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Abstract—Cloud computing is often utilized for file storage.
Clients of cloud storage services want to ensure the privacy of
their data, and both clients and servers want to use as little
storage as possible. Cross-user deduplication is one method
to reduce the amount of storage a server uses. Deduplication
and privacy are naturally conflicting goals, especially for
nearly-identical (“fuzzy”) deduplication, as some information
about the data must be used to perform deduplication. Prior
solutions thus utilize multiple servers, or only function for
exact deduplication. In this paper, we present a single-server
protocol for cross-user nearly-identical deduplication based on
secure locality-sensitive hashing (SLSH). We formally define
our ideal security, and rigorously prove our protocol secure
against fully malicious, colluding adversaries with a proof by
simulation. We show experimentally that the individual parts of
the protocol are computationally feasible, and further discuss
practical issues of security and efficiency.

Keywords-Secure Deduplication, Fuzzy Deduplication, Se-
cure Locality Sensitive Hashing

I. INTRODUCTION

Cloud-based storage has become an increasingly popular
solution for storing large amounts of data. Both users and
providers of these systems have the common incentive to
reduce the amount of storage and bandwidth these systems
require. Users also have the incentive of privacy - they prefer
for the provider and for other users to learn as little about
their data as possible. The obvious solution to this problem is
encryption - instead of uploading their files to a cloud server,
users will instead upload an encryption of their file. Data
encryption is neccesary to protect against data breaches,
which may cost cloud storage providers millions of dollars
in damages and lost business [28].

As the amount of data stored by cloud storage providers
increases, they will seek to mitigate their increasing costs
from the extra storage. One technique to save storage and
bandwidth is deduplication, where identical or similar pieces
of data are detected, allowing servers to avoid storing
redundant data. When identical or nearly-identical files are
uploaded, the server will keep pointers to a single copy
of data instead of storing redundant copies. There is a
natural dissonance between deduplication and privacy. For
accurate deduplication, some information about the file must
be provided in order to test whether that file is similar
to previously uploaded files. However, this provision of
information defeats the purpose of encrypting files for data
privacy, leading us to consider the question of to what extent
a deduplication protocol can be both accurate and secure.

Figure 1. Example of Nearly-Identical Images [11]

Overview of Deduplication: Deduplication is the process of
detecting identical or nearly-identical data for the purpose
of conserving storage by storing unique data only. Dedu-
plication can take place on entire files, or on individual
blocks of files, but it has been noted that the distinction
is not important when considering deduplication schemes
[27]. Deduplication schemes can be classified as exact or
nearly-identical. Exact deduplication works to determine if
files are exact copies [26], [27], [29], [32], [33]. Nearly-
identical deduplication works to detect highly similar files
[8], [14], in addition to exactly identical files. However,
this additional functionality requires more computation. We
consider similarity as it relates to human perception of
nearly-identical images as other similar works do [14] (e.g.,
Fig. 1).

In a cloud storage system utilizing deduplication for
saving storage, the deduplication can be carried out by the
clients or the server. It is often preferable in high-trust
scenarios for the server to carry out deduplication, to reduce
the computational load on the clients. However, in situations
where privacy is a concern, clients may not wish to provide
the server with the necessary data to perform deduplication.
Deduplication can be performed between data from multiple
users or only across data from a single user. Only applying
deduplication on a per-user basis is a simple answer to
concerns of cross-user privacy, but cannot reduce storage
in the event of multiple users storing the same file.

Client-based secure nearly-identical deduplication is most
useful in a scenario where clients’ computation is plen-
tiful, but their storage is limited. For example, ordinary
smartphones can perform the computation needed to carry
out nearly-identical deduplication when plugged in at night,
and this deduplication can reduce the use of smartphones’
limited storage. This is also applicable with use cases
involving IoT devices. For instance, there has been recent
interest in utilizing IoT devices to allow for the affordable
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deployment of biometric technology, but a major challenge
in this scenario is building efficient systems in spite of the
space constraints [12]. Secure deduplication can be used to
decrease the need to store a large amount of redundant data
on a server, which would alleviate practical space constraints
when leveraging such technology in the wild.
Summary of contributions: (1) A review of related work
in the area of deduplication; (2) Design and implementation
of a nearly-identical deduplication scheme for images, with
security against fully malicious, colluding adversaries and
only utilizing a single untrusted server; (3) A proof of secu-
rity of our scheme, with a discussion of practical issues; (4)
Experiments with real-world datasets showing the feasibility
of our protocol and implementations.

II. RELATED WORK

A. Exact Two-server Deduplication

In some schemes, hashing is used to protect data privacy.
The scheme proposed by Wen et al. uses two servers to
construct a system for exact deduplication [32]. A storage
server will store both hashes and encryptions of users’
images, while a verification server will store only the hashes.
The multiple redundancy of both the storage and verification
server storing image hashes protects the user in the case
that one server behaves maliciously. Convergent encryption
is used to ensure users can access deduplicated images. A
scheme proposed by Yan et al. uses proxy re-encryption
to share data between users who have attempted to upload
identical data [33]. Similarly to the work of Wen et al., a
verification server is used to store information needed for
deduplication.

B. Exact One-Server Deduplication

The scheme of Rashid et al. similarly leverages hash
values for image privacy, but with only one server [29].
Beyond the storage saved by using deduplication, this
scheme achieves even better savings by compressing images.
The compression takes a tree-like, hierarchical form, where
the original image cannot be reliably reconstructed without
the most significant information from the higher levels of
the tree. Thus, by only encrypting the most significant
information from the compression of an image, the amount
of encrypted data sent and stored can be reduced, saving
bandwidth and storage.

Liu et al. constructed a system that allows secure dedu-
plication with only one central server [27]. A key building
block of this protocol is user-based key sharing, which
takes place through a subprotocol known as Password-
Authenticated Key Exchange (PAKE) [2]. In this protocol,
upon a file upload the server will compare a short hash (e.g.
13 bits) of the file to short hashes of previously uploaded
files, and use this to construct a shortlist of users that may
have previously uploaded identical files. Data privacy is
preserved because many collisions (of different files) are

intentionally created in this list. Additional computation by
both the clients and server allow the server to check whether
a duplicate file exists. If it does, the server will return an
encryption key of the file to the uploader. If not, then the
server will accept the file as a unique one.

The protocol is provably secure against malicious and
colluding adversaries. This protocol also has the advantage
of being generalized to any type of data, not just images
or text. Many practical attacks are precluded by the use of
server- or client-side rate limiting. The protocol does have
room for improvement. Its utility is strictly limited to the
scenario of exact deduplication, because PAKE requires ex-
act equality of the parties’ inputs for identical key exchange.
From an efficiency viewpoint, the protocol requires up to six
communication rounds per upload.

C. Nearly-identical Two-Server Deduplication

By using two servers, Li et al. are able to construct a
system for secure nearly-identical image deduplication [14].
Their protocol uses one server for deduplication, which
stores the perceptual hashes of users’ images and performs
the work of deduplication. The other server stores the users’
encrypted images. A perceptual hashing method is used to
perform image deduplication by mapping similar images to
identical hashes. In this protocol, the deduplication server is
only able to see perceptual hashes of the users’ images, and
the storage server sees only encryptions of those images,
making this system effective for protecting users’ privacy
against other parties or external adversaries. However, the
system has users share group keys among themselves, which
requires that users will know a priori whom will be upload-
ing similar images. Thus if two users in different groups
upload identical or similar images, the storage server will
store both. Later work extended this system with Proof of
Ownership and Proof of Retrieval [3].

D. Proof of Ownership/Retrieval

Proof of Ownership/Retrieval (PoW and PoR) schemes
aim to provably ensure a client’s ownership of a file or their
ability to recover a stored file from a server, respectively
[5], [24]. Both of these concepts have been applied to
deduplication, especially PoW [3], [4], [13], [17], [22], [34],
[35]. PoW and PoR have even been applied to secure nearly-
identical deduplication, though the scenario is much less
adversarial than ours [3]. PoR is perpendicular to our work:
though it could be applied with our scheme, it is not the
focus of this work. We use PoW in our work for both
deduplication and access control.

III. SECURITY DEFINITIONS AND IDEAL
FUNCTIONALITY

A. System Model

We consider the scenario where the parties consist of an
arbitrary number of users and a single cloud storage server.
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The users wish to use the server to securely store images,
but without allowing the server to learn the content of their
images, or the other users being able to determine the content
of their images unless the users both have an identical or
nearly-identical image. All parties have the shared goals of
wishing to conserve storage while also keeping their own
information secure. We thus only consider the case where
the server stores encrypted images.

B. Adversary Model and Goals

We consider the (very challenging) case of fully malicious,
colluding adversaries. The server, any of the clients, or any
collusion thereof may take any action. Their adversaries’
goal in this scenario is to gain some semantically useful
information about an innocent users’ data that they do not
already possess. They may also choose to take actions that
may abort the correct execution of the system (e.g. refusing
to reply, sending junk data). This type of behavior is a
practical issue, and does not compromise the privacy of
innocent users’ data.

C. Security Model

We define the ideal functionality δ of secure nearly-
identical deduplication over encrypted data in Fig. 2. This
functionality is ideal in the sense that an ideal, fully trusted
‘system’ takes the input and returns the output, without
disclosing any information to any participant. This function-
ality characterizes the views of adversaries in an ideal world
where the whole process is delegated to an ideal ‘system’.
Our protocol (Section IV) will be designed such that the
adversaries’ views during the execution of it in the real world
are computationally indistinguishable from the adversaries’
views in the ideal world. The three types of participants are
the storage server S, the user Ui attempting to upload an
image, and preexisting users Uj who have already uploaded
a file. A protocol implementing δ is considered secure if it
implements δ and leaks negligible information about Ui’s or
Uj’s images and keys, and S only knows whether a PAKE
transaction has been initiated between two parties or not.
An adversary A may compromise any one of S,Ui, or Uj .
We highlight that, in δ, U 1j learns nothing about I 1i if I 1i and
I 1j are not similar, and the server S1 learns only some data
relevant to I 1i that cannot be used to reconstruct I 1i except
with negligible probability (e.g., hashes of an image or of
its feature vector).

We follow the approach of [20] to formalize this intuition
in the following definition:
Definition 1. Let Γ and δ be the real and ideal function-
alities respectively. Protocol Γ is said to securely compute
in the presence of fully malicious adversaries with abort
if for every non-uniform probabilistic polynomial time ad-
versary A, for the real model there exists a non-uniform
probabilistic polynomial-time adversary S for the ideal
model such that for every input x, x1 P t0, 1u˚ with |x| “

System Inputs:
‚ For 0 ď i ď N , uploader U 1i inputs an image I 1i.
‚ For 0 ď j ď N and j ‰ i, previous uploaders U 1j

input images I 1j .
‚ The server S1 has encryptions of images I 1j under

symmetric keys k1j
System Outputs:
‚ If I 1i is nearly identical to some uploaded I 1j , U

1
i

gets k1j as well as the encrypted I 1j , and S, U 1i ,
and U 1j may learn i and j. Otherwise, U 1i gets a
new symmetric key k1i, and S1 gets an encryption
of I 1i under k1i.

Figure 2. Ideal Functionality δ

|x1|, security parameter κ, every auxiliary parameter input
z P t0, 1u˚, and locality sensitive hashes hpz pxq, hpz px

1q,
the views generated by tIDEALδ,Spzqpx1, k, hpz px

1qq, u and
tREALΓ,Apzqpx, k, hpz pxqqu are computationally indistin-
guishable w.r.t. κ. If users fail to respond during the proto-
col, the protocol aborts.

Here, the inputs x, x1 are the images uploaded by users,
the security parameter κ is the number of bits of security,
the auxiliary parameter data z contains details about the
implementation of the protocol (e.g. the cyclic group used
in PAKE, which hash functions to use), and the locality-
sensitive hashes hpz pxq, hpz px

1q are the hashes of the two
images x, x1 which indicate the similarity scores of the
images. Note that some practical attacks are not prevented
by this ideal functionality, most notably that adversaries are
able to learn in a quantifiable way how similar their uploaded
images are to those of another user. This is a common
problem in secure deduplication schemes, and to the best
of our knowledge there is no consensus in the community
of how to address this concern [8], [16]. We address some of
these attacks with practical safeguards discussed in Section
VI.

IV. DESIGN OF A CONCRETE PROTOCOL

A. Preliminaries

Definition 2. A locality-sensitive hash scheme is a distri-
bution on a family F of hash functions operating on a
collection of objects K, such that for two objects x, y P K,
PrhpPF rhppxq “ hppyqs “ simpx, yq for a hash parameter
p where simpx, yq P r0, 1s is some similarity function
defined on K.

Intuitively, a locality-sensitive hash scheme hashes similar
objects to the same value. However, this definition makes no
statements about the security of the function. In particular,
the definition does not imply preimage resistance, meaning
that an adversary may be able to reverse the locality-sensitive
hash to find the original input.
Definition 3. A secure locality-sensitive hash (SLSH) is a
locality-sensitive hash function h that has the property of
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preimage resistance: for any input x and a polynomially
bounded number of parameters p1 ¨ ¨ ¨ pt, it is computation-
ally intractable to find x given only hp1pxq ¨ ¨ ¨hptpxq and
p1 ¨ ¨ ¨ pt.

A SLSH can be constructed from the standard assumption
of the existence of cryptographic hash functions [25].
Construction 1. A SLSH can be constructed as the com-
position H ˝ LSHp of a locality-sensitive hash func-
tion LSHppxq and a cryptographic hash Hpxq, i.e.
SLSHpxq :“ HpLSHppxqq.

Cryptographic hash functions are one-way functions, with
the property of preimage resistance. Using a cryptographic
hash to construct a SLSH gives it the property of preimage
resistance, which is desirable for our application.
Definition 4. A password authenticated key exchange (PAKE
[2]) is a functionality where two parties P1 and P2 each
input a password pw1 and pw2 receive as respective output
keys k1 and k2. If pw1 “ pw2, then k1 “ k2, and otherwise
P1 and P2 cannot distinguish k1 and k2 respectively from
a random string of the same length.

B. Protocol Description

Our protocol Γ is shown in Fig. 3, where the parties
consist of a single central server S and N users U1, ¨ ¨ ¨UN .
The server maintains t hash tables HT1 ¨ ¨ ¨HTt used in
deduplication, and makes the parameters of each table
public. When a user Ui wishes to upload an image Ii they
will first calculate a feature vector of the image, VIi , and
then find t SLSHes H1 ¨ ¨ ¨Ht according to the server’s hash
parameters. After this client-side calculation, the uploading
user Ui will then send the SLSHes for its image Ii to S.
The server then constructs a shortlist of possibly similar
images by checking the received hash values against the
hashes in the tables HT1 ¨ ¨ ¨HTt and noting any collisions.
Images Ii, Ij whose SLSHes collide will have similar feature
vectors (i.e. VIi « VIj ), and are similar. Thus the server can
identify any images with at least c (a scenario-dependent
parameter) hash collisions as similar images. If no other
image is found to be similar to the new image Ii, then
the server indexes each hash value HxPr1,ts into table HTx.
It then allows the uploading user to upload an encryption
of its image ENCkpIiq (with the encryption key k being
unique for Ii), which S then stores. If the image being
uploaded Ii is found similar to a stored image Ij (so that
VIi « VIj ), then the server directs the original owner Uj and
new uploader Ui to distribute the image’s encryption key to
Ui through PAKE, and allows the new uploader to access
the (encrypted) original image. (In case of multiple possible
similar images, any of the nearly-identical images can be
chosen as the similar one, though a salient choice would be
to use the image with the most collisions.)
Feature Extraction: For feature extraction we use the
ResNet neural network architecture. Compared to other
similar architectures for image feature extraction (e.g. the

VGG and AlexNet architectures used by the system of
Pintrest [23]), ResNet can achieve higher accuracy with less
computation, making it an attractive choice for accuracy and
efficiency [21].
Dimensionality Reduction: We use a well-known method
of locality-sensitive hashing based on random planes for
dimensionality reduction [7], [19]. To construct a SLSH
from the LSH, we compose the locality-sensitive hash with
a cryptographic hash function (SHA256 in our implementa-
tion).
Nearest-Neighbor Search: The nearest-neighbor search is
made easy by the SLSHing carried out previously. We use
multiple hash tables to be robust against the small possiblity
that similar items might differ in parts of their locality-
sensitive hash (leading to a potentially wildly different SLSH
value). Items hashed to the same hash buckets will be
similar, thus we can simply choose the item with the most
hash collisions (above a minimal threshold) as a similar
image.
Access Control: For post-deduplication image sharing, we
use the PAKE method [2]. After two users are notified to
share keys by the server, they first mutually agree upon a
new set of SLSH parameters. They then calculate SLSHes
of the feature vectors of their images, and perform PAKE-
based key sharing with those hashes as input. When the
users’ images are similar, the SLSHes used as input will
be equal with high probability, and the users will receive
identical keys. The key received by the holder of the
original image is used to symmetrically encrypt the original
image’s encryption key. That encryption is then sent to the
uploading user. If the keys received from PAKE are identical,
then the uploading user will be able to later decrypt the
encryption of the original image that the server stores. If
the users’ images are not similar, then the SLSHes of their
feature vectors will be different (with high probability), and
decryption of the encrypted encryption key will fail, because
the PAKE protocol will return different keys to participants
with differing inputs.

C. Advantages of our Protocol

Our system uses a single untrusted server, with the user
performing feature extraction and dimensionality reduction
before sending hash values to the server. The users also
do the work in rehashing and PAKE required for access
control. This arrangement allows for a very high degree of
security and utility in a highly adversarial setting. While
more computation must be done on the user’s side, this is
not prohibitively expensive.

V. PROOF OF SECURITY

Theorem 1. Γ securely computes the ideal functionality δ in
the presence of fully malicious, colluding adversaries with
abort if PAKE is secure against fully malicious adversaries,
the encryption scheme used is also secure, and cryptographic
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Our Protocol Γ

Definitions: Let S be the central server, and U1 ¨ ¨ ¨UN be users of the server. The server has t hash tables HT1 ¨ ¨ ¨HTt
with t sets of public parameters. The algorithms GEN,ENC,DEC are the key-generation, encryption, and decryption
algorithms of a symmetric-key encryption scheme. tHpu is a family of SLSH algorithms, where elements are
parameterized for a set of parameters p.
Client-Side Computation:

1) User Ui wishes to upload an image Ii and calculates a feature vector of the image, VIi . The user then calculates
t SLSHes H1 “ Hp1pVIiq, ¨ ¨ ¨ , Ht “ HptpVIiq of VIi according to the server’s hash parameters p1 ¨ ¨ ¨ pt.

2) Ui will then send the hashes HxPr1,ts for its image Ii to S.
Server-Side Deduplication:

1) S will then compare Hx with values already in its hash tables. For x P r1, ts, the server will check Hx against
the values (filenames of previously indexed images) stored in HTx at Hx, and add any values found to a shortlist,
counting how many times that value has been found in the tables. Once this has been completed, the server can
conclude that the image Ii is similar to another image Ij‰i owned by a user Uj if its hashes have at least c
collisions with the hashes from Ij .

2) If no other image is found to be similar to the new image, then the server indexes the filename of Ii in its
tables HT1 ¨ ¨ ¨HTt at the locations H1 ¨ ¨ ¨Ht, and allows the uploading user to upload an encryption of its image
ENCkpIiq, which S then stores.

3) If the image being uploaded is found similar to another stored image (i.e. VIi « VIj ), then the server directs the
original owner Uj and new uploader Ui to share the encryption key of Ij through PAKE, and allows the new
uploader to access the encryption of the original image.

Client-Based Access Control
1) After being so directed by S, Ui and Uj choose and share fresh sets of SLSH parameters pi, pj respectively. They

then calculate the hashes Hi
i “ HpipIiq and Hi

j “ HpipIjq of their feature vectors VIi and VIj according to pi,
and similarly calculate the hashes Hj

i and Hj
j according to pj .

2) Ui and Uj perform the PAKE protocol twice, using Hi
i and Hi

j respectively as input to the first session and
Hj
i and Hj

j respectively as input to the second session. They receive back keys kii and kij respectively from the
first session, and keys kji and kjj respectively from the second session. They then concatenate their keys to form
ki “ kii}k

j
i and kj “ kij}k

j
j .

3) If the users’ images Ii and Ij are similar, then their feature vectors will be similar, and with high probability will
be hashed to the same value under a SLSH. Then ki “ kj , and decryption succeeds, allowing Ui to recover k.

4) If the images Ii and Ij are not similar, then Ui cannot recover k and will not be able to decrypt Ij .

Figure 3. Our deduplication protocol Γ with security against fully malicious, colluding adversaries.

hash functions exist. If users fail to respond during the PAKE
protocol, the protocol aborts.

Proof: We will show that the execution of the protocol
Γ in the real world is computationally indistinguishable
from the execution of the ideal functionality δ. This proof
is inspired by that of [27]. The simulator SIM can both
access δ in the ideal model and obtain messages that the
corrupt parties would send in the real model. SIM generates
a message transcript of the ideal model execution δ that
is computationally indistinguishable from that of the real
model execution Γ. To simplify the proof we assume that
the PAKE protocol is implemented as an oracle to which the
parties send inputs.

Our proof assumes that parties will send dishonestly con-
structed messages, and does not consider a party choosing to
not send a message. Note that if any party refuses to respond
or sends junk data, the honest parties can abort the protocol
at that point, allowing us to achieve security with abort.

A corrupt uploader CU : We first assume that S and Uj
are honest and construct a simulator for CU . The simulator
records CU ’s SLSHes of the form HppVCU q. After receiving
a message MSGCU,Uj

from S indicating that CU and a user
Uj have similar images, it records the calls that CU makes
to the PAKE protocol with Uj . Conversely, if no existing
image stored on S is similar to ICU for all other users Uj ,
this implies there will be no further communication between
CU and any other user. If CU uses a value HpVICU

q in that
call that appears in a hash table HTx, the simulator invokes
δ with the image Ij that corresponds to the hash HpVICU

q.
In this case, CU will receive a key kICU

.
If an image Ij similar to ICU has been uploaded by any

Uj , kIj “ kICU
is the key corresponding to that image.

We now show that Γ and δ are identically distributed. If
ICU already exists in the server’s storage and CU behaves
honestly, then VICU

« VIUj
and thus kCU “ kUj . If

ICU does not already exist in the server’s storage, then
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something encrypted by kCU will be indistinguishable from
random by the security of the symmetric encryption scheme.
Thus, ENCkCU

pICU q will be indistinguishable by S from
a random value. Now if CU deviates from the protocol then
the only action it can take, except for changing its input
hash, is to replace its encryption of the image corresponding
to VICU

with an encryption of a different image or random
data, that it then sends to S.

The result of both types of malicious behavior is that
CU sends S hashes H1 ¨ ¨ ¨Ht that are not correct SLSHes
corresponding to the data ENCkCU

pICU q uploaded. In
this case, there are two possibilities: either the server will
incorrectly not identify ICU as being similar to any stored
image when it should, or the server will incorrectly identify
ICU as being similar to some other image.

In the first case, upon initial upload, as no similar images
to ICU are identified, CU does not exchange keys with any
other user prior to upload, and learns nothing about another
user’s image. However, another user Uj later uploading
ENCkIj pIjq may then have their image identified by S
as being similar to ICU . In this case, the users will then
make calls to the PAKE protocol. CU cannot learn anything
more than what is described in the security definition about
Ij from either ENCkIj pIjq or from SLSHes of VIj . For
CU to learn anything about Ij , they need to recover kIj .
However, without having Ij or a highly similar image a
priori, CU cannot correctly calculate new SLSHes, and thus
cannot receive kIj through PAKE. Thus in the first case,
CU cannot learn anything more than what is described in
the security definition about Ij .

In the second case, because an image in the server’s
storage is similar to the new image, CU will begin the PAKE
protocol with user Uj who owns the similar image. CU may
or may not have honestly generated H1 ¨ ¨ ¨Ht from an image
I 1CU . If this was not the case, then as above CU cannot
recover kIj , and cannot learn anything more than what is
described in the security definition about Ij . On the other
hand, if CU generated H1 ¨ ¨ ¨Ht honestly from I 1CU , then
I 1CU « Ij , and CU is able to correctly generate new locality-
sensitive hashes for its PAKE sessions with Uj . Then in
this case, CU can recover kIj , allowing it to download
and decrypt ENCkIj pIjq, recovering Ij . However, because
I 1CU « Ij , this does not violate ideal functionality or the
security definition.

We assume that CU sends q messages m1 ¨ ¨ ¨mq during
its execution (hashes, etc.), and replaces y of these messages.
In the real model Γ, the execution will change if there is an
index j such that the message mj in Γ (which corresponds
to the same m1j in δ) is replaced by CU . As a result, CU
will change the execution even though it inputs a modified
encrypted image or hash. The probability for this event is
y{q, but it will be detected with high probability. However,
in δ, the same result will occur in the event that a replaced
element is chosen by the simulator. The probability of this

event occurring is also y{q by the security of PAKE. Thus,
we conclude that the views of Γ and δ are identically
distributed.
A corrupt previous uploader CP : Here, we say that
CP has previously been honest in uploading its hashes
and encrypted image to the server. CP will learn from
this execution if Hp1pVIiq “ Hp1pVICP

q, for p1 P tpi, pju.
The simulator SIM will receive CP ’s input Hp1pVICP

q,
but since CP has previously uploaded ENCkICP

pICP q, it
only needs to recover the key corresponding to kCP . The
simulator SIM first checks whether the hashes H1 ¨ ¨ ¨Ht

of VIi match the hashes of ICP in S’s hash tables. If not,
CP is not identified as having a similar image to Ii, and
will take no action. Otherwise, S observes CP ’s inputs
Hp1pVICP

q to the PAKE protocol, the new key ki that Ui
gains from PAKE, and the message ENCkCP

pkICP
q. Then

CP and Ui exchange the same information necessary to run
the PAKE protocol as a black box. The simulator checks if
HpVICP

q “ HpVIiq. If so, it extracts and sends kCP to Ui.
To show that the simulation is accurate, note if CP

behaves honestly, then δ and Γ are obviously indistinguish-
able. CP can only deviate from the protocol in two ways.
First, it can deviate from the PAKE protocol in a way
that forces PAKE to abort, or by providing incorrect input
so that the symmetric keys from PAKE do not match. In
either case, though the adversary has managed to prevent
the successful operation of the protocol, it has not learned
any new information about other parties’ images, due to
the security of PAKE. Second, it can abide honestly by the
PAKE protocol, but send an incorrect key that Ui then cannot
use to successfully recover ICP . Again, CP does not learn
any new information about another party’s image, and we
can safely abort if necessary. We conclude that the views of
δ and Γ are identically distributed.
A corrupt server CS: The simulator will first act as a user
Ui with image Ii, and send hash values H1 ¨ ¨ ¨Ht to CS.
The server CS will query those values against its tables
HT1 ¨ ¨ ¨HTt, and either find that there is a user Uj with
a similar image, or that no similar image has been stored
with the server. If the server behaves honestly in the second
case or dishonestly in the first, then the server will accept
the upload of ENCkIi pIiq. By the security of the symmetric
encryption and the security of the SLSH, the server cannot
learn any new information beyond what is described in the
security definition about Ii from H1 ¨ ¨ ¨Ht and ENCkIi pIiq.

The server can also behave maliciously by telling Ui that
they have uploaded an image Ii similar to an image Ij
previously uploaded by Uj , and directing them to perform
PAKE to share keys. If this happens, then the users Ui
and Uj will with overwhelming probability choose different
passwords in their PAKE protocol, and will thus be unable
to share encryption keys. Thus when Ui and Uj have dif-
ferent images, neither can learn anything more than what is
described in the security definition about the other’s image,

6



even when CS behaves dishonestly. Suppose the server has
m other images that they can choose to identify as similar
with Ii. Deduplication fails if the owner Uj and their image
Ij are not chosen correctly by CS, which happens in both
the real and the ideal model with the same probability r{m
where r is the number of dissimilar images. In both cases,
Ui and/or Uj will be able to detect this behaviour with high
probability. Thus δ and Γ are identically distributed.
Colluding corrupt server CS and corrupt previous
uploader CP :

When the honest user Ui uploads a new image, CS
can either behave honestly or maliciously. If CS behaves
honestly, then this reduces to the above case of a single
corrupt previous uploader. If CS does not, then it can take
only one action not already enumerated in the above case
of a single malicious server. The server can falsely claim
that Ii is similar to an image ICP owned by CP , and direct
them to exchange keys. Then this reduces to the case of a
single corrupt previous uploader.
Colluding corrupt server CS and corrupt uploader CU :

Similarly, the only dishonest actions the collusion of CS
and CU can take that differ from already-enumerated cases
is for CS to falsely tell an innocent previous uploader Uj
that CS has attempted to upload an image similar to an
image Ij stored by CS. Then this also reduces to the case
of a single corrupt uploader.

VI. PRACTICAL PROBLEMS

A. Inference and Anonymity

The protocol Γ does not allow participants to learn any-
thing more than what is described in the security definition
about images unless they possess a similar image a priori.
However, an inference attack is trivial to mount: a user can
easily learn if another user has uploaded an image by simply
requesting to upload that image to the server. This attack can
be prevented by making all connections anonymous, which
can be accomplished through onion routing [30]. When the
server notifies two users to share encryption keys, it then
also gives them a one-time-use token pair that the users
can use to authenticate themselves to one another without
revealing their identities. A common assumption in image
deduplication is that the server must be able to know which
users own which images in order to identify duplicates
between different users, so we follow the precedent set by
[14], [16], [27], and assume brute-force server inference
attacks to be outside our threat model.

B. Adding Images

The server’s hash tables can only hold up to 2h entries
each, where h is the size in bits of the result of the SLSH.
When taking into account the desire to avoid collisions due
to load, the practical upper bound is even lower. In other
applications, the server can rehash its elements into a larger

table when the number of elements it stores approaches
that threshold. However, because the server cannot generate
SLSHes (it does not have the original image or feature
vector), it would have to ask the users to generate new
hashes. This is costly to the users computationally, and is
thus not a desirable approach.

Instead, the server can initialize a new set of hash tables
HT 11 ¨ ¨ ¨HT

1
t , with a new set of parameters p11 ¨ ¨ ¨ p

1
t. Users

uploading will henceforth provide the server two sets of
hashes of their images’ feature vectors: one set for the
parameters p1 ¨ ¨ ¨ pt of the original hash tables HT1 ¨ ¨ ¨HTt,
and one set for the parameters p11 ¨ ¨ ¨ p

1
t of the new hash

tables HT 11 ¨ ¨ ¨HT
1
t . Newly uploaded images are queried

against all the hash tables, but only stored (if not dedu-
plicated) in the new set. While this doubles the amount
of computation the users must perform, these calculations
are still only performed once, at image upload. Further, this
strategy allows the server to store images beyond the original
capacity of HT1 ¨ ¨ ¨HTt without violating user privacy.
This scenario should be rare as long as h is chosen to be
sufficiently large, so that tables are not filled quickly and
adding tables occurs only rarely.

C. Sharing the Load

Our system offers a high degree of privacy and func-
tionality to its users, at the cost of extra computation.
One of these costs is the PAKE-based key exchange that
users must perform. The original owners of images that
are “popular” (frequently selected for deduplication) bear
a disproportionate part of this load. A server can attempt
to prevent this unfair situation by not always selecting
the image’s original owner to perform key exchange with
new uploaders, but by instead selecting from all users who
already have access and thereby distributing the load fairly.
In this way, the ability of the server to infer which parties
have uploaded similar images actually becomes an advantage
for ensuring fairness among users.

D. Brute-Force Attacks

In our protocol, both servers and clients can carry out
brute-force attacks by repeatedly querying images against
the server’s storage to see if another client has stored a
similar image with the server. Such an attack from the
server cannot be theoretically prevented without introducing
more assumptions (i.e. an extra server [31]). The practical
approach of rate-limiting user queries can prevent such
attacks from users [14].

E. Leveraging Trusted Hardware

In order to prevent an adversary from conducting a brute-
force attack, this protocol could be modified to utilize secure
hardware to prevent a server from guessing how similar
two images are by observing the number of hashes that
match. For instance, using Intel SGX [10], we could define
a function that computes the similarity score in a secure
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Table I
TIME TO QUERY 100 IMAGES

Dataset Size Avg. Time per
Query (ms)

Avg. Time per In-
dexed Image (ms)

vgg-flowers 1020 8.648421288 0.847884440
dtd 1880 17.41103601 0.926118937
aircraft 3334 15.30001068 0.458908539
ucf101 7585 34.59270334 0.456067282
omniglot 17853 48.57958031 0.272108779
daimlerpedcls 23520 2.125451088 0.009036782
gtsrb 31367 95.60348845 0.304790029
cifar100 40000 166.0737145 0.415184286
svhn 42566 105.8770444 0.248736185
imagenet 1232167 189.7144794 0.001897144
Average 140129 54.91238334 0.437648362

Table II
HASH COMPUTATION TIME FOR 24 BITS (MS)

# of Tables Min Avg. Max Median Std. Dev.
1 0.14 0.33 14.93 0.15 0.67
2 0.24 0.26 0.32 0.26 0.01
4 0.48 0.51 0.55 0.51 0.01
8 1.04 1.65 30.70 1.14 1.91
16 2.05 2.16 6.07 2.13 0.29
32 4.08 14.85 214.00 12.79 17.33

enclave and only outputs a binary value to indicate whether
or not the similarity score is above a threshold. This would
prevent a malicious user from learning extra information
regarding how exactly similar their image is to another
user’s, but would make the protocol hardware-dependent.
Remote attestation can securely verify that the server is
running authenticated code that has not been tampered with.

VII. EXPERIMENTAL EVALUATION

A. Testing Implementation

We implemented and tested feature extraction, dimension-
ality reduction, nearest-neighbor searching, and the SPAKE2
subprotocol [2]. Our implementation of SPAKE2 is in C++,
and uses GMP for algebraic operations [18]. The other tests
are written in Python, and make use of the OpenCV library
for image processing [6]. Keras and Tensorflow [1], [9] are
used for feature extraction, and a modified version of lshash
incorporating the SHA256 cryptographic hash was used for
dimensionality reduction and nearest-neighbor search [36].
To measure realistic performance, our tests were run on
a server node belonging to a cluster in active use by a
university (Intel Xeon CPUs, 128 GB of RAM, and GTX
1080Ti). The nodes were not exclusively used by us, and
our tests were run in an environment similar to servers
under high load. This may have introduced extra latency
and variance in our results.

We used training data from the standard image datasets
featured in the Visual Decathalon Challenge [15]. We have
omitted results from the Imagenet dataset from our graphs
for readability, though those results were also considered
in drawing our conclusions. The number of images in each
dataset is given in Table I.

Table III
HASH COMPUTATION TIME FOR 6 TABLES (MS)

Hash Length Min Avg. Max Median Std. Dev.
16 bits 0.75 0.89 30.98 0.87 0.55
24 bits 0.77 0.93 33.75 0.81 0.76
32 bits 0.78 4.23 84.55 0.87 7.56
64 bits 0.83 9.15 84.55 5.80 9.21

B. Efficiency

Feature Extraction: The time to extract features for each
database using ResNet50 is shown in Fig. 4. We ran 10
trials on each dataset (with the exception of Imagenet, which
was tested 5 times). Our results show that feature extraction
on a single image takes about 33 ms on average. This
computational overhead for an image upload is a manageable
amount for a client.
Dimensionality Reduction: The time to index a database
of images is shown in Fig. 5. We performed 10 trials on
each dataset (Imagenet was tested only 5 times). Our results
show that indexing with 6 hash tables and a locality-sensitive
hash size of 24 bits takes about 39 ms per image on average,
taking hash calculation into account. These parameters were
chosen to strike a balance between efficiency and accuracy.
The computation time for a client is then even less, as they
only need to calculate the hashes, and do not have to index
the values into multiple hash tables.

In Tables II and III we show the time needed to calculate a
client’s hashes when varying the number of tables and hash
size, with data from 4000 trials in each case. In particular,
calculating a 24-bit hash for 6 tables takes 0.93 ms on
average. As expected, the runtime for hash calculations
increases linearly with both the number of tables and hash
size. From our experiments we can thus conclude that both
client-side hashing and server-side indexing are feasible and
scalable.
Nearest-Neighbor Searching: We tested the time for query-
ing a small constant number (100) of images against each
database, using 10 trials. We used the same index specifica-
tions as above. The resulting runtimes are shown in Table
I, which includes both the average time per image query
and average query time divided by database size. We can
conclude that the average time to query per image may be as
little as 2.13 ms. The average time per query across all tested
datasets was about 55 ms. Interestingly, we note that the
average time for a query does not increase as the size of the
previously indexed dataset does, and may even decrease. A
possible explanation is that cache/memory coherency yields
greater benefits for queries over larger databases. From this,
we conclude that querying is computationally feasible and
also scalable.
Access Control: Our implementation of PAKE was tested
over cyclic groups with prime orders of 1024, 2048, 4096,
and 8192 bits. Each group was tested with 1000 trials. Even
for group sizes of 8192 bits, the user computation averaged
below 170 µs. The time to perform user computation is not
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Figure 4. Feature Extraction Runtime
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Figure 5. Index Construction Runtime

dependent on any other parameters of the protocol. This
shows that the use of PAKE for key exchange is feasible.

C. Distortions’ Impacts to Our Deduplication

We tested the propensity of our nearly-identical dedu-
plication scheme to identify images as similar after small
distortions are applied. We randomly chose a subset of
Imagenet, and applied gradually increasing distortions to
images in that subset. We then ran queries with those images
and observed how many hash tables recorded a match with
the original image. The results are shown in Figures 6(a)-
(h). In these graphs, the proportion of queries with some
number of matches is shown as a function of the number
of matches and the severity of the distortion. For example,
in Figure 6(a), the figure shifts from yellow to blue as
query images become more blurry, and there is a visible
trend of the number of matches decreasing as the distortion
increases. These results show that our system is able to
accurately identify (with c “ r t`1

2 s, i.e. hash collisions
in more than half the tables) similar images with small
changes from blurring, brightening, enlargement, saturation,
and sharpening. The system was not able to reliably detect
nearly-identical images with distortions of solarization or
salt-and-pepper noise, and performed somewhat poorly with
Gaussian noise - this is logical, as those types of distortions
will affect features more. Shrinking the image also resulted
in poor performance, which makes sense, as shrinking an
image results in a loss of information. Our system performed

extremely well for false positives (i.e. an image not the
original identified as similar) - none of our tests had more
than one table indicate a false positive.

D. Quality of Service with Concurrent Requests

First, we examined how well our system could respond
to multiple simultaneous queries. We measured the runtimes
of each individual request, as well as the total runtime of
the whole set of requests. The results are averaged over
five trials, and used up to 16384 threads. The average time
for only a single request (Figure 7(a)) was higher due to
the overhead of initialization. For the rest of the runtimes
up to 16384 requests, the average time was on order of
0.1 ms. The average times increase greatly as the number
of requests grows close to 16384, as the overhead from
more threads increases. After that point, the average time
decreases again, as each thread will then have multiple
requests. The total runtime for all of the requests (Figure
7(b)) shows that up to a certain level of saturation (around
8192 simultaneous requests), the overall runtime was small
(hundredths of seconds up to 32 requests, and seconds or less
for up to 4096 requests). This shows that for client queries,
our protocol is efficient for many simultaneous requests.

Next, we examined how our implementation handled
simultaneous indexing of new images. The average request
runtimes are shown in Figure 7(c), and the total time to index
the entire set of new images is shown in Figure 7(d). The
time for a single request to complete was under 0.65 seconds
in all cases, showing that concurrent indexing is efficient,
even with locking. The time to fulfill all requests increased
linearly with the number of requests. Our implementation
used simple locking. A more sophisticated database system
might be able to allow more efficient indexing, though this
is beyond the scope of our work.

VIII. CONCLUSION

This paper presents the first protocol for nearly-identical
image deduplication with only a single untrusted server. Our
rigorous proof shows the protocol’s security in the highly
challenging case of fully malicious and colluding adver-
saries. We also discuss practical issues widely applicable
to deduplication. Finally, our experiments show the efficacy
and efficiency of our protocol and its components.
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