations of the tests performed. In case
of lower latencies (20ms case) is possible to observe how the
average standing queue induced by a loss-based congestion
control is within the order of magnitude of the latency itself.
The controller avoids buffering in any of the intermediate
nodes. Mean value corresponds to the nominal RTT, and
statistical variation is negligible. In all the cases shown, the
variability of the non-controlled scenarios exhibits a higher
standard deviation.

control flows std mean 25th 50th 75th max

none 1 12.8 53.2 42.8 56.0 64.4 71.2
none 4 15.9 52.8 41.9 58.5 65.1 71.0

RWM 1 0.2 21.0 21.0 21.0 21.0 21.3
RWM 4 0.2 20.4 20.3 20.4 20.6 25.5

TABLE I: Quartiles and standard deviation for the 20 ms
RTT for some combinations of number of concurrent flows.

For simplicity, statistics for the scenarios controlled with
BDP±δ are not shown.



V. DISCUSSION AND FUTURE WORK

A. RWM Compliance with TCP

TCP is a transport-level protocol, where flow control and
congestion control policies are applied by the endpoints. On-
route packet processing and modification is not required by
design. As a matter of fact, TCP has a checksum mechanism
to detect errors that can originate in the network. RWM guar-
antees TCP data integrity by recomputing the TCP checksum
of each modified packet. At the same time the flow control
semantic is kept intact: if the original advertised receive
window is lower than the value the controller wants to enforce,
no changes are applied to the packet. This guarantees that the
receiving endpoint can still apply flow control in case of need
(e.g if it is not able to process the amount of data received).

B. Path Symmetry

The controller, in order to be able to estimate the connection
RTT, to retrieve the window scaling factor and finally to apply
the computed receiver window to all packets of the flow, needs
to have visibility on packets from both directions of a TCP
flow. This is usually the case in edge routers acting as gateways
in corporate LANs, which is the typical use case envisioned
for RWM as stated in section III-A. On the other hand this
limits the applicability of the scheme as routers deeper in the
Internet core could not have access to both directions of the
flow due to path heterogeneity.

C. Available Bandwidth Estimation

Currently RWM bases the BDP computation exclusively
on its locally available bandwidth and the RTT measured
for the connection. In the testing environment presented in
section IV the edge router manages the smallest Internet
access link between the sender and the receiver. While this
schema was shown to be effective in this scenario, there is
no guarantee that it would be as effective in presence of
consistent cross traffic deep down in the network. In such a
case the congestion control of the sender will be triggered
by packet losses happening in the network core, not just due
to self-induced congestion. Effectiveness of RWM in these
scenarios could be improved by developing a BDP estimator
that takes into account transient network conditions by em-
ploying available bandwidth estimation techniques, predicting
variations in network conditions so to control the flow with
a more conservative window value before loss events could
take place. Such an improvement for RWM is currently under
development.

D. Distributed deployment of points of control

We have developed RWM for the following scenario: traffic
across two remote sites traversing the Internet, with RWM
deployed in just one of the two sites edge router. This
solution does not require the controller deployed in more than
one node. In a future study we will study the convergence
properties of multiple sites topologies with an RWM deployed
at the edge router of each site.

VI. CONCLUSIONS

In this paper we presented a novel controller for an edge
router that improves end-to-end TCP connections’ behavior
by throttling the flows modifying the TCP receive window
advertised: we call it Receive Window Modulation—RWM.
RWM computes the window value to enforce by estimating
the BDP of the connection based on its locally available
bandwidth and the end-to-end RTT. RWM has been proven
to enhance TCP goodput, while reducing dramatically the
buffering caused in intermediate nodes by TCP loss-based
congestion control mechanisms. As a consequence, bufferbloat
is contained and TCP connections behavior in terms of latency
improves. The experimental evaluation focuses on a scenario
where the traffic is mostly composed of bulk data transfers. In
this case RWM shows an improvement for average application
goodput of up to 70%, while avoiding buffering in the inter-
mediate nodes and consistently reducing latency in respect to
legacy CUBIC TCP connections. The best results have been
obtained in presence of multiple concurrent flows where the
RWM schema is able to provide high level of fairness when
sharing link resources. Future work includes the development
of an available bandwidth detection mechanism to make RWM
more robust to cross traffic. Furthermore we envision a study to
optimize resource sharing between different classes of traffic.
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