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Abstract—A graph is a very common and powerful data
structure used for modeling communication and social networks.
Models that generate graphs with arbitrary features are im-
portant basic technologies in repeated simulations of networks
and prediction of topology changes. Although existing generative
models for graphs are useful for providing graphs similar to
real-world graphs, graph generation models with tunable features
have been less explored in the field. Previously, we have proposed
GraphTune, a generative model for graphs that continuously tune
specific graph features of generated graphs while maintaining
most of the features of a given graph dataset. However, the
tuning accuracy of graph features in GraphTune has not been
sufficient for practical applications. In this paper, we propose a
method to improve the accuracy of GraphTune by adding a new
mechanism to feed back errors of graph features of generated
graphs and by training them alternately and independently.
Experiments on a real-world graph dataset showed that the
features in the generated graphs are accurately tuned compared
with conventional models.

Index Terms—Graph generation, Conditional VAE, LSTM,
Graph feature, Generative model.

I. INTRODUCTION

In fields regarding communication networks, graph gen-
erative models have a wide variety of applications such as
network synthesis for simulations, emulation of information
spreading on networks, link prediction on social networks,
etc. Generative models for graphs can be categorized into
two types: stochastic and learning-based models. Stochastic
models focus on reproducing only a single-aspect feature of
graphs (e.g., scale-free feature). On the other hand, learning-
based models aim to learn features directly from a graph
dataset and reproduce graphs that have similar features to
the graph dataset, thus reproducing features in every single
aspect. We have proposed a generative model for graphs,
GraphTune [1]], that allows continuous tuning of specific
features while maintaining the reproducibility of the other
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graph features. Although GraphTune has succeeded in making
features of a generated graph change depending on user-
specified values, there still remains an issue on the tuning
accuracy of features.

In this paper, we propose to extend GraphTune by adding
a feature estimator that feeds back information on features of
graphs reconstructed by GraphTune. These two models, the
Long Short-Term Memory (LSTM)-based feature estimator
and GraphTune, are trained independently of each other by an
alternate training algorithm to avoid target leakage in feature.
GraphTune with the feature estimator enables tuning specific
features more accurately than GraphTune while keeping the
reproducibility of GraphTune in every single feature.

II. GRAPHTUNE

GraphTune treats graph data as a graph sequence converted
by a DFS code and learns to reconstruct an input sequence in
the Conditional Variational AutoEncoder (CVAE) framework.
DFS code converts graphs into sequences of unique edges
through depth-first search. In CVAE, the sequence is processed
by an encoder, and then the decoder generates a sequence.
Lastly, the generated sequence is converted to a generated
graph. A condition vector is input to the encoder and the de-
coder to tune a specific feature. The elements of the condition
vector mean the specified value of features focused on (e.g.
values of average shortest path length, cluster coefficient, the
power-law exponent of the degree distribution, etc.).

Encoder: Encoder learns to map from sequence data and
condition vector to a multivariate normal distribution accord-
ing to graph features. A latent vector is sampled from that
mapped distribution.

Decoder: Decoder learns to reconstruct an input sequences
from the latent and the condition vectors. The first input
is generated with the vectors, and a subsequent sequence is
recursively generated by LSTM. When we generate a graph
using GraphTune, we input a sampled latent vector and a
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Fig. 1. Proposed model composed of GraphTune and a feature estimator.
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Fig. 2. Kernel density estimation plots for the generated graphs when average
shortest path length is specified as 3.0, 4.0, or 5.0.

specified condition vector to the decoder and obtain a sequence
representing a feature-tuned graph.

III. PROPOSED MODEL

We propose an accurate generative model for graphs that
extends GraphTune by adding an LSTM-based model called a
feature estimator (see Fig. [T). The feature estimator estimates
value of features of a generated graph and adds an error
between the estimated values and elements of a condition
vector (i.e. specified values of features) to the overall loss.
In other words, the feature estimator feeds back information
on features in generated graphs to neural networks in the
GraphTune part, thereby allowing more accurate tuning of
features. To appropriately train the proposed model, we also
propose a training algorithm to avoid target leakage.

GraphTune part: GraphTune part in our model learns to
reconstruct a sequence from input sequence and a condition
vector in the same manner as the original GraphTune. The
details of the process follow the paper of GraphTune [1f]. In
the generation step, only GraphTune part is used.

Feature estimator: The feature estimator learns to estimate
values of features of an output graph from a sequence re-
constructed by GraphTune part. The reconstructed sequences
are recursively input to the LSTM block. The output of the
last LSTM block is an estimator of values of features we
focused on. The error between the estimator and the values
of the features of the input graph is added to the loss of the
GraphTune part to provide direct feedback on the accuracy
of feature reproduction. Note that the feature estimator takes
only reconstructed sequences as input and does not use the
condition vector.

In the training of the proposed model, information of a
condition vector (i.e. the value of the feature of input graphs)

that is input to GraphTune part may leak to the feature
estimator side, and appropriate training cannot be expected.
Therefore, an alternate training algorithm is applied to train
the GraphTune part and the feature estimator alternately. In
the algorithm, when training one model, the parameters of the
other model are freezed. By repeating this alternate training,
the dependency between the two models is eliminated and
appropriate training is achieved.

IV. EXPERIMENTS

We train the models and generate graphs using a real graph
dataset to verify the effectiveness of the proposed model in the
accuracy of graph generation. We use 2,000 induced subgraphs
sampled from the Twitter who-follows-whom graph in the
Higgs Twitter Dataset [2] for training in order to compare the
proposed model with GraphTune. The average shortest path
length was used as the condition vector, and three patterns
were specified at generation: 3.0, 4.0, and 5.0, each of which
was set to generate 300 graphs.

The parameters of the proposed model are set as follows.
The size of the single fully connected layer placed before the
feature estimator is 256, the size of the hidden state vector
of the LSTM is 512, and the size of the last single fully
connected layer is 1. The parameters of the GraphTune part in
the proposed model and GraphTune as a comparison method
were set according to the paper of GraphTune [1]. The batch
size was set to 37, and the number of epochs in feature
estimator training was set to 10,000. The number of iterations
in the alternate training was set to 2.

To evaluate the tuning accuracy of graph features, the
distribution of the average shortest path length of the generated
graphs is shown Fig. [2] Depending on the specified value of the
average shortest path length, the two models show a change in
distribution. Especially when 5.0 is specified, indicating that
the graphs generated by the proposed model are distributed
closer to the specified value than GraphTune.

V. CONCLUSION

We extended GraphTune, a conventional generative model
with tunable features, by adding a feature estimator model
that estimates values of features on generated graphs. We
also proposed an alternate training algorithm to ensure that
GraphTune and the feature estimator cooperate with each
other and learn appropriately. Through experiments with a
real-world graph dataset, we confirmed that the proposed
model can specify features more accurately than the original
GraphTune. We plan to apply various real-world graph datasets
and specify different graph features to verify the generalization
performance of the proposed model.
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