UNIVERSITY OF
FORVVARD
THINKING
WESTMINSTERF

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

DNS++: Dynamic Name Resolution with Homomorphic Encryption
Based Privacy

Tusa, F., Griffin, D and Rio, M

This is a copy of the author’s accepted version of a paper subsequently published in the
proceedings of the 32nd International Conference on Computer Communications and
Networks (ICCCN 2023), Honolulu, Hawaii (USA), 24 - 26 Jul 2023.

The final published version will be available online at:

https://doi.org/10.1109/icccn58024.2023.10230137

© 2023 IEEE . Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to
make the research output of the University available to a wider audience. Copyright and
Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.1109/icccn58024.2023.10230137

DNS++: Dynamic Name Resolution with
Homomorphic Encryption Based Privacy

Francesco Tusa*
School of Computer Science and Engineering
University of Westminster
London, United Kingdom
Email: f.tusa@westminster.ac.uk

Abstract—This paper presents DNS++, a re-design of the Inter-
net’s name resolution system that addresses dynamic information
and privacy. DNS++ uses a pub/sub overlay to send updates
about a given service to interested clients, allowing them to
(re)select between replicas according to their requirements, as
updates about services and their features dynamically change.
Since third-party brokers in the overlay are not always trusted
for the confidentiality of the content flowing through them,
clients’ privacy is preserved in DNS++ through homomorphic
encryption. Brokers are prevented from accessing encrypted
service information but can perform homomorphic match and
forward service updates to relevant clients through the overlay
accordingly. Assuming that forwarding tables in each broker are
implemented via ordered data structures, the time required for
adding a new client’s subscription, and to perform homomorphic
match between existing subscriptions and service updates, would
grow logarithmically with the number of entries within a table.
This is shown by our performance evaluation, which confirms
that DNS++ is feasible to be deployed with an acceptable
performance overhead.

Index Terms—DNS, homomorphic
pub/sub.

encryption, privacy,

1. MOTIVATION

The Domain Name System (DNS) [1] has been an inte-
gral part of the Internet architecture since the early 1980s.
Although, in theory, two end points can establish a commu-
nication without help of a name resolution, this hardly ever
happens. DNS was a crucial sub-system to allow the Internet
to scale and to become more user friendly; however, despite
its age, it has hardly changed in the last 40 years, apart
from some extensions and the advent of content distribution
networks. Fundamentally, DNS has two major problems: static
responses and lack of privacy. Once a query is resolved, there
is no way for a client to receive updates for a given name.
This makes resilience, load-balancing and mobility difficult to
implement. One would like to have new replicas, or new meta-
data about those replicas, to be continuously sent to interested
clients; these would then have the freedom to improve their
quality of experience accordingly. Moreover, the queries are
processed by DNS servers that can easily tie a given user to
a particular name resolution. Albeit this is a major privacy
concern identified by the community, there are only limited
available solutions today.

Privacy is important in the Internet of Things (IoT). There
are two main roles for dynamic name resolution in IoT. Firstly,

David Griffin and Miguel Rio
*Department of Electronic and Electrical Engineering
University College London
London, United Kingdom

Email: {francesco.tusa, d.griffin, miguel.rio} @ucl.ac.uk

for gateways to resolve the names of service and application
processing functions to the locators of specific service replicas.
To increase resilience and aid localisation many services
will be replicated. A new mechanism is needed that allows
gateways to subscribe to service names and subsequently to
make dynamic decisions on which instance is most suited
based on updates generated as replicas are deployed and come
on- and off-line. The second role is in applications and users
resolving the names of gateways supporting specific sensors
and actuators. In both roles, proper security mechanisms are
needed to ensure that the resolution infrastructure is unable to
identify the names or identities of the IoT services or gateways
while subscriptions and publications are matched.

While DNSSEC [2] can only prevent attackers from ma-
nipulating or poisoning the responses to DNS requests, DNS
over HTTP [3] and the work in [4] are two proposals from the
community to implement privacy for DNS queries; however,
they require client queries to be processed by third parties,
who will thus be able to access and view the related content.
Although the solution in [5] solves this problem using a Private
Information Retrieval (PIR) scheme, it does not support the
dynamic distribution of updates.

In this paper we rethink the way name resolution works
in the Internet by proposing DNS++: a distributed system
able to resolve any name to an IP address in a private
manner and continually update interested clients with new
information about a service. DNS++ is built on the privacy-
preserving content-based pub/sub solution presented in [6] and
[7], which is applied to the context of dynamic service name
resolution using a large-scale overlay network of untrusted
third party Brokers, acting as forwarder nodes. Thanks to the
additive properties of the Paillier Homomorphic Encryption
(HE) cryptosystem [8], Brokers can compare the content of
encrypted subscriptions and notifications, determine whether
the service names therein match, and perform routing and
forwarding decisions accordingly. This approach offers better
performance than existing fully HE schemes [9] and, when
used as in [6], it also implements a shift of computational
overhead from decryption to encryption that reduces the time
needed to perform homomorphic matching on the Brokers,
and ultimately contributes to make the system’s deployment
feasible on a today’s distributed infrastructure.

This paper is organised as follows. Section II provides an
overview of the main DNS++ actors, of the Paillier cryptosys-
tem and of the contributions of this paper beyond the state-of-
the-art; the system design and its main workflow are presented
in Section III; in Section IV, the performance of the current
DNS++ implementation is assessed, while considerations on
the actual large-scale system deployment are made in Sec-
tion V; some conclusions and potential future work are finally
discussed in Section VI.

II. BACKGROUND AND RELATED WORK

A. System Overview and Trust Model

Through the DNS++ naming system, a Service Provider
can publicly advertise the availability of a service they offer,
deployed via different Service Replicas on a set of resources. A
service is accessible by potential Clients through an identifier
— a Fully Qualified Domain Name (FQDN) [1] or DNS
Uniform Resource Identifier (URI) [10] — mapped to each
of the multiple replicas that implement that service. A Client
wishes to select the best Service Replica for a given service
according to some requirements (e.g., delay to the replica,
server load, etc.), without revealing the details of that service
to the name resolution system. Hence, when a Client specifies
the identifier of the service of interest, together with the above
requirements, a subset of all the possible Service Replicas will
be returned, and the Client will be notified of relevant future
updates related to that service. In order to support the above
mechanisms, DNS++ is designed as a pub/sub system where
Clients can issue queries about a service, receive the result of
the resolution of that query, and subscribe to all the subsequent
related updates. Service Providers push updates about replicas
availability into the system. An Event Notification Service
(ENS), consisting of an overlay network of Brokers, provides
the mechanisms whereby each notification is forwarded from
the Service Replica where it is generated to the Clients where
it has to be notified.

Threats are considered in DNS++ from the point of view
of Clients and Service Replicas with respect to third-party
Brokers. We assume it would not be feasible to deploy an
entire private network of Brokers under the ownership of a
single entity when deploying the pub/sub system, hence an
overlay of third-party Brokers is required. This poses some
security issues, as those Brokers might not be trusted for the
confidentiality of the content flowing through them.

Our system aims to ensure the privacy of Clients while
they access (and subscribe) to specific services, as well as
the confidentiality of publications related to Service Replicas.
In other words, Brokers cannot identify the content of either
the messages published by the Service Replicas or the service
subscriptions issued by the Clients. This is achieved in our
system via the usage of a homomorphic cryptosystem. We
assume that Brokers are honest but curious, i.e., they perform
the above protocol correctly but are curious to know what
Service Providers publish and Clients consume.

B. Contributions beyond the state-of-the-art

DNSSEC [2] can only prevent attackers from manipulating
or poisoning the responses to DNS requests. DNS over HTTP
[3] and the work in [4] require Client queries to be processed
by third parties, who are then able to view a query content;
a PIR scheme is used in [5] to address this privacy issue.
All these solutions do not support the dynamic distribution of
service updates, which has been handled by previous work in
[11], [12] instead. DNS++ aims to bridge the above gap by
implementing a private name resolution system with dynamic
distribution of updates; specifically, it goes beyond the current
DNS query-response approach and uses pub/sub mechanisms,
as discussed next.

A content-based network is a type of pub/sub where mes-
sages are forwarded hop-by-hop and delivered to any and
all hosts that have expressed interest in the message content.
DNS++ is similar to existing work on this topic [12]-[14] but it
uses homomorphically encrypted service names and associated
plaintext metadata, i.e., Attribute Value Pairs (AVPs), for the
delivery of service updates to Clients. Although the work
presented in [6], [7] builds a privacy-preserving content-based
pub/sub system, the devised solutions are not specifically re-
lated to dynamic service name resolution, and do not consider
how the proposed security protocols would work with a large
overlay network of Brokers. This is in fact explored in our
paper when a large-scale distributed content-based pub/sub is
considered to enable dynamic service name resolution with
built-in privacy.

Whilst the encryption of notifications provides the clear
benefit of protecting the exchanged events, it also implies the
inability of executing queries on their content and performing
forwarding decisions accordingly. Searchable Data Encryption
[15] and Homomorphic Encryption techniques [16] allow the
execution of operations on the encrypted data without the need
of performing any prior decryption. Specifically, HE enables
limited computation to be performed directly on ciphertexts
to generate encrypted results. Partially homomorphic cryp-
tosystems, such as Paillier [8] and ElGamal [17], support
the execution of a single type of arithmetic operation —
either multiplication or addition — on encrypted data; fully
homomorphic cryptosystem, such as BFV [18] and CKKS
[19], allow both additions and multiplications to be performed
on ciphertext values.

Like in [6], [7], a version of Paillier is utilised here
to calculate an encrypted difference between values within
subscriptions and notifications. It is used by untrusted third-
party Brokers to perform homomorphic string match between
service names within notifications and subscriptions, and to
make routing and forwarding decisions accordingly. This
approach offers better performance when compared to fully
HE cryptosystems [9] and allows to reduce further the time
required to perform homomorphic string matching on the
Brokers. The details of the homomorphic cryptosystem that
underpins DNS++ are provided in the next section.

C. Faillier Homomorphic Encryption

The security mechanisms discussed in this paper are based
on a modified version of the Paillier cryptosystem originally
presented in [8], where the tuple (A, i) is the private key and
the tuple (n, g,) is the public key. However, it can be proved
that u does not need to be private since it is hard to decrypt
an encrypted message by only knowing p [6]. Hence, 1 can
be made public while achieving the same security guarantees
as the unmodified Paillier cryptosystem — the new public and
private keys become (n, g,, 1) and A respectively.

Like in [6], only those holding the private key can encrypt,
whereas the decryption is performed via the public key.
Because A is now utilised during the encryption, the resulting
associated computational complexity is higher than in the
original Paillier. On the other hand, A is no longer used for the
decryption, hence the related computational cost is reduced. It
should be noted that all HE operations with the original Paillier
cryptosystem are still available, as this modification only shifts
computational overhead from decryption to encryption.

Confidential information is encrypted in a special way —
called blinding — using the private key. Blinded values are se-
mantically secure because two blinding operations performed
on the same plaintext produce different blinded values. The
blinding operation, which we indicate as b = E(p), is devised
so that the original plaintext p cannot be obtained by solely
decrypting the blinded value b with the public key. However,
when two blinded values are multiplied, some of the blinding
parameters cancel out due to the HE properties of Paillier. A
randomised difference between the original values is obtained
via decryption of the product. It is utilised here, as in [6],
to determine whether E(p1) > E(pz) or E(p1) < E(p2),
without learning the original plaintext values p; and ps. This
property is used in our system to implement HE operations
on blinded service subscriptions submitted by the Clients and
blinded notifications about Service Replicas.

Brokers use the public key and the above blinded entries
to perform two HE operations, which as in [6] are here
referred to as cover and match. Given a publication pub
and a subscription sub, match(pub, sub) allows to compare
their blinded content homomorphically, and to determine the
alphabetical order, or the equality, between the original s,, and
s plaintexts; cover(suby, suby) provides similar functionalities
but it operates on two subscriptions sub; and subs. The cover
is used at routing time to build forwarding tables and to check
whether a subscription is already included (covered) by an
entry in the tables. The match is used at forwarding time and
allows Brokers to check whether a notification they received
matches one of the entries in their tables.

The execution of equality checks for match and cover opera-
tions is performed via verification of two separate inequalities.
Specifically, to check whether v; = vs, it is required to verify
that v; > wg and v1 < w9 + 1. As a result, two blinded
values b,, = E(s) and bl,, = E(s+ 1) are included within a
subscription for a service name s; a notification only includes
a blinded value b,,,, = E(s,,) for a service name s,, associated

with a replica. It should be noted that before a blind operation
is performed, the string representing a service name is first
converted to a bitstream using a standard character encoding,
such as UTF-8.

The values b,, and b1,, within subscriptions, and the value
by, within publications, are blinded so that when they are
used for a match some of the blinding parameters cancel out
and a randomised difference between the original plaintexts
is obtained. Specifically, a Broker calculates d = D(b,, -
by) and d1 = D(b,,, - bl,,), where the public key is used
to perform the decryption D(-). The randomised difference
values d and d1 are utilised to perform the equality check for
the service name, i.e., to determine whether b,,,, > b,, and
bm, < bl,, [7]. A similar approach is used for the cover,
hence an additional blinded value b, is generated and added
to the subscription by the Client. b. is encoded so that the
associated blinding parameters cancel out when it is multiplied
homomorphically by either b,, or bl,,.

Public and private keys need to be carefully distributed
among Clients, Brokers and Service Providers so that the
confidentiality and privacy can be assured when performing
the above HE operations. The HE Parameters Service (HEPS)
generates and distributes the public parameters to relevant
actors [6]. To minimise potential security threats due to the
leakage of private parameters, blinding operations are carried
out by the HEPS on behalf of the Service Providers. Clients
are instead allowed to perform self-blinding of their queries via
additional security parameters, which are generated for each
of them by the HEPS using its own secret key. Clients are
able to self-blind queries they are not required to interact with
the HEPS for each query, thereby reducing the complexity and
time taken to create and issue queries.

III. SYSTEM DESIGN

This section presents the design of the DNS++ system and
describes its function through a workflow consisting of four
main steps. In szep 1, the Brokers are deployed on the resource
infrastructure and interconnected as an overlay network; in
step 2, as the Clients start to subscribe to services, forwarding
tables are populated in the Brokers; in step 3, updates about
Service Replicas are generated; finally, in step 4 the service
names within the updates are compared homomorphically
with the content of the forwarding tables, so that replicas
information is propagated to the Clients accordingly.

A. STEP 1: Overlay initialisation

The ENS consists of a set of Brokers interconnected as an
overlay. Although we do not prescribe the number of Brokers
nor the degree of interconnectivity between them, as a starting
point we assume that each Autonomous System (AS) will run
a Broker, and that a Broker will connect to the Brokers of
adjacent ASs following the underlying interdomain network
topology. We also assume that Clients connect to the local
Broker of their ISP’s AS. A simple example scenario is is rep-
resented in Figure 1. For generality, communications between

m Homomorphic Encryption Parameters Service

B Broker

Y/l Rendezvous Point

I:l Subscription
|:| Notification

Client 1 4
o —
A .

-

Client 2

Fig. 1: DNS++ System Operation

Brokers will happen through the overlay’s application-layer
protocol rather than through BGP.

To avoid all subscriptions and updates needing to be propa-
gated to every Broker in the overlay, one Broker is nominated
as the Rendezvous Point (RVP) for each service [14]. The same
Broker will act as a RVP for many services. The RVP is the
default Broker where subscriptions and updates are matched;
however, in the majority of cases matching will be achieved
in Brokers other than the RVP. To comply with our principles
of privacy and anonymity it should not be possible to reverse
engineer the identity of a service during the name resolution
process, which includes being unable to identify the service
given its RVP.

We use a shared colliding hash function is used to map a
service name to its corresponding hash, where the N_of_hashes
< N_of _names so that the service name can not be inferred
from its hash. Each hash resolves to a single Broker, which
is the RVP for the hashed service name (and, in fact, the
RVP for all service names sharing the same hash value). In
Figure 1 for instance, the Broker in domain B acts as the
RVP for both service s/ and service s2. Brokers announce the
hashes for which they are responsible to their neighbouring
Brokers who, in turn, propagate hash reachability information
to their neighbours, and so on, to construct forwarding tables
for hashes throughout the broker overlay. Clients, when sub-
scribing to service names, and publishers, when announcing
updates, include the plaintext hash of their service name with
the subscription/update. The hash acts as the identifier for the
RVP for that service. Brokers, when forwarding subscriptions
and updates to the RVP identify the next hop Broker by using
the hash as an index into the forwarding tables constructed in
the overlay initialisation phase.

The final stage of overlay initialisation is for the Brokers
to contact the HEPS to retrieve the public parameters nec-
essary for calculating cover and match operations — this is

= 3p - Service
@//’ R Replica

E(sl1):Ba
E(s2): Ba

Service
Replica

represented in Figure 1 as step 1.

B. STEP 2: Subscription

A Client that wishes to query/subscribe for service updates
interacts with the HEPS to retrieve a set of security parameters
they will use to perform self-blinding operations (step 2a).
The Client generates the blinded values b, and bl,, that
Brokers will use for the match operation, as well as the
value b, required for the cover. The values are then added
to the subscription, together with any AVPs that describe the
service requirements and the hash of the service name, which
identifies its RVP. The Client also adds a subscription identifier
to the header, which is used to distinguish between currently
active subscriptions generated by that Client, so that incoming
notifications can be associated with the correct subscription.
The ID does not need to be globally unique and it will not
identify the Client. Finally, the complete subscription is sent
by the Client to their local Broker (step 2b).

As Brokers process homomorphically the content of the
received subscriptions, they can build their forwarding ta-
bles without learning the service names. To minimise table
inflation, subscriptions related to the same service, received
from the same overlay link, should be discarded. Hence,
Brokers use the public key provided by the HEPS to perform
cover operations, namely to check homomorphically whether
a received subscription is already in their forwarding table.
The cover operation additionally allows to determine the
alphabetical order of subscriptions being checked. This helps
organising the tables as sorted data structures (e.g., self-
balancing binary search trees), which may result in more
efficient match operations at forwarding time.

If a new subscription is not covered by an existing one, then
the Broker first of all creates a new local forwarding entry for
the subscriber, so that future updates for that service name can
be routed to the subscriber via the overlay link it received the

subscription over; and, secondly, it forwards the subscription
towards the RVP. To do the latter it uses the plaintext hash of
the service name provided by the Client in the subscription to
retrieve the next hop Broker from the RVP forwarding table
constructed during the overlay initialisation phase. If a new
subscription is covered by an existing subscription, but the
forwarding table for the subscription does not include the link
from which the new subscription arrived, then the Broker adds
the link to the forwarding table for future updates.

C. STEP 3: Notification

A Service Provider that wishes to announce or update the
information about a Service Replica first authenticates with
the HEPS and provides the plaintext s,, of the service name
to be blinded (step 3a). The HEPS verifies the credentials of
the Service Provider, calculates the requested blinded value
by, and adds its digital signature to the generated data. Next,
any additional AVPs that describe the features of the Service
Replica are added to the notification by the Service Provider
together with the hash of the service name to identify the
RVP for the notification. Finally, the notification is sent to the
Service Replica’s local Broker (step 3b).

D. STEP 4: Match

When a new notification is received by a Broker, the validity
of its content is first checked by verifying the digital signature
added by the HEPS in step 3. Then, the blinded service name
bm,,, received as part of the notification, is homomorphically
checked for equality with the blinded service names of the
subscriptions within the local forwarding table. This is done
by performing a match operation using the public key received
from the HEPS. Specifically, a Broker invokes match(pub,
sub;), where pub is the received publication and sub; is the i-th
subscription in its forwarding table. Thanks to the alphabetical
comparison properties of the march and the ordering of the
entries within the forwarding table, the number of invocations
of the above march, required to explore the table exhaustively,
is bounded by loga(Ny), where Ny is the number of entries
in the table.

If two service names match, then additional checks are
performed on the other plaintext AVPs to determine whether
the attributes associated with the Service Replica in the notifi-
cation fulfil the criteria specified in the matching subscriptions
(note that this is not explicitly represented in Figure 1 to
simplify the diagram). Matching notifications are then sent
over the overlay links contained in the forwarding tables and
eventually to the subscribers (Clients). This is shown in Figure
1 by the arrows labelled as step 4. When a notification is
forwarded to a Client the subscription ID that was supplied
by the Client (and was maintained in the forwarding table
entry for that Client by the local Broker) is added to the
notification. In addition to forwarding notifications towards
Brokers and Clients that match any existing subscriptions, the
Broker also forwards the notification towards the RVP for the
service. This uses the hash of the service name as provided in

the notification to look up the next hop Broker from the RVP
forwarding table.

It should be noted that our system allows for Client queries
to be resolved immediately as well as for Clients to subscribe
to future updates. To achieve this, each Broker caches the most
recent notification it has received from each replica of a service
name. When a new subscription is received, and it is covered
by an existing one, then the cache of the prior notifications is
returned immediately to the Client [20].

IV. EVALUATION

A proof of concept implementation of DNS++ was utilised
for the preliminary evaluation discussed in this section'. Bro-
kers’ forwarding tables were implemented as homomorphic
encrypted self-balancing binary search trees for fast storage
and retrieval of ordered service names information. Tests were
performed on a server with an Intel® Xeon® CPU E5-2680
v3 @ 2.50GHz and 192GB of RAM to assess the impact
of homomorphic match and cover operations on the ENS, as
well as the time required to generate service subscriptions and
notifications.

Subscriptions and publications were initially produced via
randomly generating content for the service names and eval-
uating the impact of both the key length n and the number
of bits [utilised to represent the service name. It should be
noted that, as in [6], [is assumed to be sufficiently smaller
than n. The graphs of Figure 2a and Figure 2c show the time
required to generate the blinded values for both subscriptions
and notifications, and to execute match and cover operations,
when the number of bits [= 128 and various key length
values n are considered. Measurements related to the same
operations are shown in the graphs of Figure 2b and Figure
2d for a fixed value of the key length (n = 2048) and different
values of the parameter [. The average of the results, calculated
over 1000 iterations of an experiment executed under the same
parameters settings, is represented in the graphs; confidence
intervals were negligible and are not shown.

The time measured for the generation of either subscriptions
or notifications grows considerably with the length of the key
n (Figure 2a) while it is not impacted by the number of bits [
utilised for encoding the service name (Figure 2b). Likewise,
the execution time of either a match or cover operation (Figure
2c) also increases with the size of the key but is not impacted
by the value of the parameter [(Figure 2d).

It should be noted that the computational shift from de-
cryption to encryption, implemented by the modified version
of the Paillier cryptosystem, can effectively reduce the time
associated to the execution of match or cover operations when
compared to the generation of publications or subscriptions.
This fits well with a pub/sub scenario, as it removes the more
computationally intensive operations from the Brokers at both
routing and forwarding time, resulting in a potentially lower
end-to-end latency of the ENS.

IThe Java code is available at https://github.com/francesco-tusa/dnsPlus

https://github.com/francesco-tusa/dnsPlus

@ Notification A Subscription ® Notification 4 Subscription

time (ms)

Match < Cover Match x Cover

1.00 1.00

0.75 0.75

N z
E 050 Eos0
[B S NUO U B

E
£ 025 =025

1000 2000 3000

key length n (bit)

4000 100 150 200

content length | (bit)

(b) blind: n = 2048, variable [

250

(a) blind: variable n

1000 2000 3000

key length n (bit)

4000 100 150 200

content length | (bit)

(d) match/ cover: n = 2048, variable [

250

(¢) match/ cover: variable n

Fig. 2: Results of the preliminary DNS++ performance evaluation

For all the key length values n evaluated during the exper-
iments, the graphs confirm that the time required to perform
a match (or cover) is always smaller than the time needed for
generating either a subscription or a publication. In particular,
when n 2048, performing a match (or cover) requires
approx one third of the time it takes to produce a publication;
moreover, creating a subscription is consistently slower than
producing a publication. This is an expected result, as a
publication includes a single blinded value b, whereas, for
a subscription, both the blinded values b,, and b1,, need to be
encoded — together with the blinded value b, required for the
cover — to allow Brokers to determine the alphabetical order
between the blinded service names. A match always requires
verification of the inequality b,,,, > b,,; the second inequality
bm, < bl,, only needs to be checked if the first one is true.
Execution of cover is similar but the value b, is used in place
of by, . In both cases, two homomorphic multiplications and
the decryption of the obtained results need to be computed
in the worst case, leading to comparable performance when
those operations are executed, as shown in Figures 2c and 2d.

To assess the performance of DNS++ on a Broker deployed
on a typical domain, we downloaded a list of the 1000 most
popular websites from [21], which act as 1000 service names.
This input was used to run the protocol, considering a key
length n = 2048 bits and a content information size [=
256 bits. After the forwarding table was built, six different
notifications were generated, five of which referred to services
with different degree of popularity randomly selected from the
above list of websites. The average time required to match each
of those publications was measured and the results of one of
these tests are reported in Table L.

Service Name Match Time (ms)
allmusic.com 3.97
google.com 2.32
facebook.com 0.45
(not in the table) 3.49
ticketmaster.com 4.48
eventbrite.co.uk 3.91

TABLE I: Time required to perform service matches

From the collected measurements, it was calculated that the
average time required to check whether a publication matched
any of the IV, subscriptions in a Broker’s forwarding table was
3.1ms, which is consistent with the expected O(loga(Ns)).
It should be noted that, although this performance evaluation
was based on just 1000 service names, the logarithmic nature

of both insert and match operations in a binary tree means
that one billion names — which is three times the current
amount of domain names registered globally [22] — would
only increase the time of table creation and match operations
by a factor of three, making the average match time 9.3ms in
the worst case.

V. DEPLOYMENT CONSIDERATIONS

In DNS++, replicas should only be announced to “local”
clients, i.e., announcements should not traverse the whole
overlay and reach distant clients as these may have access to
existing replicas nearby that already satisfy their requirements.
This can be done in a myriad of ways by using the plaintext
AVPs of the notifications. Examples include prefix limitation
where replicas announce IPv4/IPv6 prefixes of the areas they
want to cover; use of network coordinates; explicit naming of
AS numbers; etc. The fact that RVPs may fall outside these
areas presents a problem but there are solutions from previous
work [23] that address this.

We assumed earlier the existence of a single Broker per
AS and that Brokers are interconnected following the inter-
provider AS topology. However, there could be a finer-grained
set of Brokers, e.g., more than one for large ASs, or a coarser-
grained set of Brokers that are not tied to any specific AS and
are operated by entities other than ISPs. Also the degree of
interconnection between Brokers does not necessarily need to
follow that of BGP peers. For instance, it may be more efficient
for Brokers to connect directly to distant Brokers. The degree
of connectivity implies a trade-off between efficiency, in terms
of the size of forwarding tables maintained in Brokers, and the
computational complexity of match operations on larger tables
caused by higher degrees of connectivity. The design of Broker
overlay discovery and construction mechanisms can be built
upon solutions that have already been widely discussed in the
literature, e.g., [24]-[26], and to which we have partly referred
to in order to divide the hash space for RVPs.

Our design does not constrain the conceptual structure of
the HEPS nor its implementation/deployment. Trusted organ-
isations that already act as CAs today, as well as Internet
registries, are good candidates to implement HEPS function-
ality. Clients need to contact the HEPS only once and can
subsequently perform self-blinding of service names for all
future queries without needing further interaction with the
HEPS. Service Providers have to contact the HEPS when
they wish to blind a new service name however, after this

has been encoded and signed by the HEPS, they are able to
generate updates for all Service Replicas related to that name.
This implies no significant overhead above that required for
registering a domain name today. There are around 10 million
new DNS name registrations per year [22], which implies an
average of one signing operation every three seconds globally.

VI. CONCLUSIONS

This paper presented DNS++, a system designed to address
both the lack of privacy and dynamic distribution of service
information of the current Internet’s name resolution system.
A pub/sub overlay underpins the DNS++ architecture so that,
as the features of services offered by Service Providers dy-
namically change, relevant updates are continuously delivered
to interested Clients, who can (re)select between available
Service Replicas according to their requirements. The system
uses homomorphic encryption to prevent untrusted parties
from accessing encrypted service information. Client privacy
is preserved as Brokers can only perform homomorphic name
match and forward service updates to relevant Clients through
the overlay accordingly, without being able to access the
original plaintext values.

When forwarding tables in each Broker are implemented
via ordered data structures the time required for adding a
new Client’s subscription to a table, and to match existing
subscriptions with service updates with HE operations , grows
logarithmically with the number of entries within that table.
Thanks to the computational shift implemented by the chosen
Paillier scheme [6], homomorphic match and cover operations
can be performed with acceptable performance overhead when
today’s 2048 bits minimum recommended key length for this
type of cryptosystem is considered [27].

Ongoing work includes the investigation of the localisation
aspects of the system in order to limit the announcement
of replica updates to specific clients based on geographic
constraints. Overlays with different topologies are also being
evaluated with regard to their impact on the size of forwarding
tables in Brokers, as well as on the number of cover and match
operations performed at routing and forwarding time in the
overlay as a whole.

VII. ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of
Huawei Technologies Co., Ltd. Francesco Tusa is partially
supported by the HARPOCRATES EU research project (No.
101069535).

REFERENCES
[1] “Domain names — implementation and specification.” RFC 1035, Nov.
1987.
[2] D. E. E. 3rd, “Domain Name System Security Extensions.” RFC 2535,
Mar. 1999.

[3] N. P. Hoang, I. Lin, S. Ghavamnia, and M. Polychronakis, “K-
resolver: towards decentralizing encrypted dns resolution,” arXiv
preprint arXiv:2001.08901, 2020.

[4] A. Hounsel, P. Schmitt, K. Borgolte, and N. Feamster, “Encryption with-
out centralization: distributing dns queries across recursive resolvers,” in
Proceedings of the Applied Networking Research Workshop, pp. 62—68,
2021.

[5]

[6

=

[7

—

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

N. Dokmai, L. J. Camp, and R. Henry, “Assisted Private Information
Retrieval.” Cryptology ePrint Archive, Paper 2022/1082, 2022. https:
/leprint.iacr.org/2022/1082.

M. Nabeel, N. Shang, and E. Bertino, “Efficient privacy preserving con-
tent based publish subscribe systems,” Proceedings of ACM Symposium
on Access Control Models and Technologies, SACMAT, 06 2012.

M. Nabeel, S. Appel, E. Bertino, and A. Buchmann, “Privacy Preserving
Context Aware Publish Subscribe Systems,” in Network and System
Security (J. Lopez, X. Huang, and R. Sandhu, eds.), (Berlin, Heidelberg),
pp. 465478, Springer Berlin Heidelberg, 2013.

P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT ’99
(J. Stern, ed.), (Berlin, Heidelberg), pp. 223-238, Springer Berlin
Heidelberg, 1999.

V. Sidorov, E. Y. F. Wei, and W. K. Ng, “Comprehensive Performance
Analysis of Homomorphic Cryptosystems for Practical Data Process-
ing,” 2022.

S. Josefsson, “Domain Name System Uniform Resource Identifiers.”
RFC 4501, May 2006.

A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A global name service for a highly mobile internetwork,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
pp. 247-258, 2014.

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
design and implementation of an intentional naming system,” in Pro-
ceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, SOSP "99, (New York, NY, USA), p. 186-201, Association
for Computing Machinery, 1999.

A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” in IEEE INFOCOM 2004, vol. 2, pp. 918-
928 vol.2, 2004.

P. Pietzuch and J. Bacon, “Hermes: a distributed event-based middle-
ware architecture,” in Proceedings 22nd International Conference on
Distributed Computing Systems Workshops, pp. 611-618, 2002.

C. Dong, G. Russello, and N. Dulay, “Shared and Searchable Encrypted
Data for Untrusted Servers,” in Proceeedings of the 22nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security,
(Berlin, Heidelberg), p. 127-143, Springer-Verlag, 2008.

X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption, pp. 27-46.
Cham: Springer International Publishing, 2014.

T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469—472, 1985.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” Cryptology ePrint Archive, Paper 2012/144, 2012. https:
/leprint.iacr.org/2012/144.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Advances in Cryptology —
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 409—437,
Springer International Publishing, 2017.

“ZeroMQ guide, Advanced Pub-Sub Patterns: Last Value Caching
(LVC).” https://zguide.zeromq.org/docs/chapter5/#Last- Value-Caching.
“List of the 1000 most popular websites.” https://gist.github.com/
bejaneps/ba8d8eed85b0c289a05¢750b3d825161.

“The Domain Name Industry Brief.” https://www.verisign.com/en_US/
domain-names/dnib/index.xhtml.

J. Hasenburg and D. Bermbach, “Using geo-context information for
efficient rendezvous-based routing in publish/subscribe systems,” KuVS-
Fachgesprich Fog Computing 2020, p. 4, 2020.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 161-172, 2001.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on network-
ing, vol. 11, no. 1, pp. 17-32, 2003.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys & Tutorials, vol. 7, no. 2, pp. 72-93, 2005.
“BlueCrypt: Cryptographic Keylength Recommendation.” https://www.
keylength.com/en/compare/.

https://eprint.iacr.org/2022/1082
https://eprint.iacr.org/2022/1082
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://zguide.zeromq.org/docs/chapter5/#Last-Value-Caching
https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61
https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61
https://www.verisign.com/en_US/domain-names/dnib/index.xhtml
https://www.verisign.com/en_US/domain-names/dnib/index.xhtml
https://www.keylength.com/en/compare/
https://www.keylength.com/en/compare/

