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Abstract—This paper overviews the state of the art, research
challenges, and future opportunities in an emerging research
direction: Social Sensing based Edge Computing (SSEC). Social
sensing has emerged as a new sensing application paradigm
where measurements about the physical world are collected from
humans or from devices on their behalf. The advent of edge
computing pushes the frontier of computation, service, and data
along the cloud-to-things continuum. The merging of these two
technical trends generates a set of new research challenges that
need to be addressed. In this paper, we first define the new
SSEC paradigm that is motivated by a few underlying technology
trends. We then present a few representative real-world case
studies of SSEC applications and several key research challenges
that exist in those applications. Finally, we envision a few exciting
research directions in future SSEC. We hope this paper will
stimulate discussions of this emerging research direction in the
community.

Index Terms—Social Sensing, Edge Computing, Internet of
Things, Smart Cities

I. INTRODUCTION

Social sensing has become a new sensing paradigm for
collecting real-time measurements about the physical world
from humans or mobile devices on their behalf [1]–[5].
Examples of social sensing applications include urban traffic
monitoring using mobile apps [6], obtaining real-time situation
awareness in the aftermath of a disaster using self-reported
observations from citizens [7], and smart healthcare moni-
toring using wearable sensors [8]. A key limitation in the
current social sensing solution space is that data processing
and analytic tasks are often done on a “backend” system
(e.g., on dedicated servers or commercial clouds) [2], [9]–
[11]. Unfortunately, this scheme ignores the rich processing
capability of increasingly powerful edge devices owned by
individuals (e.g., mobile phones, tablets, smart wearables,
and the Internet of Things). For example, the emerging AI
accelerators (commonly called “AI Chip”) on smartphones
are capable of finishing complex deep learning tasks that are
traditionally done on large server racks [12]. These ubiquitous,
powerful, and individually owned devices are referred to as
“edge devices” in this paper.

The advent of edge computing pushes the frontier of com-
putation, service, and data along the cloud-to-things contin-
uum to the edge of the network [13]–[15], and brings new
opportunities for social sensing applications. By combining
social sensing with edge computing, the privately owned
edge devices not only serve as pervasive sensors, but also

form a federation of computational nodes where the data
collected from them can be processed and consumed at the
edge [16]–[19]. We refer to the marriage of social sensing
and edge computing as Social Sensing based Edge Computing
paradigm, or SSEC for short. We illustrate a typical SSEC
system architecture in Figure 1. The SSEC system consists
of an edge layer, an edge server layer, and a service layer.
In the edge layer, privately owned edge devices (e.g., mobile
phones, IoT devices, drones) are leveraged to perform the
sensing, storage, networking, and computational tasks near the
source of the data. The edge server layer1 (often comprised of
local servers, cloudlets, smart routers, or gateways) provides
an intermediate layer between the edge devices and the cloud.
The edge server layer also provides additional data storage
and computing power in locations of close proximity to the
edge devices [20], [21]. The service layer (often built into a
back-end cloud) provides a global service interface to all users
interested in the applications/services.

The advantages of the SSEC paradigm are multi-fold: 1)
social sensing applications can process the sensing data right
at the edge devices where the data has been collected, which
could significantly reduce the communication costs (e.g., band-
width) and improve the Quality of Service (QoS) (e.g., delay)
of the applications; 2) social sensors (e.g., owner of the edge
devices) can obtain payoffs/rewards by leveraging the idle
resources of their devices to execute the computational tasks
for the application; 3) the SSEC architecture does not suffer
from a single point of failure and alleviates the performance
bottleneck of the “back-end” solutions.

The SSEC paradigm also introduces many research chal-
lenges. In particular, SSEC introduces a set of new chal-
lenges to real-time resource management by supporting delay-
sensitive social sensing applications in edge computing sys-
tems. For example, the edge devices (often owned by end
users) in SSEC are generally opportunistic and selfish (e.g.,
they are not committed to or interested in executing the
sensing tasks or sharing their private device status unless
incentives/payoffs are provided) [22], [23]. This assumption
is unique in SSEC and contrasts sharply with the assump-
tion made in the “backend” based solutions in traditional
distributed or cloud-based systems where all computational

1The edge server is also commonly referred to as a fog node in fog
computing literature. We use these two terms interchangeably in this paper.



Figure 1: Social Sensing based Edge Computing

devices are fully committed and information is shared among
all devices [10]. Furthermore, the SSEC paradigm calls for
close collaboration among end users, infrastructure owners,
and application managers. Due to the lack of natural trust
among them, none of these parties can be fully trusted as
they might be interested in performing privacy and security
attacks.

The rest of the paper is organized as follows. In Section II,
we present the definition, enabling technologies, and impact
of the SSEC paradigm. In Section III, we discuss several im-
portant applications and case studies of SSEC. In Section IV,
we discuss the unique research challenges and opportunities
in SSEC. We outline the future road map of this direction
in Section V. Finally, we conclude our vision of SSEC in
Section VI.

II. SOCIAL SENSING EDGE COMPUTING PARADIGM

IoT devices owned by individuals are increasingly equipped
with powerful computing and diverse sensing capabilities. The
sensing data generated by these devices provides an alternative
lens into physical phenomena as compared to traditional
sensor networks [1], [24]–[26]. Due to the sheer volume of
data generated by these devices, it makes sense to explore
opportunities for processing the data at the edge of the network
[10]. Previous work in edge computing leverage cloudlets [20],
micro datacenters [27], and fog computing [28] to address the
deficiency of cloud computing when the data is produced at
the edge of the network. However, these solutions fail to take
advantage of privately owned edge devices as SSEC does, and
they instead rely on infrastructure which must be provisioned
ahead of time. In this section, we formally define social
sensing based edge computing (SSEC) and discuss how SSEC
is complementary to existing edge computing frameworks.

A. What is SSEC?

DEFINITION 1. Social Sensing based Edge Computing
(SSEC): an application paradigm that uses humans and de-
vices on their behalf to sense, process, and analyze data
collected about the physical world.

In this definition, the devices owned by individuals not
only collect data about the physical world, but also actively

participate in the application by performing computations and
analytic tasks. These privately owned edge devices can be
quite heterogeneous, ranging from a GPS sensor, Raspberry
Pi, or robot, to a powerful multi-processor server.

SSEC has two important features: 1) it is human-centric;
and 2) it has the flexibility to support various applications with
different system architectures. We elaborate on these features
below.

1) Human-centric Nature of SSEC: SSEC is human-centric.
On one hand, the owners of the edge devices are freelance
users and their unique concerns must be carefully considered
in the SSEC paradigm. These human concerns includes privacy
and security, compliance and churn, and incentives, which
will be elaborated in Section IV. On the other hand, we
envision that not only can devices engage in the sensing and
computational tasks, but people can directly participate as
well. In fact, many social sensing applications require input
directly from a human, such as reporting traffic congestion
[29], or taking videos of an emergency event [18]. Also,
SSEC considers the potential of people serving as “social edge
nodes” where they directly make inferences using the data.
For example, consider an abnormal event detection scenario
where edge devices are used to collect video data and infer
abnormal events such as an intrusion [30]. Instead of using
machine learning algorithms to perform such data analytic
tasks, humans can directly identify the abnormal events from
the video with high accuracy [31]. We explore the possibility
of leveraging humans as computing nodes in a pioneer work
[7]. This unique feature of SSEC where human input and
intelligence complements the existing edge/cloud computing
paradigm promises to enable new applications that would not
be possible without it.

2) Flexibility of SSEC to Support System Variations:
Like traditional edge computing systems that come in many
different architectures [32], SSEC has diverse system vari-
ations as well (Figure 2). While SSEC focuses more on
the privately owned edge devices, it by no means intends
to drastically replace the existing cloud or edge computing
paradigm by diminishing the existing infrastructure such as
cloud servers, large data centers, cloudlets, or near-edge micro
data centers. In fact, SSEC fully takes advantage of existing
system infrastructures. The choice of the system architecture



is application specific. We summarize a few representative
architectures below.

Figure 2: Example SSEC System Variations
Hierarchical: A typical cloud-edge hierarchical SSEC sys-

tem architecture is shown in Figure 2. It follows the hierar-
chical structure where a remote cloud server, which is often
powerful and has a massive storage capacity, manages the
application and provides a global interface to the users. The
application governs a set of spatially distributed edge clusters,
where an edge cluster consists of a local edge server (e.g., a
micro data center or a Road-Side-Unit) and the nearby edge
devices that connect to it. In [33], [34], typical edge clusters
are illustrated, including a set of devices in a coffee shop
connected to a small in-house server owned by the shop; a set
of vehicles connected to a Road-side-Unit (RSU) on the same
street; and a set of mobile phones connected to the nearest base
station. The key characteristic of this hierarchical structure is
that the data flow is static: edge devices process the data locally
and offload further computational tasks to the edge servers, and
edge servers further process the data and send the results to
the cloud server for data aggregation tasks and storage.

Collaborative Edge: In a collaborative edge architecture,
edge devices in close proximity self-organize into a comput-
ing cluster and provide peer-to-peer services such as con-
tent delivery and computation offloading. This architecture is
particularly suitable for application scenarios where edge or
cloud servers are not readily available, or to avoid periodic
costs by using these infrastructures. Consider a crowd video
sharing application example where a set of spectators at a
sporting event (e.g., a soccer game) can take videos of the
highlights of the game and can stream them to people in the
audience who missed the play or who sit in a undesirable
locations. To improve performance for devices with poor
network connections, the system can encode the video streams
to a lower bitrate. In such a scenario, a remote cloud can
introduce significant delay for video sharing and local edge
servers may not be available (the servers/smart gateways at the
stadium may not be accessible by the audience). Therefore,
in the collaborative edge architecture, privately owned edge
devices perform these typically server-side roles.

Hybrid: A hybrid system architecture is a combination
of both a hierarchical and collaborative edge, in which self-
organized edge devices are connected to the available infras-
tructure (i.e., edge servers and the cloud). This infrastructure is
ideal for scenarios where self-organized edge devices cannot

satisfy QoS requirements, so readily available edge servers
and the cloud are leveraged to boost performance. Consider
a disaster response application where edge devices collabo-
ratively report damages during a disaster, often by executing
image analysis and machine learning algorithms to classify
damage severity [7]. A computationally weak edge device such
as a video camera can collect image data of the affected area
and offload the damage assessment task to a powerful edge
device nearby via Bluetooth. The assessment result is further
reported to all nearby edge devices in the form of alerts. In the
case where edge devices are under-performing due to lack of
high-end processors, the collaborative edge can offload tasks
to nearby edge servers, such as base stations, or cloud servers
for further processing.

B. Why We Need SSEC

Social Sensing based Edge Computing (SSEC) is motivated
by a few key technical trends: i) the IoT devices owned by
individuals are becoming increasingly powerful and some of
them even have similar computing power as the dedicated
servers in traditional edge computing systems [18], [35].
Therefore, it becomes a growing trend to push the com-
putation to the edge devices rather than dedicated remote
servers or edge servers [33]; ii) the popularity of mobile
payments provides a more convenient way for individuals to
receive incentives by contributing the spare resources on their
IoT devices for accomplishing social sensing tasks [36]. We
summarize a few advantages of SSEC below.

1) Coverage and Availability: One of SSEC’s main advan-
tages is its coverage and the availability of edge devices. There
are billions of privately owned edge devices worldwide that
can collect and process data at a global scale. This natural
mobile network is clearly advantageous in terms of coverage
as compared to static infrastructure such as data centers or
surveillance cameras. Furthermore, SSEC provides mobility
as the sensing and computing resources move geographically
with their users. This makes SSEC ideal for people-centric
sensing and computing tasks as the availability of resources is
closely correlated with the prevalence of noteworthy events.

2) Delay Reduction: Social sensing applications can pro-
cess the sensing data on the edge devices where the data has
been collected or on devices in close proximity, which could
significantly reduce the communication costs (e.g., bandwidth)
and improve the Quality of Service (QoS) (e.g., delay) of the
applications. This makes SSEC ideal for real-time or time-
sensitive applications.

3) Utilization: SSEC fully leverages the sensing and com-
puting power of the edge devices. Compared to traditional
edge computing frameworks that offload computational tasks
to edge servers or cloud servers, SSEC envisions that tasks can
be executed on smart devices owned by individuals as well. By
pushing the tasks to the edge, the SSEC architecture removes
the single point of failure and alleviates the performance
bottleneck of the “back-end” solution. This enables SSEC to
avoid high deployment costs for sensing tasks, and to save
money on the back-end infrastructure.



4) Reward Earnings: In SSEC, participants can obtain
rewards by contributing the idle resources of their devices to
execute computing tasks for the SSEC application. Similar to
how unused compute cycles are sold in cloud environments,
this creates a new market where the idle resources of edge
devices can now be fully utilized.

III. REAL-WORLD APPLICATIONS

In this section, we discuss a few representative SSEC
applications in real world scenarios.

A. Disaster and Emergency Response

An important application of SSEC is to provide real-time
situation awareness during disaster and emergency events (e.g.,
forest fire, robbery, terrorist attacks) [37], [38]. During such
events, human sensors (e.g., citizens, first responders, news
reporters) often spontaneously report a massive amount of
sensing information that describes the unfolding of the event.
SSEC provides a suitable architecture for this category of
applications: 1) the edge devices, with close proximity to the
human sensors, can collect and extract useful features about
the event without sending all data streams back to the cloud;
2) the edge server layer in SSEC can gather processed data
and exacted features from edge devices to provide real-time
event updates for local citizens; 3) the cloud server aggregates
all information collected and provides it to relevant agencies
and/or the general public. Figure 3 illustrates a scenario where
people use mobile phones and cameras to provide first-hand
footage of a terrorist attack at a shopping center. These data
can be helpful in tracking a suspect’s escape path. The edge
server layer provides time-critical alerts for potential threats
and offers safety recommendations.

Figure 3: Disaster and Emergency Response Application

B. Collaborative Traffic Monitoring

Collaborative traffic monitoring in social sensing aims at
collecting timely information about traffic conditions (e.g.,
congestion, accidents, and events) of an area of interest (e.g.,
a city). Such applications are useful for many transportation
services such as route planning, traffic management, and fuel
efficient navigation [34]. Traditionally, traffic monitoring has
been performed by analyzing data from statically installed traf-
fic cameras, which suffers from poor coverage [39]. Moreover,

the data generated by these traffic cameras were processed
at a remote cloud server, which introduces significant delay
and bandwidth costs. SSEC can address this problem by fully
leveraging social sensing and the edge devices owned by
people. In particular, the personally owned sensing devices
on vehicles (e.g., cameras, accelerometers, GPS sensors) offer
opportunities to collect a large amount of traffic data in real
time. For example, a typical traffic monitoring application
can task a set of drivers to use their dashboard cameras
to record traffic in front of their vehicles. The processed
data (e.g., extracted features) are offloaded to nearby edge
servers (i.e., RSU) for further analysis of traffic conditions.
Additionally, human sensors are also capable of reporting
high-level descriptions of the traffic context using their smart
phones. An example of such a social sensing application is
Waze2 where drivers collectively report their observations of
accidents, road hazards, and traffic jams in real-time. In Figure
4, pedestrians and drivers collaboratively contribute traffic data
using their edge devices. The edge server infers the traffic
conditions of local streets from the social sensing data and
sends accident alerts to the drivers. Transportation agencies
can also query the cloud for the road conditions and accidents
in their regions of jurisdiction and prioritize accident response,
road repair, or traffic control accordingly.

Figure 4: Collaborative Traffic Monitoring Application

C. Crowd Abnormal Event Detection

The goal of crowd abnormal event detection in social
sensing is to generate alerts for abnormal events from data
contributed by human sensors and their portable devices
(e.g., mobile phones). Traditional abnormal event detection
solutions largely depend on video data collected from installed
surveillance cameras and utilize image processing techniques
to identify these events [40], [41]. Those solutions fail in
situations where installed cameras are not available (e.g.,
due to deployment costs). The prevalence of camera-enabled
portable devices has enabled the collection of geo-tagged
pictures, videos, and user-reported textual data through social
sensing applications. Such multi-modal data can be exploited
for enhanced situation awareness during abnormal activities
(e.g., providing insights for investigating the severity and

2https://www.waze.com/



causes of events). For example, during a soccer game, events
such as sudden appearance of unexpected object or malicious
behavior of people (e.g., throwing a signal flare into the field)
can pose great threats to the safety of players and interrupt
the normal course of the game (Figure 5). In our SSEC
framework, the audience (as human sensors) can contribute
videos, images, and texts to report their observations about
the abnormal events. Upon detection of the abnormal events
during the game, the cloud-hosted service will send alerts to
the fans and the police department for an emergency response.

Figure 5: Crowd Abnormal Event Detection Application

D. Plate Recognition

The plate recognition application (Figure 6) was first in-
troduced in an effort to leverage private vehicles to collabora-
tively track down suspects of AMBER alerts [42]. In this appli-
cation, vehicles equipped with dash cameras form a city-wide
video surveillance network that tracks moving vehicles using
the automatic license plate recognition (ALPR) technique. This
system can be used to effectively track down criminal suspects
who are on the run in vehicles. It complements existing vehicle
searching processes that heavily rely on reports from witnesses
who might miss alerts and cannot search enough areas of
city [43]. Collecting surveillance video footage can expand
coverage. However, analyzing huge amounts of video data
in the cloud leads to unreasonable data transmission costs
and high response latency. SSEC can significantly reduce the
cost of data transmission and response latency by offloading
the data to nearby RSUs for real-time processing. SSEC also
pushes local processing to be done on these private vehicles to
extract features from the raw images and send the processed
data to the RSUs instead. This is because the video data
collected from the vehicles can also reveal private information
of the drivers (e.g., residence location) or the faces of the
citizens. Upon detecting the suspect’s vehicle, the cloud-
hosted service will send alerts to the police department for
an immediate response.

E. Crowd Video Sharing

The crowd video sharing application (Figure 7) uses self-
organized edge devices to perform peer-to-peer video content

Figure 6: Plate Recognition Application

delivery. This application is most suitable for events where
people take interesting videos and want to share it with one
another. For example, if a spectator at a soccer match has a
good view of some action, then other spectators in less favor-
able locations may desire to view the footage from the better
perspective. In order to facilitate this application the system
must 1) employ the participating edge computing resources
to avoid bottlenecks as the system scales, and 2) perform
video encoding so that devices with poor network connections
can be sent smaller video files, thus avoiding network delays.
This problem can be solved using SSEC by coordinating edge
devices to perform computation and communication tasks,
thus providing a source of compute power and bandwidth
which scales with the number of participating devices, i.e.,
demand. A bottom-up game theoretic decision making process
optimizes the encoding and transmission of the videos in order
to minimize delay in the system [44].

Figure 7: Crowd Video Sharing Application

IV. RESEARCH CHALLENGES AND OPPORTUNITIES

The fusion of social sensing and edge computing pushes
the frontier of sensing, computation, and service to the edge
of the network where social sensing occurs. However, utilizing
edge devices in the context of social sensing introduces a set
of fundamental challenges that are yet to be fully addressed.
In this section, we discuss a few critical research challenges
and opportunities in SSEC.

A. Resource Management with Rational Edge

In SSEC, the edge devices are usually owned by end users
rather than application providers. Due to the rational nature



of device owners, edge devices and applications often have
inconsistent or even conflicting objectives [16]. We refer to
this unique feature of SSEC as “rational edge”. Due to the
rational edge feature, two important issues prevent existing
resource managements schemes from being applied to SSEC,
namely competing objectives and asymmetric information.

1) Competing objectives: From the application’s perspec-
tive, it is important to ensure that the edge devices finish
the allocated social sensing tasks in a timely fashion to meet
the Quality of Service (QoS) requirements (e.g., end-to-end
delays). In contrast, device owners are often less concerned
about the QoS of the applications but are instead concerned
about their costs in running the computational tasks allocated
by the applications (e.g., the device’s current utilization,
energy consumption, memory usage). Thus, they are often
unwilling to execute the allocated tasks until sufficient in-
centives are provided [22]. This is in sharp contrast with
traditional distributed computing systems where computational
resources are fully cooperative and directly controlled by the
application. The mismatch in objectives held by the end users
and the application must be carefully addressed by developing
a set of new computation allocation models that respect such
discrepancies between the two parties.

2) Asymmetric Information: Another critical challenge in
SSEC is that the application server and edge devices usu-
ally have different degrees of information, i.e., “asymmetric
information”. Such asymmetric information makes resource
management in social sensing based edge computing systems
particularly challenging [16]. The asymmetric information
challenge can be viewed from two aspects. On the server
side, the application normally has detailed information about
the tasks (e.g., the dependencies and criticality of the tasks).
This information is important in understanding how tasks are
related to the QoS requirements imposed by the social sensing
application (e.g., which tasks are more important and should
be prioritized; which tasks should have a tighter deadline).
In contrast, the edge devices are often less concerned about
the details of the tasks and the servers’ QoS requirements
but more interested in their own device status (e.g., CPU
utilization, energy consumption, memory usage). Moreover,
an edge device may not share its status information with the
server or other edge devices in the system due to various
concerns (e.g., privacy, energy, bandwidth). This leads to insuf-
ficient information for the server to make optimal computation
allocation decisions.

B. Constrained Cooperativeness

In SSEC, edge devices are assumed to be only partially co-
operative in finishing their computational tasks due to the ratio-
nal or selfish nature of end users. This challenge is referred to
as “Constrained Cooperativeness”. Previous studies showed
that collaboration among computation nodes can significantly
improve efficiency of resource utilization in distributed sys-
tems [45]. Such collaboration between edge devices in social
sensing applications is essential to achieve optimized scala-
bility and efficiency in the SSEC system. For example, the

execution time of a set of tasks can be significantly reduced if
those tasks are allocated to a group of edge devices that run
the tasks in parallel and finish them collaboratively. Consider
an abnormal event detection application where edge devices
(e.g., smartphones, dash cameras) are tasked to take videos
or pictures of their surroundings to detect abnormal activities.
An edge device may not be equipped with a camera and thus
is incapable of completing the allocated tasks on its own. On
the other hand, if it has strong computing power, then it can
serve as a “local computation hub” for nearby lower-end edge
devices that do have cameras. However, collaboration among
edge devices is especially challenging because: i) edge devices
are rational actors who are unwilling to collaborate with others
unless sufficient incentives are provided; ii) various constraints
may prohibit collaboration among edge devices (e.g., latency
constraints imposed by the physical distance between devices
or trust constraints imposed by the trust between devices);
iii) collaboration requires explicit consideration of the task
dependencies of the application.

C. Pronounced Heterogeneity

The heterogeneity in SSEC is often more pronounced than
in regular edge computing systems. In particular, the edge
devices in SSEC often have diversified computing power,
runtime environments, network interfaces, and architectures,
making it difficult to orchestrate these devices to collabora-
tively accomplish the sensing and computational tasks. The
heterogeneity problem in SSEC is particularly challenging
because it is not possible for the application to cherry-pick
the devices in a fully controlled manner given the fact the
devices are owned by individuals [46]. In order to tame
the heterogeneity of edge devices in SSEC, several critical
research tasks are involved.

1) Runtime Abstraction: A critical issue in heterogeneous
SSEC is that the devices have diverse runtime environments
that may not support the social sensing tasks to be processed.
For example, a device may have an incompatible operating
system or lack the necessary dependencies to execute a social
sensing algorithm (e.g., a deep learning algorithm cannot run
on a device without necessary libraries such as Tensorflow
or CUDA [47]). Containerization techniques such as Docker
[48] can abstract away some hardware details of the devices
and provides a virtual environment that offers a lightweight,
portable and high-performance sandbox to host various appli-
cations. In particular, the social sensing application developers
can “wrap” all necessary dependencies and the OS itself into
a Docker container for each social sensing application. Such
runtime abstractions can allow the edge devices in SSEC to
provide the same interface to the social sensing application
developers and offers them the “write once and run anywhere”
feature despite the heterogeneity of SSEC devices.

2) Hardware Abstraction: Hardware abstraction targets
at abstracting away the details of heterogeneous hardware
specifications of the edge devices for the ease of resource
management in SSEC. A possible solution was proposed in
HeteroEdge [17], where the hardware capabilities of a device



can be represented as a set of “workers”. HeteroEdge considers
three types of workers that are essential for finishing social
sensing tasks in SSEC - CPU, GPU, and Sensor workers. Each
worker is associated with a capability descriptor in terms of the
estimated worst case execution time (WCET) for processing
social sensing tasks. The device owners can specify which
workers are available to the SSEC application. HeteroEdge
follows three important design principles in hardware abstrac-
tion in SSEC: i) the set of heterogeneous edge devices should
form a unified homogeneous resource pool for the social
sensing application; ii) the device owners should be able to
control which resources they would like to provide for an
application; iii) the edge devices can easily keep track of their
own dynamic status and provide necessary context information
for the runtime decision and optimization in SSEC.

3) Networking Abstraction: The privately owned edge de-
vices in SSEC can have very heterogeneous network inter-
faces (e.g., Bluetooth, WiFi, Zigbee) and it is essential to
abstract away the networking details to allow developers to
deploy SSEC applications without worrying about the specific
network interface and protocol. A promising technique to
accomplish this task is Software Defined Networking (SDN)
[49]. SDN can orchestrate the network, the services, and
the devices by hiding the complexities of this heterogeneous
network environment from the end users. It provides APIs that
can simplify the management of the network, define network
flows, and facilitate virtualization within the network.

We found existing resource management work in edge com-
puting cannot sufficiently handle the pronounced heterogeneity
in SSEC. A middleware that jointly addresses the three levels
of abstraction above for SSEC has yet to be developed.

D. Robustness against Churn and Dynamic Context

In SSEC, edge devices are most often privately owned
and managed, and therefore suffer from churn [21], causing
inconsistent availability by devices in edge computing. The
inconsistency of edge device availability is aggravated since
devices routinely kill tasks for power savings, or are oppor-
tunistically contributing compute power and then must stop in
order to service their primary purpose [50]. Furthermore, in
the case of mobile computing systems, a main criterion in the
eligibility of a device to perform a task is the location of that
device. Should the device move, then it may become unable to
serve its function and must be replaced by a device in a more
favorable location. To solve this problem in a way that is both
scalable and reliable, we introduce buffering into multi-stage
streaming applications. In such systems, tasks are broken into
multiple stages where different devices perform an operation
at each stage of a computational pipeline. If a device along
the pipeline unexpectedly quits and must be replaced, then
the replacement can be “filled in” by the the devices adjacent
to it in the pipeline. Furthermore, this pipeline design lends
itself to taking fine-grained advantage of heterogeneous edge
computing hardware since each stage can be matched to a
specialized computing platform.

Another challenging issue in the SSEC system is that
edge devices have volatile statuses and their willingness to
participate in SSEC applications may change dynamically over
time. We refer to this challenge as dynamic context. Con-
sider an environment sensing application where edge devices
(e.g., mobile phones) are used to collectively monitor the air
pollution of a city. Each edge device is tasked to monitor a
particular area. An edge device (or its owner) may change
the compliance of task execution due to i) changes in the
battery status of the device, or ii) changes in the physical
location of the device with respect to the monitored location.
Failure to capture such dynamics may lead to significantly
suboptimal resource allocation where the costs of edge devices
to complete a task are prohibitively high.

E. Privacy and Security

SSEC entails potential privacy risks to owners of edge de-
vices in social sensing applications. During the data collection
phase, the data collected from edge devices can potentially
reveal end users’ private information. For example, in the
plate recognition application, the image captured by an edge
device may contain street information, potentially disclosing
user residence or mobility patterns. Similarly, during the
resource management phase it is of the application’s interest
to obtain better knowledge on the status of each edge device
to maximize the task allocation efficiency. However, the edge
devices may not be willing to share such status information
due to their privacy configurations. Existing privacy preserving
techniques, such as anonymity techniques, can effectively
protect the identities of edge devices from curious entities. But
such techniques also prevent the application from identifying
the contributors of the computational tasks, thereby preventing
the server from distributing incentives through conventional
means [34]. Though privacy-aware SSEC systems have been
proposed [19], work still must be done to ensure that both the
privacy expectations from end users and the QoS requirements
from the applications are met.

Security in SSEC is an important concern, both for the
benefit of users participating in the application and for the
application itself so that the services rendered are not sabo-
taged. Unfortunately, the architecture of SSEC in which data
originates and is processed on privately owned edge devices
does not lend itself to conventional security systems (e.g., au-
thentication in order to access a resource). Care must be taken,
therefore, to ensure that i) peer-to-peer APIs in Collaborative
Edge or Hybrid SSEC architectures are designed such that
private information cannot be stolen by malicious attackers;
ii) it is difficult or impossible to “game” the system by
contributing incorrect sensing measurements or computation
results in order to obtain the incentives without expending
effort; iii) the system is resilient against attempts to sabotage or
“poison” the results of the application for malicious purposes;
iv) the system is resilient against denial-of-service attacks such
as intentionally delaying tasks in order to harm the QoS.



V. ROADMAP FOR FUTURE WORK

A. SSEC and 5G

5G promises to have an estimated network speed as fast
as 10 Gb/s and a network latency as low as 1 ms [51].
We envision that 5G will significantly boost the performance
of SSEC and enable new SSEC applications. For example,
the emergence of 5G networking capabilities will increase
the number of connected devices on a network and pro-
mote collaboration among private edge devices. The delay
requirement of 5G requires base stations to be deployed at
a high density, which would also be able to serve as edge
servers in SSEC. With 5G networks, SSEC applications that
involve video content transfer such as crowd video sharing and
plate recognition will significantly benefit from the boosted
Internet speed and ultra low latency. We envision that more
data intensive and delay sensitive SSEC applications will be
enabled by 5G and future networking technologies.

B. SSEC and AI

AI at the edge is a growing trend in both industry and
academic research. Many AI-enabled chips have been devel-
oped and integrated into video cameras, hand-held devices,
and vehicles [42]. However, AI capabilities are still far from
being pervasive - many edge devices are low-end sensors
without processing capabilities or hardware (e.g., GPU) for
supporting AI algorithms. SSEC can promote AI by develop-
ing a collaborative intelligent edge where lower end devices
can offload AI tasks to devices with AI capabilities. Many
roadblocks must be removed for this vision to be realized.
For example, performing AI tasks on privately owned edge
devices inevitably incurs an energy cost. Considering that the
battery is often the most precious resource of an edge device
[14], incentive mechanisms must be designed so that a fair
market can form to reward those who contribute energy. The
collaborative intelligent edge also involves interactions among
devices of differing ownership. Therefore, privacy and trust
concerns must be carefully addressed.

C. SSEC and Human-in-the-loop

Human-in-the-loop SSEC enables the integration of human
intelligence (e.g., context-awareness, cognitive skills) with
the processing and sensing capability of physical devices.
We envision that the human component of SSEC can be
modeled as a “social edge node” in which the human can
perform inference or make decisions in the edge computing
framework just like a physical device. This Human-in-the-
loop SSEC paradigm can benefit many mission critical tasks
by introducing the domain expertise that people possess. For
example, humans can improve the effectiveness of physical
systems in many intelligent tasks (e.g., disaster assessment [7]
and traffic abnormality detection [6]). We envision that a new
set of theories for building human-machine hybrid systems
must be developed to fully leverage human intelligence in
SSEC.

VI. CONCLUSION

In this paper, we present an emerging SSEC framework
to exploit the edge-enabled infrastructure and the ever-
increasingly powerful IoT devices to improve the scalability
and responsiveness of social sensing applications. With the
human-centric design, SSEC envisions to integrate human
intelligence into the process of data collection, processing,
analysis, and decision making. We discuss several emerging
applications that are enabled by SSEC, together with a number
of open research challenges are to be undertaken by the
community. We hope this paper will bring the SSEC paradigm
to the attention of the community.
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