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Abstract—Due to the increasing demand from mobile devices
for the real-time response of cloud computing services, federated
edge learning (FEL) emerges as a new computing paradigm,
which utilizes edge devices to achieve efficient machine learn-
ing while protecting their data privacy. Implementing efficient
FEL suffers from the challenges of devices’ limited computing
and communication resources, as well as unevenly distributed
datasets, which inspires several existing research focusing on
device selection to optimize time consumption and data diversity.
However, these studies fail to consider the energy consumption of
edge devices given their limited power supply, which can seriously
affect the cost-efficiency of FEL with unexpected device dropouts.
To fill this gap, we propose a device selection model capturing
both energy consumption and data diversity optimization, under
the constraints of time consumption and training data amount.
Then we solve the optimization problem by reformulating the
original model and designing a novel algorithm, named E2DS,
to reduce the time complexity greatly. By comparing with
two classical FEL schemes, we validate the superiority of our
proposed device selection mechanism for FEL with extensive
experimental results.

I. INTRODUCTION

Nowadays, the demand for the timely and reliable response
of cloud computing services becomes increasingly extensive
due to the prevailing of real-time applications on mobile
devices, which reveals multiple critical deficiencies of the
traditional central cloud computing. On the one hand, wireless
communication channels may suffer from high latency, low
bandwidth, and instability. On the other hand, the security of
the cloud center has long been criticized, and data privacy
can be easily breached under the attacks of malicious third
parties. Regarding the first disadvantage, leveraging on the
large-scale deployment of 5G technology, edge computing
has played an important role in providing flexible and ef-
ficient services to end users. To solve the second problem,
federated learning (FL) with privacy protection characteristics
can effectively assist in aggregating necessary information to
improve training efficiency, so as to provide automatic and
intelligent computing. Combining the advantages of the above
two solutions, federated edge learning (FEL) emerges recently
to holistically address the problem of cloud computing for
achieving efficient machine learning with the help of edge
devices while protecting their data privacy at the same time.

However, due to the uncertain communication conditions
and computing capabilities of edge devices without owning
independent and identically distributed (IID) data, there exist

huge challenges in efficiently implementing FEL. Faced with
such a situation, a lot of existing studies are devoted to the
research of server-oriented optimization in the FEL process,
including resource allocation [1]–[3], intermediate server as-
sistance [4], [5] and device participation incentive [6]–[8].
Although these methods are optimized under the premise of a
given set of edge devices contributing to FEL, the participa-
tion of some devices lacking computing and communication
capabilities or training data can negatively affect the training
performance of FEL.

Beyond the server-oriented optimization, many researchers
have tried to improve FEL from the perspective of devices,
which mainly includes three types of studies, i.e., such as
model optimization [9]–[11], resource balance [12] and device
selection [13]–[16]. Among them, model optimization may
sacrifice the accuracy of the final model to a certain extent,
while resource balance usually assigns extra resources to low-
quality participants, which can be unfair for other high-quality
devices and thus discouraging their future participation. More
importantly, involving all available devices in the learning
process in the first two types of schemes can heavily degrade
the overall performance of FEL systems. Thus, device selec-
tion becomes a better solution under the premise of balancing
resource consumption and efficiency. In fact, there are several
recent works [13]–[16] focusing on device selection for FEL.
But they fail to include the impact of devices’ energy cost
on device selection, except for time consumption and data
diversity. As the power of edge devices is usually provided by
built-in batteries, excessive energy consumption of participated
devices may cause unanticipated dropouts and significantly
lower the cost-efficiency of FEL.

To overcome the shortcomings of the existing device se-
lection mechanisms, we consider minimizing the energy con-
sumption of all selected devices in each round of train-
ing, which is under the constraints of communication and
computing time consumption of each device, as well as the
total amount of data for training. In addition, the number of
devices selected for FEL in each round is also designed to
be maximized so as to increase the diversity of data and thus
accelerate the speed of model convergence.

However, it is nontrivial to solve the above minimization
problem and the time complexity of intuitively solving this
problem increases exponentially with the number of devices,
which imposes a burden on the server to determine the
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appropriate set of devices in each FEL round and can further
reduce the training efficiency of FEL.

In this paper, we solve the above challenge by defining
an optimization problem considering the time and energy
consumption in the communication and calculation phases, as
well as the number of selected devices and the local data sizes
of devices. Afterwards, the optimization problem is solved
by designing an efficient algorithm named E2DS with lower
time complexity. The main contributions of this work are
summarized as follows:

• By elaborating the FEL procedures, we insert a device
selection step in the traditional FL process, which is
determined by the server through solving an optimization
problem.

• Considering the limited waiting time constraint of the
server and the required size of training data in FEL,
we establish a mathematical model to minimize the total
energy consumption of selected devices in the communi-
cation and computing processes, as well as maximize the
number of selected devices for data diversity considera-
tion.

• To reduce the calculation complexity of the server in the
stage of device selection, we reformulate the proposed
optimization problem and propose an efficient solution,
namely E2DS, that achieves the optimization goal but
brings no negative impact to the system performance of
FEL.

• We implement a series of experiments to evaluate the
performance of our proposed E2DS scheme via investi-
gating time and communication cost. Besides, by com-
paring with two classical methods, we demonstrate that
E2DS can perform better to save device-average energy
consumption while achieving great learning performance,
i.e., high accuracy with fast convergence.

The rest of this paper consists of the following five sections.
Section II summarizes the most related work about optimizing
FEL. Section III introduces our system model and problem
formulation, which is reformulated and solved in Section IV.
Then we evaluate our proposed scheme and present experi-
mental results in Section V. Section VI concludes the whole
paper.

II. RELATED WORK

As the applications of FL at the edge become popular,
numerous studies have been conducted to improve FEL per-
formance. The existing research on FEL optimization can be
roughly divided into two categories, server-oriented optimiza-
tion and device-oriented optimization.

Many researchers worked on server-oriented optimization
through resource allocation [1]–[3], intermediate server assis-
tance [4], [5] and device participation incentive [6]–[8]. Yang
et al. [1] optimized communication bandwidth allocation to
accelerate global model aggregation via superposing wireless
multiple-access channels. Abad et al. [2] targeted at reducing
communication delay by introducing mobile base stations for
resource allocation. Further, Ren et al. [3] studied the strategy

design using deep reinforcement learning for allocating com-
munication and computing resources to reduce transmission
cost during FEL. By introducing intermediate edge servers,
an algorithm employing multiple edge servers to aggregate
models were proposed in [4] to speed up the convergence
of FL, while Ye et al. [5] proposed setting up intermedi-
ate edge servers for small-scale aggregation to reduce both
total communication and computing cost of mobile devices.
Besides, through incentive mechanism designs, researchers in
[6] and [7] studied the criteria for measuring the contribution
of devices to global model updates and motivating devices
to participate in alliance learning. Hu et al. [8] proposed a
device participation decision strategy based on the correlated
equilibrium to maximize both the individual and global profits.

As the server-oriented solutions, like resource allocation,
will cause extra server load, and the assistance of the inter-
mediate server requires additional stations to be built, many
researchers have studied device-oriented optimization schemes
in FEL, such as ML model optimization [9]–[11], resource
balance [12] and device selection [13]–[16]. Xu et al. [9]
studied training data preprocessing by introducing the CNN
model into FEL to improve learning performance. Yu et al.
[10] considered reducing training rounds using the proactive
content caching algorithm to improve training efficiency. In
addition, a model pruning algorithm was proposed in [11] to
adjust the model size and reduce training time for devices.
Zeng et al. [12] investigated resource so as to guarantee that
all devices can submit local model updates using similar time
cost to device condition, where the weaker channel status and
computing capability would be provided with more bandwidth
so as to guarantee that all devices can submit local model
updates using similar time cost. Based on device selection, Wu
et al. [13] adjusted the selection set of devices by comparing
the efficiency of previous local model training of devices,
while Amiri et al. [14] considered the channel conditions
of devices and the importance of local model updates from
each device. The time consumption in local computing and
communication was the criteria for device selection in [15],
and Zhang et al. [16] studied to reduce the impact of non-IID
data on FEL performance through device selection.

However, due to the complex environment of edge devices
and servers, the aforementioned studies only consider single
factors affecting FEL performance, i.e., time consumption or
data adversity. In addition, as an indispensable resource, en-
ergy consumption is rarely considered in the existing studies,
which will lower the cost-efficiency of FEL. To fill the gaps,
we propose a comprehensive device selection scheme that
takes into account the energy and time consumption in both
local calculation and communication process, as well as the
diversity of training data. Through the device selection process
before each round of learning, the total energy consumed
during the FEL process will be significantly reduced with
participated devices as many as possible.





V U
k = BU

k log(1 +
Pkh

2
k

N0
). (2)

In (1) and (2), BD
k and BU

k are respectively the download and
upload bandwidth of device k, Pk and hk are respectively
the transmission power and the channel gain of device k
[15], and N0 is the background noise. Specifically, BD

k , BU
k

and N0 are constant parameters, while Pk and hk are device
information provided by each candidate device in the step of
device information collection.

We denote ck as the number of CPU cycles for each device
k to complete training one sample of data, which can be
measured locally and reported to the server. And the total
number of CPU cycles needed for device k in each FEL round
is ckDk with Dk denoting the size of its local dataset. Given
the CPU-cycle frequency of device k denoted by fk, the time
spent in the local learning step of device k, denoted by TLC

k ,
can be calculated as [17]:

TLC
k =

ckDk

fk
.

Combining the time spent in each step, the total time
consumption of device k in each FEL round, denoted as Tk,
can be calculated as:

Tk = TD
k + TLC

k + TU
k .

C. Energy Consumption Model

Similar to the time consumption model defined above, steps
3 to 5 consumes the energy of any device mainly in each

round of FEL, which will be calculated in this subsection.
In the rest of steps, the energy is mainly consumed for the
server. Since it is not closely related to devices, and the energy
supply of the server is sufficient, we skip to discuss the energy
consumption during these steps.

Since the energy consumption during transmission is the
product of transmission power and transmission time, we can
calculate the energy consumption of device k in the step of
global model distribution and local model uploading, denoted
by ED

k and EU
k , respectively, as follows:

ED
k = TD

k Pk,

EU
k = TU

k Pk.

In the step of local learning at devices, the energy consumed
of device k, denoted as ELC

k , is closely related to the data
amount and CPU frequency, which is expressed as [18]:

ELC
k =

αk

2
ckDkf

2
k .

In the above equation, αk is the effective capacitance coeffi-
cient of the computing chip-set in device k.

Thus, the overall energy consumption for device k, denoted
as Ek, in each FEL round can be expressed as:

Ek = ED
k + ELC

k + EU
k . (3)

D. Problem Formulation
Considering that edge devices are usually battery-powered

with limited energy supply, we aim to minimize the total
energy consumption of all participated devices so as to avoid
unexpected device dropouts for improving the cost-efficiency
of FEL. According to (3), the total energy consumption of
selected devices can be expressed as

∑K
k=1Ekxk.

Besides, the number of participated devices is also an
important parameter affecting the overall performance of FEL.
In a real federated learning scenario, the quality and quantity
of data from different devices can be highly diverse, and the
data samples usually cannot meet the assumptions of IID.
If the data distribution is severely skewed (i.e, non-IID), the
accuracy of the training results will be severely reduced [19].
Thus, in the device selection stage, it is significant to increase
the number of devices for improving the diversity of training
data, so as to increase the accuracy of the finally trained model.
Given xk denoting the state indicator of each selected device,
the number of devices can be calculated by

∑K
k=1 xk.

As we mentioned at the beginning of this section, there is
a time limitation Twait for the server to collect local model
updates, which should be a common constraint for all devices.
In addition, the total amount of data for training affects the
performance of FEL where excessive or extremely few data
will affect the convergence speed of the training process and
the model accuracy. Here we employ a parameter a to depict
the ratio of the required amount of data in FEL to the total
amount of data Dall =

∑K
k=1Dkxk.

To achieve the above goals, we formulate an optimization
problem as follows:

min : η
K∑

k=1

Ekxk − θ
K∑

k=1

xk, (4)

s.t. : xk ∈ {0, 1}, (4a)

Tk ≤ Twait, (4b)
K∑

k=1

Dkxk ≥ a ·Dall. (4c)

In the above formulation, the objective (4) is to minimize the
difference between the total energy consumption and the total
number of selected devices, with η and θ for value balancing.
Constraint (4a) ensures that the state indicator should only be
1 for being selected, or 0 for not being selected. Constraint
(4b) states that the overall time consumption of each selected
device should be less than the maximum waiting time Twait

set by the server. And the last constraint (4c) guarantees that
the overall data amount of selected devices has to be enough
for training the model in each round.

IV. ALGORITHM DESIGN FOR ENERGY-EFFICIENT DEVICE
SELECTION

In this section, we design a specific algorithm to solve the
optimization problem defined in (4), which consists of the
problem reformulation in Section IV-A and detailed algorithm
design in Section IV-B.



A. Problem Reformulation

From (4), we see that the optimization problem is to find
the best subset of devices that minimizes energy consumption
and maximizes the number of selected devices, under the
constraints of time consumption and training data size. Solving
the above optimization problem is nontrivial as it requires
a complex combinatorial optimization where the difference
between the total energy consumption and the number of
selected devices needs to be minimized. An intuitive solution
of this problem is to traverse all combinations of devices and
then compare them to obtain the optimal one. Since each
device has two states of being selected and not being selected,
it costs the time complexity of O(2K) to traverse K devices in
total, which will undoubtedly cause a huge time consumption
in each FEL round and seriously affect the training efficiency.
Therefore, we transform the problem defined in (4) to an
efficient maximization problem and propose a solution based
on dynamic programming with a lower time complexity.

For simplicity, we denote K1 as the set of selected devices
and K0 as the set of unselected devices, where K1 ∩K0 = ∅
and K1 ∪K0 = K. Obviously, the size of K1, denoted as K1,
can be calculated by:

K1 =

K∑
k=1

xk,

and the size of K0, denoted as K0, can be calculated by:

K0 =

K∑
k=1

(1− xk). (5)

Clearly, the state indicator of device k in K0 is xk = 0.
Then, we can use yk to indicate the state of device k which
is not selected for joining FEL in this round, so we have
yk = 1− xk. In this case, (5) can be rewritten as:

K0 =
K∑

k=1

yk.

Next, we respectively denote the sum of energy consump-
tion of devices in set K1 and that in set K0 as E1 and E0.
According to the definitions of two sets mentioned above, E1

and E0 are calculated as:

E1 =
K∑

k=1

Ekxk,

E0 =
K∑

k=1

Ek(1− xk) =
K∑

k=1

Ekyk.

Then the total energy consumption of all devices, denoted
as Eall, is the sum of E1 and E0, which is expressed as:

Eall = E1 + E0 =
K∑

k=1

Ekxk +
K∑

k=1

Ekyk. (6)

In the above equation, Eall is clearly a fixed value in each
FEL round.

In addition, the total data amount Dall, which appears in
one of the constraints in optimization problem (4), can also be
rewritten according to the above-defined two device sets K1

and K0. Specifically, the data amounts of devices in K1 and K0

is respectively denoted by D1 and D0, which are calculated
as follows:

D1 =
K∑

k=1

Dkxk,

D0 =
K∑

k=1

Dkyk,

and the total amount of data Dall is the sum of D1 and D0,
which is expressed as:

Dall =
K∑

k=1

Dkxk +
K∑

k=1

Dkyk. (7)

Since Dall is a fixed value that only related to the set of total
devices K in each round, the constraint (4c) can be transferred
to:

K∑
k=1

Dkyk ≤ (1− a) ·Dall. (8)

According to (6) and the transformed constraint (8), the
optimization problem defined in (4) can be rewritten into:

min : (ηEall − θK)− (η
K∑

k=1

Ekyk − θ
K∑

k=1

yk), (9)

s.t. : yk ∈ {0, 1}, (9a)

Tk ≤ Twait, (9b)
K∑

k=1

Dkyk ≤ (1− a) ·Dall. (9c)

As mentioned above, ηEall and θK are fixed values for each
FEL round. Since we aim to minimize the difference between
this fixed value ηEall − θK and η

∑K
k=1Ekyk − θ

∑K
k=1 yk

in the optimization problem (9), it is equivalent to maximize
(η

∑K
k=1Ekyk − θ

∑K
k=1 yk). Thus, problem (9) can be refor-

mulated as:

max :
K∑

k=1

yk(ηEk − θ), (10)

s.t. : yk ∈ {0, 1}, (10a)

Tk ≤ Twait, (10b)
K∑

k=1

Dkyk ≤ (1− a) ·Dall. (10c)

B. Algorithm Design

In the above, we introduce two fixed values and use the com-
plementary relationship to transform the original minimization
problem defined in (4) into a maximization problem defined
in (9). To solve it, we propose an Energy-Efficient Device



Selection (E2DS) algorithm which is specified in Algorithm
1.

Generally, we can see that the above maximization problem
can be transferred to a 0-1 Knapsack problem. In the 0-1
Knapsack problem, there are a number of different items and
a knapsack with limited capacity. Each item has its own value
and can be selected to be put into the Knapsack or not, and
the purpose is to find out which set of items being packed into
the knapsack can maximize the total value under the capacity
limitation.

Similarly, in our problem defined in (9), there are K
different devices that can be selected or not for joining FEL,
the capacity is the maximum remaining data size (1− a) ·Dall

with an extra constraint of time consumption. For the sake of
convenience, we denote Dcap = (1− a) ·Dall as the data size
capacity of unselected devices, and vk = ηEk−θ as the value
of device k. Then we denote a sequence V = {v1, v2, · · · , vK}
to contain the values of all devices. The sequence of data size
is denoted by D = {D1, D2, · · · , DK}.

Algorithm 1 E2DS
Input: the value set of devices V = {v1, v2, · · · , vK}, the

size set of devices D = {D1, D2, · · · , DK}, the number
of devices K, the data size capacity of selected devices
Dcap

Output: the state indicators of all devices for K1

{x1, x2, · · · , xK}
1: {y1, y2, · · · , yK} ← UDD(V,D,K,Dcap)
2: for i← 1 to K do
3: xi ← 1− yi
4: end for
5: return {x1, x2, · · · , xK}

As shown in Algorithm 1, there are four input parameters:
the value set V presents the value of each device; the set
of weight D presents the dataset size of each device; the
parameter K presents the number of devices in the edge;
the parameter Dcap presents the maximum data size. The set
of state indicators of all devices {x1, x2, · · · , xK} describes
the result of device selection, where the state of device k
with xk = 1 will be selected to participate in FEL of this
round. Specifically, we design a dynamic programming based
algorithm named Unselected Device Decision (UDD), which
will be detailed in Algorithm 2, to calculate the set of
unselected devices (Line 1). Then, by traversing devices from
1 to K, all the indicators of devices will be converted (Lines
2 - 4) to meet our objective in (4).

In Algorithm 2, a two-dimensional array DSA(K,Dcap) is
defined to store the intermediate results of dynamic program-
ming. After initializing the array DSA(K,Dcap) (Lines 1 -
6), we complete the calculation of DSA(K,Dcap) (Lines 7 -
19). By traversing devices from 1 to K, and data size from
1 to Dcap, DSA(i,D) will be filled in with the calculated
optimal solution. After the traversal is completed, the value
of DSA(K,Dcap) is the solution of the entire optimization
problem. Then, we update the value of state indicator of

Algorithm 2 UDD
Input: the value set of devices V = {v1, v2, · · · , vK}, the

size set of devices D = {D1, D2, · · · , DK}, the number
of devices K, the data size capacity of selected devices
Dcap

Output: the state indicators of all devices for K0

{y1, y2, · · · , yK}
1: for D ← 0 to Dcap do
2: DSA(0, D)← 0
3: end for
4: for i← 1 to K do
5: DSA(i, 0)← 0
6: end for
7: for i← 1 to K do
8: for D ← 1 to Dcap do
9: if Di ≤ D then

10: if vi + DSA(i − 1, D − Di) > DSA(i − 1, D)
then

11: DSA(i,D)← vi +DSA(i− 1, D −Di)
12: else
13: DSA(i,D)← DSA(i− 1, D)
14: end if
15: else
16: DSA(i,D)← DSA(i− 1, D)
17: end if
18: end for
19: end for
20: for i← K to 1 do
21: if DSA(i,Dcap) > DSA(i− 1, Dcap) then
22: y[i]← 1
23: Dcap ← Dcap −D[i]
24: else
25: y[i]← 0
26: end if
27: end for
28: return {y1, y2, · · · , yK}

all devices (Lines 20 - 27). Since the final result is already
calculated, whether each device is selected or not can be found
by looking up the value of the two-dimensional array DSA
in reverse. For example, if DSA(i,D) = DSA(i− 1, D),
it means choosing or not choosing device k leads to the
same optimization result, and then we can know that device
k should not be selected to form set K0, i.e., yk = 0 (Line
22). Otherwise, device k should be selected to form set K0,
i.e., yk = 1 (Line 25). Finally, after traversing all devices, set
{y1, y2, · · · , yK} will be returned to Algorithm 1 (Line 28).

Overall, after obtaining the optimal result in Algorithm 2
and converting it into indicators in Algorithm 1, we can assign
all the values in {x1, x2, · · · , xK} as the states of each device,
where any device k with xk = 1 is the one the server would
like to choose to participate in this round of FEL.

Since there are many methods to prove the correctness of
applying dynamic programming to solve the 0-1 Knapsack
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problem [20], such as the proof by contradiction, optimization
problem (10) is also able to be well solved by Algorithm 1.
The time complexity of the algorithm is O(KDcap), which is
obviously less than that of solving it by a brute-force search
with the time cost of O(2K).

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness and efficiency of our proposed
optimization scheme E2DS, we simulate the environment of
FEL and perform experimental verification. We also simulate
the traditional FL (TFL) process without device selection
and the device selection scheme named FedCS in [15]. All
three schemes are implemented on a desktop with Intel(R)
Core(TM) i7-9750 CPU @2.60GHz and 16GB RAM running
Windows 10 OS.

A. FEL Environment Simulation

We establish a simulated edge computing environment to
employ the FEL training process, with K = 100 to complete
the local learning and a server for device selection as well as
model aggregation.

For the wireless communication simulation, a circular area
with a radius of 50 meters is used as the covered area of the
edge server for the experiment, with the edge server located
at the center of the area. Devices are uniformly distributed
with a range of 2 meters to 50 meters from the center of the
circle. The channel gain hk of device k follows the exponential
distribution with the equation g0(d0/d)4, where the reference
distance d0 = 1 meter, and g0 = −40 dB [18]. We assume
the download bandwidths of devices BD

k follow the normal
distribution with the mean and standard deviation being 5
MHz and 4 MHz, and as a practical bandwidth limitation,
the upload bandwidth of devices BU

k would be lower than the
download bandwidth, which follows the normal distribution
with the mean and standard deviation of 1 MHz and 0.1
MHz. In addition, we set the transmission power Pk as a
normal distribution where the mean is 0.6 W and the standard
deviation is 0.2 W, and the background noise N0 = 10−8

W. Furthermore, the data size of model parameters is set as
Dp = 25, 000 nats, which is approximately equal to 4.5 KB.

For the local learning step, the training size Dk of each
device is set as a normal distribution with the mean and stan-
dard deviation being 5 MB and 4 MB, effective capacitance
coefficient αk = 2 × 10−28, the number of CPU cycles ck
is normally distributed with the mean of 15 cycles/bits and
the standard deviation of 10 cycles/bits, and the CPU-cycle
frequency fk follow a normal distribution with the mean of
0.5 GHz and the standard deviation of 0.1 GHz.

B. Model Training Settings

To verify the accuracy and efficiency of model training in
the FEL environment, we use the MNIST dataset to complete
the classification task in this subsection. By comparing the
convergence speeds and accuracy of training in different FEL
schemes, we can analyze the influence of device selection on
FEL performance.

MNIST contains 70,000 handwritten digital images with 10
classes. In our experiments, we set 60,000 of the images for
training and 10,000 of those for testing. The dataset is already
preprocessed that every image in MNIST is gray-scale with
28×28 pixel, with the handwritten numbers displayed in the
center. It is closer to the actual situation as the preprocessing
process of the FEL can be completed in advance to speed up
FEL.

We compare our proposed E2DS algorithm with the other
two schemes, i.e., TFL and FedCS [15]. Specifically, the first
model randomly selects devices for training. FedCS uses a
greedy algorithm to select as many devices as possible at the
beginning of each round of training.

For all these schemes, all candidate devices are assigned
with the number of Dk images for local training. To simulate
the FEL scenario with non-IID data distribution, we distribute
68.2% of data from the same class to each device, and
randomly select 31.8% of data from the remaining classes.

We build a convolutional neural network as the global
model, consisting of three linear convolution layers (the first
with 32 channels, the second with 64 channels, the third with
128 channels, and each followed with 2×2 max pooling),
each of which is activated by the ReLU function, and a final
Softmax output layer afterwards.

Then, we set the ratio of the necessary amount of data to the
total amount of data for each round of FEL as a = 0.75 unless
otherwise specified, which means there are three-quarters of
the data used in each FEL round. In addition, the maximum
waiting time in each round Twait is set as 3 min, 5 min and
10 min. For the TFL scheme, as there is no time limitation, we
only set the same amount of data for training. For the FedCS
scheme, as there is no data amount limitation, we only set the
same time limitation. While for our proposed E2DS scheme,
we set the weight of energy consumption as η = 3 and that of
the device number as θ = 1. Other sets of weight parameters
are also examined, which return similar changing trends, so
we omit them to avoid redundancy.

C. Evaluation Results

In this subsection, we evaluate the time cost and com-
munication cost of the E2DS algorithm in Section V-C1,
which verifies the usability and effectiveness of our proposed
scheme. Then, Section V-C2 verifies that the E2DS algorithm
performs better by evaluating the data diversity and the energy
consumption of the three schemes. Finally, in Section V-C3 we
evaluate the accuracy and the speed of convergence comparing
in three schemes.

1) Time and Communication Cost: To test the efficiency
of the device selection algorithm, Fig. 2 shows the time
consumption and communication cost when selecting differ-
ent numbers of devices. In Fig. 2(a), the time consumption
increases approximately linearly with the increased number
of devices. The growth trend is in line with the time com-
plexity O(KDcap) of Algorithm 1 as we mentioned earlier.
Specifically, the time consumption is larger when a = 0.2
and smaller when a = 0.8, due to the inversely-proportional






