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Abstract—As we experience an unprecedented growth in the
field of Unmanned Aerial Vehicles (UAVs), more and more
applications keep arising due to the combination of low cost and
flexibility provided by these flying devices, especially those of the
multirrotor type. Within this field, solutions where several UAVs
team-up to create a swarm are gaining momentum as they enable
to perform more sophisticated tasks, or accelerate task execution
compared to the single-UAV alternative. However, advanced so-
lutions based on UAV swarms still lack significant advancements
and validation in real environments to facilitate their adoption
and deployment. In this paper we take a step ahead in this
direction by proposing a solution that improves the resilience
of swarm flights, focusing on handling the loss of the swarm
leader, which is typically the most critical condition to be faced.
Experiments using our UAV emulation tool (ArduSim) evidence
the correctness of the protocol under adverse circumstances, and
highlight that swarm members are able to seamlessly switch to an
alternative leader when necessary, introducing a negligible delay
in the process in most cases, while keeping this delay within a
few seconds even in worst-case conditions.

Index Terms—UAYV, swarm, resilience, ArduSim, flight coordi-
nation.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are currently considered
a hot topic, as evidenced by the many works on this subject, as
well as the attention from the media on a daily basis. In fact,
their versatility, especially that of multirrotor UAVs, enables
performing a wide range of tasks that were unthinkable just a
few decades ago [1], like inspections at dangerous locations
(e.g. nuclear plants), fire propagation analysis, rescue missions,
or even traffic monitoring.

While currently most of these applications rely on the
deployment of a single UAV, interest is growing in solutions
where multiple UAVs are simultaneously deployed to perform
a joint task [2], thereby conforming a UAV swarm. Examples
of such applications include large-scale agriculture in search
of pests or weeds [3], wild life recordings [4], or border
surveillance [5], among others.

While technological advances have facilitated the control of
multirrotor UAVs even for inexperienced users without a tech-
nological background, the situation differs drastically when a
single user attempts to manage a UAV swarm. In fact, such

option is not readily available in commercial devices, and only
a few R&D teams worldwide have tried to face this challenge.
Among the many issues that raise when handling a UAV
swarm we could cite the takeoff and landing procedures [6],
that should be fast while providing guarantees that UAVs shall
not collide in the process, the election of swarm leader, the
assignment of UAVs to specific positions in the swarm, and
the flight coordination among UAVs [7].

While a coordinated flight is taking place, the issue of fault
resilience also arises. We refer to a fault as some event that
causes one or more UAVs to fail, thereby being removed from
the swarm. Such condition can be particularly problematic
when the swarm leader itself suffers the failure, which could
potentially affect the entire swarm, impeding all active UAVs
to continue their mission.

In this paper we specifically focus on the swarm resilience
problem. In particular, we will show how a swarm protocol
called MUSCOP [7] can be enhanced so as to be robust to
the loss of the leader, or even to the loss of several UAVs,
including leader and backup leader elements. By implementing
our solution in a realistic UAV emulation platform, we are able
to show the effectiveness of the proposed approach, and assess
the time overhead introduced in the process.

The remainder of this paper is organized as follows: in
section II we provide an overview of related works on this
topic. Then, in section III, we present the MUSCOP protocol
for UAV swarms following planned missions, and also our
proposal to enhance this protocol in order to make it resilient
to the loss of UAVs, especially the swarm leader. Next, section
IV provides an overview of the simulation framework and
the target metrics. Simulation results are then presented and
discussed in section V. Finally, section VI presents the main
conclusions of this paper, and refers to future works.

II. RELATED WORKS

Although not too many authors have addressed the specific
topic of UAV swarms, it is possible to find some interesting
works in the literature. For instance, Leonard et al. [8] have
tested different swarm algorithms using quadcopters. They
focused on a surveillance system for tracking selected targets.
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In their work, the swarm was modelled as a multi-agent
system, and they sought an optimal cooperation among agents
to maximize mission safety. Their solution was able to achieve
smooth and safe navigation, even in dense environments.

Anwar Ma’sum et al. [9] developed a solution where a
swarm of UAVs was able to perform object localization and
tracking. The swarm robots were equipped with a Modified
Particle Swarm Optimization (PSO) Algorithm that outper-
formed a fully random based moving algorithm for object lo-
calization and tracking. However, experiments were performed
in a confined indoor environment of only 48m2. Furthermore,
the object they were localizing had an orange color, a color
that is easier to detect since it is not a common color in nature.
So, confusing the object with other objects is less likely.

Wallar et al. [10] developed a path planning solution based
on the concept of a scalable dynamic grid, where quadcopters
cooperated to cover an environment in an efficient and reliable
manner. Their approach registered already surveyed areas
to avoid repeating analysis for those areas. In addition, the
flight altitude of each UAV was determined using a nonlinear
optimization. Their approach was tested in a simulated envi-
ronment.

Pestana et al. [11] presented a modular multi-robot swarm
architecture, where each swarm agent consists of an AR
Drone 2.0 quadrotor connected to a laptop which runs the
software architecture. Their approach relies on the Robot
Operating System (ROS) software framework. This makes
their work available for a great audience, since ROS makes
code sharing and module reuse easy, and the AR Drone 2.0
is readily available on the market. In their approach, the only
information shared among swarm agents is the position of each
robot, and they rely on a visual-based solution for localization
based on ArUco markers, which are used to sense and map
obstacles. In addition, they rely on an Extended Kalman Filter
localization and mapping method. However, their approach
heavily depends on the WiFi links between the UAV and the
laptop, which caused some problems according to the authors.

Mammen et al. [12] present an approach to designing
swarms of autonomous, adaptive robots based on an ob-
server/controller framework that has been developed as part
of the Organic Computing initiative. Relying on an extended
Learning Classifier System (XCS), in combination with ad-
equate simulation techniques, it empowers the individuals
to improve their collaborative performance, and to adapt to
changing goals and changing conditions.

Sadrollah et al. [13] propose a distributed localisation
framework for fast and reliable dissemination of localised
information in elastic three-dimensional networks composed
of UAV swarms. In particular, they combined IoT technologies
with swarm robotics to control swarms. However, this work
only introduces the basic idea, and no actual experiment was
performed.

Mulgaonkar et al. [14] tested the performance of micro-
quadcopter swarms in tight/dense formations, delta leader-
follower and square formation flight experiments. The drones
were also demonstrated to be robust to collisions at velocities

of 4m/s. While we acknowledge the advantages of micro
UAVs, we also believe that, due to their low mass, they
are usually unable to withstand the elements in an outdoor
environment. This makes the small, inexpensive and agile
micro UAVs only useful for indoor applications, whereas we
tend to focus on outdoor applications.

More recently, Bai et al. [15] proposed an improved UAV
swarm model by incorporating the effect of a limited com-
munications range. An improved resilience metric is proposed
based on the difference between the swarm’s performance and
its standard system performance.

Our work significantly differs from the former ones as we
specifically focus on mission-based swarm solutions, aiming
at improving robustness to the loss of the swarm leader, a topic
not addressed by any of the previous proposals.

III. PROPOSED APPROACH

In this section we detail our proposed solution, which
improves upon an existing protocol for UAV swarm man-
agement that we have developed in a previous work, called
MUSCOP [7], endowing it with resilience to the loss of swarm
elements, especially focusing on the loss of the leader and
backup leader UAVs. We will first provide a quick overview
of MUSCOP, and then introduce the proposed improvements
to make this protocol more robust.

A. MUSCOP overview

The MUSCOP protocol aims at keeping a stable flight
formation while the swarm follows a previously planned mis-
sion. It is based on the master-slave model, where the swarm
is synchronized by the master UAV when swarm members
reach each waypoint of the mission. Before taking off, all the
slaves receive from the master a copy of the master mission,
having the different waypoint coordinates adjusted so as to
account for their position offset in the flight formation with
regard to the swarm leader. During flight, UAVs move from
waypoint to waypoint of their own mission, waiting on each
of these waypoints until the master UAV starts the next part
of the mission. As the planned speed is the same for all the
UAVs in the swarm, this solution keeps the flight formation
steady throughout the entire flight. For more details on the
functionality and performance of this protocol, please refer to

[7].
B. Resilience mechanisms

The MUSCOP protocol described above has shown to
operate consistently both in simulation and real environments,
introducing a minimal overhead on each mission waypoint.
However, its original design is not prepared to handle the
loss of swarm elements. Hence, in order to make MUSCOP
resilient to the loss of UAVs, especially the swarm leader, we
have devised a set of mechanisms to make it more robust. The
improvements made include modifications to the decisions and
message exchanges taking place before the takeoff, and also
during the flight itself. The code for this protocol is freely
available online at [16].
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1) Message exchange: The first aspect to take into account
is that all the messages are transmitted continuously until
the UAVs react accordingly. This way, we allow the flight

to continue unhindered even when several messages are lost user leader slaves

in transmission due to an unreliable communications link. helloyAvA
Figure 1 shows the strategy used by MUSCOP to coordinate (ﬂw\ls/ > —

the flight, while changing the leader of the swarm when getectedn UAVS __ _ Lqc---- helloyavn __ .-

needed. At the beginning, the leader is predefined by the user, P

and the slaves continuously send a hello message to inform ' ' u

about their presence, so that the leader can determine the size I%_)i t missi I

of the swarm. At the same time, it provides feedback to the Zzt:&s;:ns

pilot through the ArduSim graphical user interface, informing

about the number of currently detected slaves. Once the pilot datay Ay,

considers that all the UAVs in the swarm have been detected, '""XC%XV-{)

he can start the setup step, where the leader calculates the «— |

corresponding location of each UAV in the flight formation, (//AcKUAVT

given their current location on the ground. When it finishes -ttt

these calculations, it sends a data message to each slave all ready readyToFl,

including the mission to follow, and an ordered list of UAVs

defining which one must become the leader during the flight ACKUAVA

in case the current leader fails (further explained in section

III-B2). Regarding the mission each UAV must follow, it is m

a modified copy of the mission of the leader, considering the B, > }timeoutRTF

offset in the flight formation between each slave and the leader. take off
Once the master sends the data message to the slaves and it ready

is acknowledged, it sends the readyToFly message to synchro- ://-/ ready

nize the response of the UAVs to the messages received. Only « e

when all the slaves acknowledge the reception of this message -t

does the master stop sending it, and performs the takeoff. : ! n

Similarly, slaves will take off when a short timeout elapses ‘ ' f

since the last time they received the readyToFly message. The start test

UAVs take off one by one using the takeoff sequence provided

by the master UAV, and finally they inform the pilot that they I

are ready to start their mission. reachedWPo W} reachedWPo
2) Determining the leader: In order to create a list of move (--n;g\;e‘T';A;'PIEK—\/\-Iﬁ(_)(—r\_)

leaders, we reuse an algorithm that we developed earlier called o\m)

safeTakeOff [6]. We encourage the reader to refer to this Wﬂmg

paper to get a full understanding of its working principles. | | TTTUioes >

Nevertheless, we will provide a quick overview below. reachedWPO0 < AckwPol) reachedWPO
The objective of the algorithm is to compute the assignment éckW/P‘m’/

of UAV positions in a swarm. In order to do this efficiently < AP o)

it is necessary to minimize the overall distance travelled by %_)

each UAV during the takeoff process. In practical terms, this ' "

means that the UAVs moving to the most remote positions will

take off first because this is safer and, it will also reduce the . "

overall time overhead. This process is presented in Algorithm reachedWPlast reachedWPlast

1. Basically, it consist of the following four steps:
1) Find a central location with respect to the UAVs de-

ployed on the ground, landed landed

2) Calculate the euclidean distances from that central loca-

tion to the positions in the flight formation,
3) Sort this list in descending order, Fig. 1. Interaction between operator, master UAV and slaves.
4) Assign each location in the flight formation to the closest

UAV on the ground, in descending order given that

distance.
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To obtain the list including the leader and the backup lead-
ers, we only have to reverse the takeoff sequence. We use this
approach because the messages are sent from leader to slaves,
and vice-versa, and this way we minimize the distance between
sender and receiver, hence optimizing communications.

Algorithm 1 SafeTakeOff(numUAVs, groundLocations, flight-
Formation)
Require: groundLocations.size = numUAVs A\
flightFormation.size = numUAVs
1. centerLocation = mean(groundLocations)
2: airLocations = f(centerLocation, flightFormation)
3: airList = ()
4: for loc in airLocations do
5: airList + (loc, loc.distance(centerLocation))
6
7
8

: end for
. sort airList in descending distance order
S fit=0

9: totalError = MAX_VALUFE

10: for alocation in airList do

11: bestError = MAX_VALUE

12: for gLocation in groundLocations do

13: error = gLocation.distance(aLocation)?
14: if error < bestError then

15: bestError = error

16: bestID = gLocation.ID

17: end if

18: end for

19: totalError += bestError

20: fit « (id, groundLocations[bestID], aLocation)
21: groundLocations.remove(bestID)

22: end for

23: return fir

3) Flight sequence: The flight starts when the pilot uses
the corresponding start command in ArduSim, sending a
message to all the UAVs. The location in the flight formation
is considered as the first waypoint of the mission, so all the
slaves inform the leader that they have reached that waypoint.
When the leader receives those acknowledgments, it starts
sending the moveToWP command to force them to move to
the next waypoint. The leader keeps sending this message
even when it reaches the next waypoint in order to allow the
slaves to keep track of its presence. The slave UAVs also start
moving to the next waypoint when they receive the moveToWP
command, and they also keep informing the leader that they
have reached the previous waypoint until they arrive to the
next one for the sake of redundancy. This process continues
until all the UAVs reach the last waypoint. Then, the leader
starts the landing procedure, sending them a message to force
the slaves to land. Before landing, the slaves come nearer to
the leader while maintaining the same flight formation in order
to reduce the landing area, thus making it easier to collect the
UAVs, avoiding them to land in far and/or inappropriate areas.

4) Loss of leader: In case the leader of the swarm fails
while moving from one waypoint to the next, it stops sending
messages to the slaves, and they detect the failure when the
time elapsed since the last received message surpasses a certain

threshold, which in our implementation was set to five seconds.
The UAVs take the decision to change the leader of the swarm
when they reach a waypoint and detect that the current leader
has been lost. Then, they automatically switch the leader to
the next one in the list provided by the master UAV, which
details the order in which the UAVs must became leaders.
The decision is taken in a distributed fashion, as each slave
takes this decision on its own, and it requires a limited amount
of time, as the slaves are typically able to detect that the
leader has been lost prior to reaching the new location. If the
following UAV in the list also fails, then the remaining UAVs
switch to the next leader in the list, and the process goes on
until no UAVs remain in the swarm. This way, the mission
can be resumed even when more than one UAVs fails.

IV. SIMULATION FRAMEWORK

Our proposed solution was developed and evaluated using
ArduSim, a novel multi-UAV flight simulator/emulator we
have developed [17], and that is freely available online [18]
under the Apache License 2.0. ArduSim is able to emulate the
physics of hundreds of multicopters with great accuracy, being
that software agents communicate with Ardupilot firmware
through the MAVLink communications protocol [19]. It also
simulates the communication between UAVs through virtual
Wi-Fi links (ad hoc mode).

Figure 2 shows the main window of ArduSim. Most of
the window area (1) shows the movement of the virtual
multicopters, and the planned mission itself (if it applies). In
this example, three UAVs are following a planned mission.
Several buttons up on the right (2) allow to control the
simulation, and help to show relevant data about each UAV in
real time. Finally, the log in the upper left corner (3) shows
the progress of the simulation, and messages generated by the
protocol under development.

Fig. 2. Three UAVs following independent missions on ArduSim.

The most relevant characteristics of ArduSim are:

¢ Seamless protocol deployment on real UAVs.
o Soft real-time simulation.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on December 10,2020 at 08:34:01 UTC from IEEE Xplore. Restrictions apply.



Fig. 3. Experiment where a swarm of 5 UAVs start a mission, but only 2
elements are able to complete it. Circles highlight UAVs that failed.

o Seamless scaling to more than 100 UAVs in real time.

o Wireless channel model for UAV-to-UAV communica-
tions.

o Complete Application Programming Interface (API).

o Automatic UAV collision detection.

o Comprehensive experiment data logging.

For the current study we have developed our proposed
solution in ArduSim, so as to quickly evaluate its performance
under different conditions. Specifically, we have forced the
loss of leader and even a variable number of backup leaders
in our experiments, so as to assess the time overhead involved
in reconfiguring the swarm by picking a new leader among the
available UAVs. Thus, our main performance metric was the
time overhead per loss event, where a loss event may involve
losing one or more UAVs.

V. SIMULATION RESULTS

Using the simulation framework described in section IV, we
performed several experiments to validate the correctness of
our solution, and to measure the responsiveness of the swarm
management protocol to UAV loss events. The settings and
results are summarized in Table I

In Figure 3 we show a snapshot of a simulation experiment
where a swarm of 5 UAVs takes off and starts following a set
of waypoints defined for the mission. Along the way different
UAVs fail and land. In all cases the remaining UAVs continue
their original mission unhindered. In this example, only 2 of
the UAVs are actually able to complete the whole mission.

Figure 4 shows the simulation time differences correspond-
ing to the experiment shown above, comparing it to the
scenario without any loss of UAVs. The different steps shown
correspond to the short pauses made by swarm elements at
each waypoint. As can be observed, the overall delay at the end
of the mission is of about 22 seconds, which represents a 3.3%
increase in the overall flight time. In general we consider that
this value can be considered acceptable for most application
scenarios.

To gain more insight into the delays associated to the
procedure of selecting an alternative leader for the swarm,
Figure 5 shows the delay introduced in worst-case situations,
that is, when the leader and backup leaders are lost, and when

Fig. 4. Mission time comparing the default case (no UAV lost) against the
loss scenario.

TABLE I
SETTINGS AND RESULTS OF THE EXPERIMENTS PERFORMED
Number of simulated UAVs 5
Number of lost leaders 3
Average time to detect leader loss | 2.6 s
Total flight time 693 s
Overhead caused by protocol 22's

this event takes place just before reaching the next waypoint,
thus leaving little reaction time for the remaining UAVs to pick
a new leader. As shown, the highest value in this example is
obtained when the leader and the next 4 backup leaders in the
list are lost just when arriving to a waypoint; in this situation
the delay is of about 9 seconds, 5 of which correspond to
the timeout required to detect the current leader is lost, and 4
additional seconds are required to detect the other 4 backup
leaders are lost as well. In typical cases, where the UAVs are
lost in-between waypoints (¢ > 5 seconds), the delays are
significantly lower, being of only 202 ms if the leader is lost,
but the first backup leader is available.

VI. CONCLUSIONS AND FUTURE WORK

As UAV applications continue to grow in number and
complexity, it becomes more and more important to achieve
their goal in a safe and reliable manner. In this paper we

Fig. 5. Histogram showing the expected delay for the swarm when a variable
number of UAVs is lost just before reaching the next waypoint.
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have proposed a solution to provide resilience mechanisms to
a swarm protocol. Our solution is able to efficiently handle the
loss of the swarm leader, and even the loss of several UAVs
including both leader and backup leaders. Experimental results
using our ArduSim emulation tool show that the proposed
approach is able to cope with the loss of swarm elements
in an effective manner, while introducing a negligible delay
to flight times in most of the cases. In worst-case scenarios,
the delay can grow slightly to a few seconds per waypoint
following a loss event, which is still a very reasonable value.

As future work we plan to validate the proposed solution
in a more exhaustive manner, and address swarm split-up
situations.
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