2103.11396v2 [cs.NI] 26 Apr 2021

arxXiv

Engineering an [oT-Edge-Cloud Computing System
Architecture: Lessons Learnt from An
Undergraduate Lab Course

Jasenka Dizdarevi¢ and Admela Jukan
Technische Universitit Braunschweig, Germany
{j.dizdarevic, a.jukan}@tu-bs.de

Abstract—With the rapid advances in IoT, edge and cloud
computing solutions, it is critical to educate and train students in
computer science and engineering in various aspects of IoT-edge-
cloud (IoT-E-C) system architecture implementations. We outline
the design and development of an undergraduate laboratory
course that sets the goal of implementing various interfaces
and communication protocols to connect IoT, edge and cloud
computing systems and evaluating their performance. The lab
setup is modular and based on open source tools. In the IoT
context, it consists of low-cost processing platforms with various
sensors and actuators. In the edge and cloud computing context,
we implement and deploy single board computers and Firebase
cloud solutions, respectively. The modular lab setup allows stu-
dents to engineer and integrate various communication protocol
solutions, including MQTT, COAP and HTTP. In addition to the
system implementation, students can evaluate and benchmark
the performance of the entire system.

Index Terms—Edge and cloud computing, communication
protocols, IoT

I. INTRODUCTION

The unstoppable trend towards the combined IoT, edge and
cloud computing systems has lead to an increased demand
for educated workforce in corresponding areas of computer
science and engineering. This has furthermore driven efforts in
creating computer science and computer engineering courses
that can implement and integrate IoT devices in cloud and
edge computing systems [[1]-[4]]. Currently available courses
reflect the ongoing quests towards the specific focus of the
course, such as testing different hardware boards, or develop-
ing domain applications with IoT devices, such as in healthcare
applications [5]]. Today, in addition to a number of cloud and
edge based IoT commercial platforms, numerous open-source
solutions can be used to further broaden the participation
in such courses [6]. Since the technology choice is both
broad and diverse, and the technology trends and the contents
covered are constantly evolving, scoping such courses towards
specific goals is rather critical.

We propose and outline the design and development of an
undergraduate laboratory course, referred to as Network-of-
Things Engineering Lab (NoteLab), - that sets the goal of
implementing various interfaces and communication protocols
to connect [oT, edge and cloud computing systems and evaluat-
ing their performance. Unlike other courses that usually cover
individual and separate areas of either IoT, or edge, or cloud
computing subsystems, our course offers the implementation

of the entire system, and the subsequent evaluation and bench-
marking of the end-to-end system performance. The lab setup
is highly-modular and based on open source tools. It includes
three contexts: IoT, edge and cloud, as a model for separation
of concerns implying that any device can be deployed in
a specific context. This is in contrast to a commonly used
computing hierarchical architecture, with cloud computing at
the top of hierarchy [7]]. The modular lab setup allows students
to engineer and integrate various communication protocol and
interface solutions, including MQTT, COAP and HTTP. We
define the following main learning objectives in the course:

o Ol. Engineering the interfaces and the related communi-
cation protocols in an IoT embedded system setup, as an
integral part of the integrated IoT-edge-cloud computing
architecture;

o O2. Integrating a diverse set of the specific hardware so-
lutions in IoT and edge computing context (e.g., sensors,
actuators, single-board-computers, and microcontroller
platforms);

« O3. Applying open-source software solutions for
resource-constrained embedded devices (including Ar-
duino IDE sketches, ARM compatible docker images,
mgqtt proxy, coap proxy and http proxy python scripts);

e O4. Executing and testing sample sensing and actua-
tion applications (e.g., temperature, humidity and motion
sensing);

e O5. Measuring and benchmarking system performance
(e.g., latency and power consumption).

The rest of the paper is organized as follows. Section
presents the related work. Section describes the NoteLab
architecture design and the learning scope. Section [[V] presents
the details behind the individual task units in the lab, along
with a discussion on lessons learnt. Section |V| provides con-
clusion and outlook.

II. RELATED WORK AND OUR CONTRIBUTION

The driving force behind the innovation and implementation
of IoT system solutions in recent years, which has also led to
an increase in the related electrical and computer engineering
courses, is the availability of low-cost, yet highly performant
IoT devices [1]. Many hands-on courses developed to date
focus on IoT laboratories [[8]]. Paper [2] presents an extensive
IoT courses survey defining different categories, ranging from

introductory IoT courses, more advanced IoT certification
multi-courses, over to most common approach of studying
and developing domain-specific IoT applications, such as in
agriculture, transportation or healthcare. Paper [9] examines
different hardware platforms for IoT-centric courses, and em-
phasizes the challenges that the course instructors need to pay
attention to when choosing specific hardware and software
solutions. Papers [10] and [[I1] describe various approaches
to teaching new IoT concepts through elective courses.

Paper [4] presents a newly developed embedded system IoT
course, explaining to students and their instructors specific
aspects of data processing in IoT systems. As the data pro-
cessing has shifted more towards cloud computing context,
major efforts in computer engineering also shifted focus to
only collecting data with IoT devices, and their processing
in the cloud [12]. More recently, data processing is done
in edge and fog computing [13], which has also brought a
notable interest in combined IoT-edge-cloud solutions, both
in industry and academia [14]], [15]]. Paper [16] presents a
system oriented graduate course, covering the concepts of
edge and cloud computing in integrated IoT systems. This
more system oriented direction has successfully integrated
aspects of networking and communication protocols, even in
undergraduate IoT lab courses, such as in [3].

In terms of our specific novel contributions, we greatly
benefitted from previous work, especially in our initial choices
of hardware platforms, such as from [4], [9]. We adopted
similar goals set in some courses, such as to creating an
industrially relevant IoT system in [[16]. We took a different
approach, however, and worked with open source and non-
proprietary hardware and software, with the goal of enabling
easy reproducibility of the course, albeit possibly of a lesser
industrial interest. Also notable is related work [3]], addressing
not only the integrated IoT-edge-cloud computing but also
introducing different IoT protocol solutions. This course how-
ever uses a different methodology and software systems. In
our approach, we do not use stand-alone lab units, but design
all units as inter-related and building upon each other, where
students can gain significant problem-solving skills as they
are trying to plan and connect individual tasks. In addition,
we use containerization, including Docker, but also as applied
to Kafka, Firebase and Mosquitto, which provides additional
training in software engineering. Our paper does not include
a detailed taxonomy based evaluation of student learning
outcomes [17], as the focus has been mainly on technical
aspects of the course implementation. In future work we plan
an extension that will include this kind of evaluation, as it will
help improve our learning framework and outcomes.

III. NOTELAB ARCHITECTURE DESIGN
A. Reference architecture

We start with the envisioned system architecture shown in
Fig. [I] representing both the high-level architectural concept
as well the implemented system solution. We divide the
architecture into various context: lIoT-, edge computing- and
cloud computing context. In our approach, we found it useful

to refer to a context as a separation of concerns, as opposed
to layers that often imply hierarchy. In other words, there is
no assumption on any specific hierarchy in the architecture,
and computing and data processing can happen in all three
context, and on any device put in context.

In the IoT context, we envision resource constrained devices
and low-cost processing platforms, including various sensors
and actuators. These sensors and actuators are the principal
generators of data in the architecture and will have a client
role (Fig. [Th). The way how these clients are going to send
the data to other devices depends on the implementation,
assuming that both the communication protocols that are
based on publish/subscribe and client/server (also known as
request/reply) interaction model are potential choices.

In the edge computing context, we define two types of
devices, one with the role of connecting the edge with the
cloud database service (edge-cloud connector in Fig. [Th),
for which in the implementation we will use an already
developed open source solution; and the other with the role
of a proxy, which will be developed by the students with the
intent of forwarding data from the devices in IoT context to
the connector. In order to establish communication with IoT
devices, the proxy solution is going to include a server or a
broker implementation (depending on the interaction model
of the communication protocol) as its southbound interface. It
will also include a northbound interface for forwarding data
to the edge-cloud connector. For the latter communication,
as it is based on an open-source pre-developed solution, a
publish/subscribe based protocol is used.

The third context is the cloud computing context, where
we envisioned a simple cloud database service for client’s
data storage and synchronization purposes. The communica-
tion between the database and the edge-cloud connector will
be maintained through proprietary or open source protocols,
depending on the implementation choice of the cloud service.

The architectural representation containing implementation
details is shown in Fig. [Ib, illustrating various devices put in
IoT, edge or cloud context. Here, for the IoT context imple-
mentation, we use six microcontroller based devices, with the
corresponding sensors and actuators, including temperature,
humidity, and motion sensors as well as LED actuators.
Localized in the edge context, we differentiate between two
types of devices: single board computers (Raspberry Pi, RPi)
and off-the-shelf desktop computers.

As a part of the edge context implementation Fig.
illustrates three devices implemented with single board com-
puters, which are used for our proxy solutions (mgqtt, http
and coap proxy), each running the corresponding software.
The connection between the microcontrollers and single board
computers is established through their WiFi interfaces. The
other type of edge context device, implemented on the desktop
computer is used for the edge-cloud connector implementation,
shown as Kafka-Firebase connector in Fig.[Ip, an open source
solution available from github [18]]. The connection between
two types of edge context devices is through a switch over
their ethernet interfaces. This particular edge-cloud connector

ClonaliatabaceySeice Cloud ‘ Firebase real-time database ‘ Q
context % Cloud third party
propriatery or propietary implementation service
open source protocols ~ crtoottrssssesssseenees y based on websockets
edge-cloud connector Kafka-Firebase connector Q
edge bridge Kafka broker PC (edge locality)
publsub or client/server Kafka pub/sub protocol 4
protocols Edge based on binary TCP Ethernet
Proxy interface context Kafka producer Kafka producer Kafka producer
Proxy maqtt proxy http proxy coap proxy
RPis (edge locality)
Server/Broker implementation Mosquitto broker HTTP server COAP server A
ub/sub or client/server -
P protocols I ------------------------ I MQTT I REST HTTP I REST CoAP wifi
Clients loT MQTT Clients REST HTTP Clients REST CoAP Clients
context idi i
Sensors, actuators Temp. LED Humidity LED Motion LED Microcontrollers
sensor | actuator 1 sensor | actuator 2 sensor | actuator 3 (0T devices)

Fig. 1: NoteLab reference architecture: a) high-level overview and b) implementation

implementation was selected due to our choice of the Firebase
as the cloud database service for NoteLab.

And finally, for the cloud context implementation, as men-
tioned, we deploy Google’s Firebase cloud solution [[19]. The
Firebase was selected due to being an open source and its
ability of storing the client’s data locally through the edge
context’s connector, and later automatically synchronizing
with the cloud [20]. In addition, setting up a Firebase Database
is easy and takes only few steps, providing quicker learning
curve for students.

The setup and implementation of a few distinct interface
and communication protocol solutions to establish commu-
nication between devices used in various contexts is one
of the salient features of NoteLab. Current state of the art
points at MQTT (Message Queue Telemetry Transport) as
communication protocol of choice due to its maturity and
performance. This is followed closely by HTTP (HyperText
Transfer Protocol) as the widely adopted solution and a second
best choice of developers [21]. Finally, CoAP (Constrained
Application Protocol) is a well-known IoT messaging standard
communication alternative to these two protocols [22] due
to its lightweight characteristics and comparatively better
performances in resource-constrained environments [23]]. In
the implementation part of architecture shown in Fig. [Tp, we
illustrate the choice of interfaces at the context boundaries
based on few possible choices for related communication
protocols: MQTT, HTTP and CoAP. When using publish-
subscribe MQTT communication protocol, at the boundaries
between IoT and edge context, RPi edge localized device
interfaces the lower level devices of the IoT context (micro-
controller boards with their attached sensors and actuators)
with a MQTT Mosquitto broker. These devices serve as
MQTT publisher and subscriber clients. Since the architecture
is extensible, other protocols can be modularly implemented
in parallel, where edge computing context would implement
the server (HTTP or CoAP) while the IoT context would
implement corresponding interfaces for client applications,
based on REST standard software architecture.

In the remaining parts of the reference architecture, the
interface between the Kafka based edge-cloud connector and
Firebase database is based on a Firebase proprietary commu-
nication implementation over websockets. In the high-level
overview we saw that the communication protocols and in-
terfaces between proxy solution and edge-cloud connector are
based on publish/subscribe paradigm. In the implementation
this is achieved with interfacing the Kafka based connector
(comprised of multiple components, one being a Kafka broker)
with Kafka producer as the northbound interface on the
implemented proxy solutions. The communication protocol
used here is Kafka’s native binary TCP protocol, an integral
part of Kafka implementation which as such is not required
for students to understand all the details. Instead, students are
instructed that when the software tools require native protocols
to be used, it is necessary to develop the corresponding
proxies, as described in detail in the following sections.

B. Scoping the learning framework

To appreciate the broadness of the subject matter, we now
briefly give an overview of the learning scope, and outline the
reasons behind our choices made. Table [I| gives an overview
of the hardware development kit, with device-corresponding
operating systems or firmware within a specific context as
previously described.

TABLE I: NoteLab hardware with corresponding operating
systems

Operating
or firmware
optional-
NodeMCU
firmware

system

Context Hardware

Single board ESP8266 microcontrollers:

loT NodeMCU and WeMos D1 R2

Sensors: DHT11 temperature and humidity
sensor, HC-SR04 ultrasonic sensor, Pas-
sive Infrared Sensor, LED actuators, set of
resistors and jumper wires

Single board computers: RPi 3/4 Model B
Desktop computer

Edge Raspberry Pi OS

Ubuntu 20.04

Cloud

Desktop computer (Firebase Console) Ubuntu 20.04

The choice of IoT hardware platforms is based on how
widely available and used they are, including the availabil-
ity of adequate tutorials and developer’s support [24f], [25].
In the IoT context, we chose two types of microcontroller
development boards [26], i.e., NodeMCU and WeMos Dl
R2. The practical reasons behind this choice is their WiFi
connectivity support (as they are based on ESP8266) critical
to building a networked system of IoT devices. In addition,
these microcontrollers are programmable using Arduino IDE,
a user-friendly environment as it comes with an abundance
of online programming examples freely available to students.
Finally, numerous low-cost sensors and actuators that were
initially manufactured for the Arduino platform are also com-
patible with these microcontrollers. In NoteLab we use DHT11
temperature and humidity sensor, HC-SR04 ultrasonic sensor,
Passive Infrared Sensor (PIR) motion sensor, LED actuators,
along with a set of jumper wires and resistors for connecting
the circuits. For microcontroller configurations, the course
manual includes instructions on how to configure the relevant
ESP8266 board parameters in Arduino IDE. This way, students
can easily use the code programmed on microcontrollers.

In the edge context, as mentioned we use two types of
devices, i.e., single board computer and off-the-shelf desktop
computer. For single board computers, each student is provided
with either a Raspberry Pi 3 Model B+ or Raspberry Pi 4
Model B, with their corresponding operating systems pre-
installed. RPis are generally very popular among students, due
to being low-cost, with powerful computing and interfacing
features, both in hardware and software. In NoteLab, students
use RPis both in the IoT context as simple workstations to
program the ESP8266 boards and as a computing resource for
receiving and processing sensor data. The off-the-shelf desktop
computer serves as the edge-cloud connector. Its southbound
interface (Kafka’s broker) communicates with RPis, while its
northbound interface (Firebase interface) connects to the cloud
real-time database through a Firebase Console. The OS for the
desktop computer is always chosen as open-source, in our case
the latest Ubuntu version.

In the cloud context, students are expected to create a real-
time database through Firebase console and to generate an
authorization key to connect the said database to edge-cloud
connector. In other words, the usage of the cloud is scoped
for data storage purposes only.

A more detailed overview of the software development
solutions used to scoping the course is outlined in Table
with MQTT as the protocol of choice. (Other protocols would
result in different table entries and are not listed here for
brevity). It is first important to consider that also students
without programming skills are able to learn the basics of
different programming languages, different software solutions,
and finally, an increasingly important concepts of virtualization
and containerization techniques. The importance of introduc-
ing these concepts, which have long been the critical skills in
high-tech industry, cannot be overstated [27]], [28].

When MQTT protocol is used, different types of sensors and
actuators are implemented using Arduino IDE for program-

ming MQTT clients. Programming MQTT in Arduino IDE is
well documented by numerous tutorials and research activities
and hence easy to use [29]-[32]. In NoteLab, students are
given specific instructions on how to create the so-called
Arduino sketch codes (based on C/C++) for MQTT publisher
and MQTT subscriber. (The examples of this sketch code will
be given in the following section.) While this code is based
on C/C++, for programming in Arduino IDE, students are not
required to actually know C or C++ programming. In other
words, for developing simple sketches to be used in NoteLab,
students are given specific scripts and instructions.

In terms of virtualization techniques, we choose Docker
containerization [[33]. One of the known benefits of Docker-
based containerizations is its performance in CPU and mem-
ory utilization, which students can experience as especially
relevant in combination with resource constrained IoT devices
[34], [35]. We include in Table a separate column that
shows which system components in the reference architecture
use containerization. To acquire dockerization skills, students
use two pre-installed docker images in the edge computing
context. One image is used to implement a Mosquitto MQTT
broker (developed in C, [36]) on RPi devices, while the other
one to implement Kafka-Firebase connector (developed in
Java) on the desktop computer. Since these images will be used
as pre-installed solutions, students only focus on modifying the
related configuration parameters. On the other hand, students
are requested to actually develop a mgtt proxy, albeit based
on detailed instructions provided to them. This is critical,
since the objective is to establish communication between the
two docker based system edge components, i.e., Mosquitto
broker and Kafka based edge-cloud connector. To program
this application students are requested to use a Python script,
and dockerize it.

TABLE II: NoteLab system components with MQTT as pro-
tocol of choice

Context | Device System component | Programming | Dockerized
(software solution) | language
Sensor . Arduino
IoT attached to C_llent (MQTT pub- sketch (code No
ESP8266 | lisher) unit based on
board C/C++)
Actuator . Arduino
attached to Ch;nt (MQTT sub- sketch (code No
ESP8266 | Scriber) unit based on
board C/C++)
RPi 3/4 | Broker (Mosquitto) | C Yes
Edge Model B
mqtt proxy Python script | Yes
Edge-cloud connec-
Desktop torg (Kafka-Firebase Java program | Yes
computer connector)
Cloud | Firebase real-time database

Summarized over Tables [[]and [l we design the NoteLab
to include the following hardware and software systems, i.e.,
Hardware systems
o ESP8266 complete development boards (Arduino com-
patible e.g. NodeMCU or WeMos D1 R2)
« Arduino sensor and actuator kit

Micro USB connector (uploading the code, update
firmware, charging the battery)

« Breadboard, Jumper wires and Resistor Kit

« Raspberry Pi single-board computers

o Off-the-shelf desktop computer

« WiFi router

Software systems

o Arduino IDE with added support for ESP8266 boards

e Arduino IDE libraries for WiFi support, communication
protocols and different sensors(e.g. DHT11 library for
temperature and humidity sensor; PubSubClient library
for MQTT)

o Docker for the ARM architecture

o Docker and docker-compose for the x86 architecture

« Python programming language.

IV. LABORATORY SETUP AND TASK UNITS IN CONTEXT

Before going into details of each task unit, a summarized
mapping of task units, learning objectives, student’s learning
outcomes and NoteLab architecture is outlined in Table

TABLE III: Mapping of task units with learning outcomes,

microcontrollers, sensors and actuators, based on the corre-
sponding survey of their specifications, supported interfaces,
circuit physical layout, pin definition, etc. After connecting
the microcontrollers to single board computers, students are
required to actually use the single board computer’s command-
line (the instructions will depend on the OS running on the de-
vice, pre-installed by instructors) to configure microcontrollers
by flashing the NodeMCU firmware. (It should be noted that
this step is not necessary for programming in Arduino IDE).
The version of the firmware used is to be pre-downloaded on
RPis and it can be download from [37]] under a name such
as nodemcu — master — 7 — modules — z — float.bin. An-
other requirement is to install the firmware flashing tool, called
esptool. The esptool installation and utilization instructions
from commandline are illustrated in the code block below.
Independently of the board used, all microcontrollers need to
be manually flashed with NodeMCU firmware. This enables
the students to find out which serial port of RPi connects to the
microcontroller. Using that serial port (for example #yUSBO)
it is possible to flash the firmware. The code block consists of
following commands:

K T . $ sudo apt—get install esptool
learning objectives and the reference architecture $ dmesg //Output:
15705.320141] usb 1-1: cp210x converter now
Ta§k Le?rn?ng Learning outcome Computing z[atta ched to tt]yU SBO P
unit | objectives ; context $ sudo esptool ——port /dev/ttyUSBO
1 02 Configure a microcontroller loT write_flash 0 nodemcu—master —7-modules—x—float .bin
5 02 Connect sensors and actuators based | IoT
on CirCUit layouts - ESP8266 boards Sensors and actuators Workstations - Single board computers
3 03, O4 |Demonstrate programming of three | IoT
sensors with Arduino IDE sketches < 2’ Passive Infrared Sensor
Setup WiFi network using RPi as an | [oT and edge Uttrasonc distance sensor
4 03’ 04 aceess pOint * MicroUsB
Use containerization tool to run a |edge & ourt1 temperature and I“’""“"*’"
5 03 .) " J humidity sensor
proxy solution on Raspberry Pi e i) 2/
6 o1 Establish communication between IoT | IoT-edge mererral A Raspbermy PI3 gogpnany pia
devices and edge localized proxy interface
7 05 Statistical performance analysis IoT and edge
8 03 Configure a cloud database service cloud Fig. 2: Basic kit in IoT context
9 | o1 o3 |Configure and run a containerized | loT-edge-cloud Task Unit 2 (Circuit setup): In this task unit, students
’ edge-cloud connector interfaces
Statistical performance analysis of the | ToT, edge and| 1earn how to connect each of the sensors and actuators to
10 05 entire system cloud the microcontroller. Students receive a breadboard circuit

A. IoT Context (Task Units 1-4)

The familiarization with IoT devices is the foundation of
this course. In IoT context, students are learning to configure
microcontrollers and sensors, to wire the IoT devices with the
devices in edge computing context and to writing and running
the software that collects the measurements. Here, each student
receives two microcontrollers and one single board computer
(RPi). In addition, each student receives a set of three types of
sensors and three LED actuators, with jumper wires and set of
resistors that will help them connect the circuits. This is shown
in the left part of Fig. [2] and it represents the basic kit for
developing an IoT device with sensing and actuating functions.
In this context also single board computers are used, serving
as workstations to connect the microcontrollers via MicroUSB
cable for energy supply (i.e., battery-less operation).

Task Unit 1 (IoT device setup): The first task unit starts
with detailed instructions and all necessary information about

layout and a pin layout. This is illustrated in Fig. (3| with
LED actuator and DHT11 temperature and humidity sensors
connected to NodeMCU board. Based on the circuit scheme
and pin layout table, microcontrollers, sensors and actuators
are placed on their corresponding breadboards and connected
with jumper wires. The instructions provided to students
include information about which type of resistor is needed for
component protection. It should be noted that the circuits are
different for different boards. In the example shown, LEDs
have two pin interfaces, one with a long leg (anode) for
positive supply that is connected with a yellow wire to one of
the GPIO (General Purpose Input/Output) pins of NodeMCU,
and which is then used to carry digital or analog signals. The
smaller leg (cathode) is used for negative supply that will
be connected with a black wire to the ground pin (GND)
of a microcontroller. The resistor of value 200) is added
in series with the LED. In other example, when connecting
NodeMCU with DHT11, three of the pins on each side are to

be connected with jumper wires: DHT11’s pin that supplies
power for the sensor - VCC pin connects to +3.3 V pin of
NodeMCU (red wire) and DHT11’s ground pin to the ground
pin of the NodeMCU (black wire). The Data pin on the DHT11
sensor connects to one of the GPIO pins of NodeMCU (here,
pin D3) with a green jumper wire. Finally, a 10 k{2 resistor is
added between VCC and Data pin of DHT11, as can be seen
in Fig. [3] This task unit needs to be repeated for all sensors.

Pin layout Breadboard circuit layout

DHT11 | NodeMCU

Connecting NodeMCU and DHT11

Connecting NodeMCU and LED

Fig. 3: Interfacing microcontrollers with sensors and actuators

Task Unit 3: (Programming microcontrollers) In this task
unit, students are introduced to Arduino IDE and to pro-
gramming microcontrollers through writing, compiling, and
uploading the code. First, students install the latest version of
Arduino IDE on the RPi used to configure ESP8266 boards.
To test how DHT11 sensor can be used, students test Arduino
IDE sketch code provided to them, as illustrated in Fig.]
To upload the code, however, students are requested to find
under Tools an option to manage libraries in Arduino IDE.
This is necessary to making sure that DHT.h library, which
is the corresponding library for sensor exemplified here, was
installed. To read the output of Arduino IDE, - in this case
temperature and humidity values, students use Serial Monitor
- a separate pop-up window from Arduino IDE that acts as
terminal, also to be found under Tools. This Serial Monitor is
used for IoT setup verifications, since in case that the circuit
components have not been correctly connected, the expected
outputs after compiling and uploading the code will not be
shown. In case there were no errors, the output on the monitor
will show sensor readings, which for DHT11 are the values
measured on temperature and humidity sensors. Arduino IDE
sketch code is also tested for LED, which is commonly used
as a first tutorial in Arduino IDE, since it does not require
inclusion of libraries. This sketch code is to be uploaded to
the second of the two microcontrollers given to students.

Task Unit 4 (Wireless network setup): In this task unit, the
previously used single board computers are used to configure
their wireless interfaces. To this end, students are instructed
on how to program microcontrollers to receiving an IP address
from the network, as illustrated in Fig.] To set up WiFi
network, each student is given an access to a NETGEAR
router, which is pre-configured with default settings. Students
are first asked to connect the router to a RPi in a wired fashion,
i.e., via an Ethernet cable, in order to change the default
settings and be able to setup a network name of choice in
Name(SSID) field to a value netwX, and the password in
Password(NetworkKey) field to a value passwordX. The
value noted as X will be replaced with a randomly generated

number for each of the RPi devices. Following the same
approach the network address is to be set to 192.168.X.0 (e.g.,,
192.168.1.0, 192.168.2.0, ...) with subnet mask 255.255.255.0.
Table |[V|illustrates network configurations on the example of
two students working in the lab (each with their own devices).

Let us illustrate in Fig.] how an RPi 1 is assigned an
IP address from 192.168.1.0 network. Student uses the WiFi
credentials illustrated in Table [V] to connect their microcon-
trollers to the network and in that way obtain IP addresses
from the same network. In this example, it is necessary to
include a few Arduino IDE WiFi libraries for ESP8266 boards
as shown in the Arduino code block (the libraries included
are WiFiClient.h and ESP8266WiFi.h). After uploading the
code, the IoT devices (assigned IP addresses 192.168.1.y
and 192.168.1.z and the RPi device are all connected to the
same WiFi network, where the exact assigned IP addresses of
microcontrollers can be verified in the Arduino IDE’s Serial
Monitor. This code is now merged with the sensor and actuator
sketches from the previous task (with the example for DHT11
provided by instructors), which in turn finally allows students
to send the data measured on sensors over a wireless network.

TABLE IV: Wireless network configurations in IoT context

Group SSID | Password | Network address | Subnet mask
Student1(RPi 1) | netwl | passwordl |192.168.1.0 255.255.255.0
Student2(RPi 2) | netw2 | password2 |192.168.2.0 255.255.255.0

B. Edge computing context (Task Units 4-7)

The devices used in edge computing context include primar-
ily single board computers (RPi 3 Model B+ or RPi 4) but also
a desktop computer running an edge-cloud connector. RPis are
configured to run MQTT communication protocol software,
including MQTT broker and the related processing software.
The main purpose of the edge-cloud connector is as the name
says to connecting the devices in edge and cloud context. To
understand the role of communication protocols, students are
given instruction, including the learning material about state
of the art application layer protocols that are currently being
implemented in [oT resource constrained environments. This
group of Task Units also connects IoT and edge computing
context, and students are tasked with reading and measuring
performance of the data published by sensors in IoT context.
As previously noted, each student creates a separate group of
edge devices. However, all groups of edge devices stream the
data measured to the same edge-cloud connector.

Task Unit 5 (MQTT broker installation): The devices in
the edge context are here to be setup as MQTT brokers.
The broker is responsible for receiving the data generated in
form of MQTT messages, and then publishing the received
messages to all subscribed clients. To install the MQTT broker,
students use an open source broker Mosquitto, pre-installed
as docker image made available in the official repository of
container images, Docker Hub. This allows also students to
get introduced to the containerization concept [38]]. For pre-
installation on RPis, instructors need to download the newest
ARM compatible official Eclipse Mosquito docker image.

DHT11 sketch code

DHT11-NodeMCU | Arduino 1.8.13

DHTLLflodeMCUS
#include "DHT.h"

#define DHTPIN © // NodeliCU digital pin
#define DHTTYPE DHTI1
DHT dht(DHTPIN, DHT11); //Initialize DHT sensor
void setup() {
Serial.begin (115200) ;
Serial.println("DHT11 test!");
dht.begin();
}
void loop() {
delay(2000) ;
float h = dht. readHumidity () ;
float t = dht.readTemperature();
}
Serial.print("Humidity: ");|
Serial.print(h);
Serial.print(" %\n");
Serial.print("Temperature: ");
Serial.print(t);

MicroUSB
connection

Network setup and sketch code

] SSID: netwl
Password: | d1
) Network address: 192.168.1.0
Subnet mask: 255.255.255.0

Edge node A
Wireless interface IP:
192.168.1.x

Hetwork confHlodeMcU § _

#include <WiFiClient.h>
#include <ESPB266WiFi, h>

const char* ssid = "netwX":
const char* pass = "passwordX";
int wifiStatus;

void setup() {

Serial.begin(115200);

//Connect to Wifi network
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
wifiStatus = WiFi.status();

Serial.println("IP address is: ")
Serial.println(WiFi. localIP());
A

loT device B - actuator
IP: 192.168.1.z

loT device A - sensor
IP: 192.168.1.y

Fig. 4: 1oT context - Programming microcontrollers with Arduino IDE

This in turn requires to install Docker software first, with
the installation steps notably different for various models of
RPis (3 or 4). With Docker installed and running, students
run MQTT broker on port 1883 (this port is usually used for
MQTT brokers) with a simple command sudo docker run -p
1883:1883 eclipse-mosquitto. The output of will be a message
indicating that broker is listening for incoming messages on
the port 1883. Upon completion of this task unit, the edge
devices are ready for microcontrollers to connect to the MQTT
broker and send the sensor data from the IoT context.

Task Unit 6 (MQTT communication): In this task unit,
students learn how to program MQTT publisher and subscriber
clients on microcontrollers and establish the communication
with the broker, over the previously set WiFi network from
Task Unit 1.4. The subscriber and publisher clients are imple-
mented on two microcontroller boards. The subscriber is im-
plemented on the board connected to the LED actuator while
publisher connects to the sensors. (Recall that the setup of the
board circuits was completed in Task Unit 1.2). The MQTT
communication exchange between a publisher and a subscriber
is shown in Fig. 5] on the examples of DHTI1 sensor and
LED actuator, respectively. Publisher, which is implemented
on microcontroller connected to DHT11 sensor (IoT device
A), publishes the information based on the sensor’s readings,
i.e., temperature and humidity values. The data is published to
a topic DHTsensor\Temp_humidity and subscriber subscribes
to this data. All communications goes through MQTT broker
on RPi which listens for MQTT messages on port 1883. For
the subscriber - actuator, a condition needs to be added that
LED is to be turned on in case the temperature readings from
the publisher exceed the threshold values. For example, this
can be defined as “turn on the LED if temperature exceeds
22 degrees Celsius”). Based on the wireless network setup
(Task Unit 1.3), publisher and subscriber are assigned the IP
addresses. In this case, the broker can be reached on IP address
of the Raspberry Pi’s wireless interface, based on network
configuration from Table [V] In the example of the student
working on the RPi 1 with SSID and password corresponding
to netwl and passwordl, IP address of the Raspberry Pi

wireless interface, as well as of the MQTT broker will be
assigned from the network 192.168.1.0/24. By simply typing
ifconfig in their Raspberry Pi’s terminal they will be able to
find out broker’s IP (e.g., 192.168.1.1), which is necessary to
program publishers and subscribers, as described next.

IP address
192.168.1.1

Mosquitto .
broker 5

Condition
Measured DHT11 data
:24.00 *C

Humidity: 19.00 %

Temperature > 24.00
blink

IoT device A - MQTT publisher IoT device B - MQTT subscriber

Fig. 5: MQTT communication exchange between IoT and edge
context

The said programming of MQTT based communication
in Fig. 3 is illustrated in Fig. [6] The main function and
parameters for Arduino IDE sketches of MQTT publisher and
subscriber in Arduino IDE are shown on the examples of
DHTI11 sensor and LED actuator, respectively. The outputs of
running the code for subscriber and publisher are as follows:

// Publisher output:

Wifi connected

IP address is:

192.168.1.2

Connecting to Mosquitto Broker [DONE]
Humidity: 19.00 %

Temperature: 22.00 =C

Sending temperature and humidity
[22.00, 19.00] —>

{"temperature ”:22.00, “humidity”:18.00}
// Subscriber output:

Wifi connected

IP address is:

192.168.1.3

Connecting to Mosquitto Broker [DONE]
Message received in topic:

DHTsensor/ Temp_humidity

Message: {”temperature”:25.00, “humidity”:36.00}

Task Unit 7 (Latency measurements) In this task unit, stu-
dents measure one of the most critical performance indicators

QTTpub-NodeM

#include <DHT.h>

#include <PubSubClient.h>

#include <WiFiClient,h>

#include <ESP8266WiFi.h>

const char* ssid = "netwl";

const char* pass = "password 1";

const char® mqttBroker = "192.168.1.17;

const int mgttPort =1883;

WiFiClient espClientl;

PubSubClient client(espClientl);

#define DHTPIN @ /7 NodeMCU digital pin D3
#define DHTTYPE DHT11 // DHT 11

DHT dht (DHTPIN, DHTTYPE);// Initialize DHT sensor,

void setup() {
Serial.begin(115200);
InitwiFi(); //Connects the microcontroller to the wifi netw
dht.begin();
delay(10);
[cTient.setServer(mqttBroker, mqttPort);//Connect to the broker]

}
void getAndSendTemperatureAndHumidityData() {
Serial.printin("Collecting temperature and humidity data.");
float h = dht.readHumidity();
float t = dht.readTemperature();// Temperature is in Celsius
String temperature = String(t);
String humidity = String(h);
// Prepare a JSON payload string
String payload = "{";
payload += "\"temperature\":";
payload += "\"humidity\":"

payload += temperature; payload += ",'
; payload += humidity;

payload += "}":
// Send payload
char attributes[100];
payload. toCharArray(attributes, 100);
| client.publish(“/DHTsensor/Temp_humidity", attributes);
Serial.printin(attributes);
}

(a) MQTT publisher

b-NodeMCU §

#include <PubSubClient.h>

#include <WiFiClient,h>

#include <ESP826GWiFi.h>

const char* ssid = "netwl";

const char* pass = "password_1";

const char* mqttBroker = "192.168.1.1";
jconst 1nt mq ort = H

const _int LED = 2; // NodeMCU pin D4
WiFiClient espClient2;

PubSubClient client(espClient2);
void setup()

Serial.begin(115200);

InitWifi();//Connects the microcontroller to the wifi netw
delay(16);

pinMode (LED, OUTPUT)

client.setServer(mqttBroker., mqttPort);//Connect To the bioker
client.subscribe (" /DHTsensor/Temp_humidity");

]

void ReceivedMessage(char*® topic, byte* payload, unsigned int length) {
Serial.print("Message received in topic: ");
Serial.println(topic);
Serial.print("Message:");
String temp;
for(int i = 0; i < length; i++) {
Serial.print{(char)payload[il);

//add a condition for turning on a LED
Serial.printin();

if (payload[15]=='2"&& payload[16]=="2") {
digitalWrite (LED, HIGH);

}

else {

digitalWrite (LED, LOW);

}

(b) MQTT subscriber

Fig. 6: Arduino IDE programming of MQTT communication

that is the communication latency. We start with the publisher
creating the message load and creating a timestamp before
sending the data to the broker. Student can measure the time
for the message to reach the subscriber by creating another
timestamp. The time that passes between the two timestamps
is the latency value measured. The experiment can be repeated
for different message sizes, and the results can be statisti-
cally evaluated. Fig. [7] shows statistical results (minimum,
maximum, mean values and standard deviation) of one such
experiment in form of a table and a boxplot, for message sizes
of 10B, 100B, and 1KB. From these measurements, students
can learn that the mean value of MQTT Ilatency is around
0.004 sec and that the size of the message did not have a
major effect. The boxplot results also show that the latency
for 10B message size is in the range of 0.00307s - 0.00425s,
for 100B message size 0.00318s - 0.00422s, and for 1KB it is
0.00368s - 0.00462s. This simple statistical analysis introduces
students also to research in this field.

Additional measurement assignments for students that com-
pleted the previous task units in shorter time-frame include
measuring power consumption for different application layer
protocols. This is particularly interesting for the most critical
component regarding its resource capabilities, which is the
device chosen for the IoT context - microcontroller. Here,
students were instructed to estimate ESP§266 microcontroller
board RAM utilization for sending the sensor data, by measur-
ing its dynamic memory allocation (free Heap size). This was
achieved by sending a fixed number of messages containing
sensor measured data in JSON format (i.e 1000 temperature
values) to the Mosquito broker and returning as the output the

0.0050

0.0045

0.0040

B
L]
BE
L
|
|

0.0035

0.0030
0.0025
108 1008 1KB
message size
M MQTT
sizew Standard Mean Minimum Maximum
deviation value value value
10B 0.00037 0.00364 0.0018 0.0142
100B 0.00039 0.00368 0.0023 0.0155
1KB 0.00073 0.00415 0.0026 0.0160

Fig. 7: MQTT latency measurements in edge context

free heap size in bytes. To ensure a correct estimation several
measurements were taken and the mean value calculated.
The experiment was then repeated with the HTTP protocol
implementation. The obtained values in table [V] indicate that
the free heap size is lower for HTTP, which means that
for sending the same number of messages containing sensor
data, using HTTP will result in microcontroller’s higher RAM
utilization compared to the MQTT.

TABLE V: Microcontroller RAM utilization for sending sen-
sor data to the edge

protocol | Free Heap in Bytes
MQTT 49142
HTTP 48932

C. Cloud computing context

The cloud computing context requires the implementation
of Kafka based edge-cloud connector that connects devices
in edge computing context to Firebase cloud. To this end,
we pre-install the desktop computer in edge context to run
a dockerized Kafka-Firebase connector solution to all edge
devices. To establish the IoT-edge-cloud communication, all
edge devices in edge context need to be in the same network.
We setup static IP addresses for Ethernet interfaces on each
devices in edge context, as illustrated in Table @ As the
connector is not only shared by all RPi devices but also by all
students controlling their corresponding RPis, the instructors
manually assign static IP address on two Ethernet interfaces.
One address is used for the network configured to connect to
the cloud database, while the other for RPi used in the edge
context, see Table When all of the IP addresses have been
configured students will by using the Ethernet cables connect
their nodes to a switch, with one port connected with a PC,
now having their entire edge domain in the same network.

TABLE VI: Configuration of static IP addresses

Edge context IP address Subnet mask

Desktop PC (edge-cloud connector) 192.168.5.2 255.255.255.0
Student] (RPi 1) 192.168.5.3 255.255.255.0
Student2 (RPi 2) 192.168.5.4 255.255.255.0

Task Unit 8 (Configuring cloud database): To get started,
students first sign in on the edge-cloud connector device with
Google account created for NoteLab. This account allows the
student to use Firebase Console (https.//firebase.google.com)
and create a new Firebase project. After creating a project,
students select from multiple database options, and by doing
so are required to opt for a real-time database. The database
can be started in two modes, the so-called locked and test
mode. In NoteLab, we use the test mode (the locked mode
is for production solutions). Whenever a new database is
created, it will have a unique URL ending in firebaseio.com
and the URL of the database following the format <project
_id> firebaseio.com.This information is later used for inter-
facing the connector and Firebase database. In this stage,
students have an empty database in Firebase cloud. The last
pair of information required to connecting the connector in the
edge context to the database in the cloud context are the host
name and authorization key/secret key of the created project.
This information can be read from Project Settings-Service
accounts tab where the option to generate a new private key
will be offered for generation. Students can save the key as
firebase-admin.json in the connector.

Task Unit 9 (Connecting edge and cloud databases):
Since this is an undergraduate course, where students are
not required to learn all the development details in Java, the

connector device is pre-configured, with all relevant details
saved locally, including the installation of Docker. Further-
more, the docker-compose tool is also pre-installed allowing
the deployment and management of multiple containers at
the same time instead of running each container individu-
ally. This is due to the fact that the Kafka based connector
(Kafka-Firebase connector from Fig. [Ib) actually includes
multiple containers. Based on pre-installation, students re-
ceive the set of instructions, which consist of modifying two
parameters found in docker-compose.yml saved locally. File
docker-compose.yml can be opened in a text editor and two
parameters need to be configured: externall Paddress and
FIREBASFE_URL. This way, students have configured the
database for synchronization between edge and cloud context.
Task Unit 10 (IoT-E-C performance measurements): We
illustrate end-to-end latency measurement similar to the IoT-
to-edge measurements from Task Unit 7, where latency was
measured as the time that passes between the two times-
tamps. Here, the first timestamp is also created with a MQTT
publisher sending the message to the broker. The second
timestamp is created when the message previously sent is
received by the subscriber directly from the Firebase which
represents the cloud context. The experiment is again repeated
for different message sizes. Fig. [§] shows statistical results in
form of a table and a boxplot, for different message sizes of
10B, 100B, and 1KB. Students can notice that compared with
Fig. [7] the end-to-end latency values were noticeably higher
than what was measured between IoT devices and edge.

o o
@ o
S N

o
0
®

latency [s]
|
|

o
o
o

[T]
L]
L1

—
0.54 I_

108 1008 1KB
message size

Message L
size Standard Mean Minimum | Maximum
deviation value value value
10B 0.10182 0.56099 0.44614 2.10328
100B 0.11029 0.55521 0.42293 8.45812
1KB 0.10741 0.56057 0.42163 5.99477

Fig. 8: MQTT latency measurements IoT-E-C

D. Lessons learnt

Undergraduate students typically come with different
knowledge backgrounds and different programming and elec-
tronics class prerequisites. At the same time, most students
already have specific preferences towards either software-
or hardware-oriented courses. Students with knowledge in
programming and software engineering performed especially

well in Task Units related to data processing and storage in
IoT-E-C context (Task Units 7, 8, 9). Students more interested
in electronics aspects of the course, usually excel at Task Units
1, 2, and 3. Clearly, the benefit of the course is that a number
of task units is designed to combine various backgrounds and
preferences (Task Units 4, 5, 6, and 10).

To motivate students without a certain background, it was
essential to create a detailed instruction guidelines that cover
a wide range of topics, from devices’ hardware capabilities,
circuit setup schematics over to programming scripts and
basic instructions in various programming languages. Even
then students faced challenges. For instance, when config-
uring hardware components, and despite following a precise
circuit schematics, minor omissions in interfacing sensors
and actuators inevitably happen; wrongly connected jumper
wire directly leads to device damage. This was a common
occurrence, and we found that it helped developing student’s
engineering and problem solving skills. On the flip side, the
course needs to purchase backup hardware components.

In terms of developing and testing software solutions, a
set of basic and detailed instructions for programming in
Arduino IDE is rather critical, since also the students versed in
programming may have no knowledge in low-level program-
ming languages. While learning the programming basics with
Arduino IDE is not complex in itself, students need to get
used to establishing a rather strong link between software and
hardware components in IoT context. In the end, students can
learn that even a minor differences in hardware configurations
would end up in the code being executed differently for
different devices (and different students in charge of these
devices). Anecdotally, one of the common difficulties for
students is to differentiate whether the device is damaged or
simply disconnected, as in both cases the low-level program
would just stop running.

With dockerized components, on the other hand, students
can face the challenge on how to run docker images even when
already prepared for them (including the instructions related
to operating systems, e.g., Ubuntu and Raspbian OS). For the
development of their own application scripts, we found that
it was advantageous to students to have basic knowledge in
Python (Python 2 and Python 3 come pre-installed on Rasp-
bian OS). The Python programming skills are not mandatory
though, as the only scripted application developed in Python
was mgqtt proxy. As both RPi and Desktop PC operating
systems are Debian-based, the students are instructed to use
commandline interface instead of graphical user interface for
which also basic skills need to be acquired.

All challenges that students face require help of tutors
and instructors. In addition, instructors also face conceptual
challenges. One of the daunting challenges is to scope the
learning framework, given the rapid evolution of the state-of-
the-art, both in hardware and software. Instructors also need
to provide a significant amount of up-to-date, detailed and
workable instructions to students about the devices’ hardware
and software capabilities as well as the networking and com-
munication protocols. Table summarizes hardware and

software ready-configurations and code that instructors need
to prepare. As it can be seen, scoping the learning framework
requires not only students to further challenge their hardware
and software skills, but also instructors to provide the enabling

hardware and software configurations.

TABLE VII: Material provided by instructors

Context | Hardware and OS Software
e Pin layout, specifica- | e Arduino IDE configured for
LT tions of sensors, ac-| ESP8266
tuators and microcon- | e List of libraries to program sen-
trollers sors and actuators
e Breadboard circuit | ¢ Arduino sketch code: sensors, ac-
scheme for connecting tuators, wireless network con-
sensor/actuators with nection, MQTT publisher/sub-
microcontroller scriber.
e RPi 3/4 Model B pin|e Mosquitto broker docker image
Edge layout and specifica- downloaded with installation and
tions configuration instructions
o Latest version of Rasp- | e Instructions on RPi and Desktop
bian OS PC static IP address configura-
e Breadboard circuit tion
scheme for connecting | ¢ mqtt proxy python script
sensor/actuators ~ with | ¢« Edge-cloud connector docker im-
microcontroller age downloaded with installation
o Latest Ubuntu version and configuration instructions
o NoteLab Google account to sign
Cloud in to Firebase
e New Firebase project and Real-
time Database created
o Kafka based edge-cloud connec-
tor connected to the database

V. CONCLUSIONS AND OUTLOOK

We proposed and outlined the design and development of
an undergraduate laboratory course, we named Network-of-
Things Engineering Lab (NoteLab), - that set the goal of
implementing various interfaces and communication proto-
cols to connect IoT, edge and cloud computing systems and
evaluate their performance. Unlike other such related courses,
our course was designed to provide an implementation of the
entire system, based on open-source and low-cost devices,
and for the subsequent evaluation and benchmarking of the
performance of the entire system. We also integrated various
communication protocol and interface solutions.

In this paper, we focused on technical aspects of the course
implementation. Despite receiving overwhelmingly positive
feedback from students, we have not yet didactically and
competently analyzed the learning outcomes and student
assessments. This is also due to the course duration (one
semester over two years) and due to the limited number of
students per lab (six). In the future, we plan to leverage
two computer science related learning taxonomies, Bloom and
SOLO taxonomy, which will allow us to improve upon design
of the course didactically. Future possible modular extension
to our course include other application layer protocols, most
notably HTTP3, security protocols, and machine learning
applications.

[1]

[2]

[4]

[5

[t}

[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

J. He, Dan Chia-Tien Lo, Y. Xie, and J. Lartigue, “Integrating internet of
things (iot) into stem undergraduate education: Case study of a modern
technology infused courseware for embedded system course,” in 2016
IEEE Frontiers in Education Conference (FIE), Oct 2016, pp. 1-9.

B. Burd et al., “Courses, content, and tools for internet of things
in computer science education,” in Proceedings of the 2017 ITiCSE
Conference on Working Group Reports, ser. ITICSE-WGR ’17. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
125-139. [Online]. Available: https://doi.org/10.1145/3174781.3174788
S. J. Lee, A. Jung, and M. Yun, “Creative internet of things (iot) for
undergraduates,” in 2019 14th International Conference on Computer
Science Education (ICCSE), Aug 2019, pp. 567-572.

A.R. Rao, D. Clarke, M. Bhdiyadra, and S. Phadke, “Development of an
embedded system course to teach the internet-of-things,” in 2018 IEEE
Integrated STEM Education Conference (ISEC), 2018, pp. 154—160.
A. Farhat, T. McNeill, and J. Raven, “An interdisciplinary approach to
developing an iot healthcare solution in applied higher education,” in
2018 Advances in Science and Engineering Technology International
Conferences (ASET), Feb 2018, pp. 1-5.

J. Guth et al, A Detailed Analysis of IoT Platform
Architectures: Concepts, Similarities, and Differences. Singapore:
Springer Singapore, 2018, pp. 81-101. [Online]. Available:

https://doi.org/10.1007/978-981-10-5861-5_4

S. Tayeb, S. Latifi, and Y. Kim, “A survey on iot communication
and computation frameworks: An industrial perspective,” in 2017 IEEE
7th Annual Computing and Communication Workshop and Conference
(CCWC), 2017, pp. 1-6.

K. Karvinen and T. Karvinen, “Iot rapid prototyping laboratory setup,”
International Journal of Engineering Education, vol. 34, no. 1, pp. 263—
272, 2018.

S. Kurkovsky and C. Williams, “Raspberry pi as a platform for the
internet of things projects: Experiences and lessons,” in Proceedings
of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education, ser. ITICSE *17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 64-69. [Online].
Available: https://doi.org/10.1145/3059009.3059028

M. N. Barendt, N. Sridhar, and K. Loparo, “A new course for teaching
internet of things: a practical, hands-on, and systems-level approach,” in
ASEE annual conference and exposition.

S. A. Nelke and M. Winokur, “Introducing iot subjects to an existing
curriculum,” IEEE Design Test, vol. 37, no. 6, pp. 24-30, 2020.

S. Maitra, A. Abdelgawad, and K. Yelamarthi, “Lab in a box : A rapidly
deployable environmental monitoring iot system,” in 20/9 IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS),
Aug 2019, pp. 472-475.

Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies
for internet of things: a primer,” Digital Communications and
Networks, vol. 4, no. 2, pp. 77 — 86, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352864817301335

J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439-449, Feb 2018.

R. Mahmud, F. L. Koch, and R. Buyya, “Cloud-fog interoperability
in iot-enabled healthcare solutions,” in Proceedings of the 19th
International Conference on Distributed Computing and Networking,
ser. ICDCN °18. New York, NY, USA: Association for Computing
Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3154273.
3154347

R. Grammenos and C. Poole, “Teaching the internet of things: The first
three years,” in 2019 26th International Conference on Telecommunica-
tions (ICT), April 2019, pp. 265-269.

C. C. Chan, M. Tsui, M. Y. Chan, and J. H. Hong, “Applying the struc-
ture of the observed learning outcomes (solo) taxonomy on student’s
learning outcomes: An empirical study,” Assessment & Evaluation in
Higher Education, vol. 27, no. 6, pp. 511-527, 2002.

GitHub. (2020) Bridge between kafka and firebase re-
altime database. [Online]. Available: |https://github.com/fcarp10/
kafka-firebase-aggregator:

Google. (2014) Firebase realtime database. [Online].
https://firebase.google.com/products/realtime-database

F. Carpio, M. Delgado, and A. Jukan, “Engineering and experimentally
benchmarking a container-based edge computing system,” 2020.

Available:

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[35]

[36]
[37]

[38]

Eclipse IoT Working Group, IEEE IoT, AGILE IoT, and Open Mobile
Alliance, “IoT Developer Survey,” pp. 1 — 39, 2018.

A. Bhattacharjya, X. Zhong, J. Wang, and X. Li, CoAP—Application
Layer Connection-Less Lightweight Protocol for the Internet of
Things (IoT) and CoAP-IPSEC Security with DTLS Supporting CoAP.
Cham: Springer International Publishing, 2020, pp. 151-175. [Online].
Available: https://doi.org/10.1007/978-3-030-18732-3_9

J. Dizdarevié, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges
of fog and cloud computing integration,” ACM Comput. Surv., vol. 51,
no. 6, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3292674
C. Kishor Kumar Reddy, P. R. Anisha, R. Shastry, and B. V. Ra-
mana Murthy, “Comparative study on internet of things: Enablers and
constraints,” in Data Engineering and Communication Technology, K. S.
Raju, R. Senkerik, S. P. Lanka, and V. Rajagopal, Eds. Singapore:
Springer Singapore, 2020, pp. 677-684.

P. E. Hertzog and A. J. Swart, “Arduino-enabling engineering students
to obtain academic success in a design-based module,” in 2016 IEEE
Global Engineering Education Conference (EDUCON), 2016, pp. 66—
73.

I. Grokhotkov. (2017) Esp8266 arduino core’s documentation -
boards. [Online]. Available: https://arduino-esp8266.readthedocs.io/en/
latest/boards.html

C. Boettiger, “An introduction to docker for reproducible research,”
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71-79, Jan. 2015. [Online].
Available: https://doi.org/10.1145/2723872.2723882

A. Hess. (2019) The top 20 tech skills of
2019. [Online]. Available: https://www.cnbc.com/2019/11/24/
top-20- tech-skills-of-2019-and- the-easiest-one-to-learn-in-2020.html
T. Keophilavong, Widyawan, and M. N. Rizal, “Quality of service
of protocols performance evaluation for internet of thing applications
development using low-cost devices,” in Proceedings of the 2019
2nd International Conference on Information Science and Systems,
ser. ICISS 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 166—170. [Online]. Available: https://doi.org/10.
1145/3322645.3322694

V. A. Barros, S. A. B. Junior, S. M. Bruschi, F. J. Monaco, and
J. C. Estrella, “An iot multi-protocol strategy for the interoperability
of distinct communication protocols applied to web of things,” in
Proceedings of the 25th Brazillian Symposium on Multimedia and
the Web, ser. WebMedia ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 81-88. [Online]. Available:
https://doi.org/10.1145/3323503.3349546

S. Garg and M. S. Ansari, “Implementation of rest architecture in ar-
duino based home automation system,” in 2017 International Conference
on Innovations in Control, Communication and Information Systems
(ICICCI), 2017, pp. 1-3.

R. K. Kodali and V. S. K. Gorantla, “Restful motion detection and
notification using iot,” in 2018 International Conference on Computer
Communication and Informatics (ICCCI), 2018, pp. 1-5.

B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and
analysis of its performance,” International Journal of Computer Science
and Network Security (IJCSNS), vol. 17, no. 3, p. 228, 2017.

P. Bellavista and A. Zanni, “Feasibility of fog computing deployment
based on docker containerization over raspberrypi,” in Proceedings
of the 18th International Conference on Distributed Computing and
Networking, ser. ICDCN ’17. New York, NY, USA: Association for
Computing Machinery, 2017. [Online]. Available: https://doi.org/10.
1145/3007748.3007777

Z. Y. Thean, V. Voon Yap, and P. C. Teh, “Container-based mqtt broker
cluster for edge computing,” in 2019 4th International Conference
and Workshops on Recent Advances and Innovations in Engineering
(ICRAIE), 2019, pp. 1-6.

T. E. Foundation. eclipse-mosquitto docker image. [Online]. Available:
https://hub.docker.com/_/eclipse-mosquitto

(2020) Nodemcu custom builds. [Online].
//nodemcu-build.com/

H. Knoche and H. Eichelberger, “Using the raspberry pi and docker for
replicable performance experiments: Experience paper,” in Proceedings
of the 2018 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 305-316. [Online]. Available:
https://doi.org/10.1145/3184407.3184431

Available: https:

https://doi.org/10.1145/3174781.3174788
https://doi.org/10.1007/978-981-10-5861-5_4
https://doi.org/10.1145/3059009.3059028
http://www.sciencedirect.com/science/article/pii/S2352864817301335
https://doi.org/10.1145/3154273.3154347
https://doi.org/10.1145/3154273.3154347
https://github.com/fcarp10/kafka-firebase-aggregator
https://github.com/fcarp10/kafka-firebase-aggregator
https://firebase.google.com/products/realtime-database
https://doi.org/10.1007/978-3-030-18732-3_9
https://doi.org/10.1145/3292674
https://arduino-esp8266.readthedocs.io/en/latest/boards.html
https://arduino-esp8266.readthedocs.io/en/latest/boards.html
https://doi.org/10.1145/2723872.2723882
https://www.cnbc.com/2019/11/24/top-20-tech-skills-of-2019-and-the-easiest-one-to-learn-in-2020.html
https://www.cnbc.com/2019/11/24/top-20-tech-skills-of-2019-and-the-easiest-one-to-learn-in-2020.html
https://doi.org/10.1145/3322645.3322694
https://doi.org/10.1145/3322645.3322694
https://doi.org/10.1145/3323503.3349546
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1145/3007748.3007777
https://hub.docker.com/_/eclipse-mosquitto
https://nodemcu-build.com/
https://nodemcu-build.com/
https://doi.org/10.1145/3184407.3184431

	I Introduction
	II Related work and our contribution
	III NoteLab architecture design
	III-A Reference architecture
	III-B Scoping the learning framework

	IV Laboratory Setup and Task Units in Context
	IV-A IoT Context (Task Units 1-4)
	IV-B Edge computing context (Task Units 4-7)
	IV-C Cloud computing context
	IV-D Lessons learnt

	V Conclusions and Outlook
	References

