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Abstract—New network architectures, such as the Internet of
Things (IoT), 5G, and next-generation (NextG) cellular systems,
put forward emerging challenges to the design of future wireless
networks toward ultra-high data rate, massive data processing,
smart designs, low-cost deployment, reliability and security in
dynamic environments. As one of the most promising techniques
today, artificial intelligence (AI) is advocated to enable a data-
driven paradigm for wireless network design. In this paper,
we are motivated to review existing AI techniques and their
applications for the full wireless network protocol stack toward
improving network performance and security. Our goal is to
summarize the current motivation, challenges, and methodology
of using AI to enhance wireless networking from the physical to
the application layer, and shed light on creating new AI-enabled
algorithms, mechanisms, protocols, and system designs for future
data-driven wireless networking.

Index Terms—Wireless network, AI, Machine learning, Per-
formance, Security.

I. INTRODUCTION

The rapid advancement of wireless technology leads to a

revolution in daily life. The deployment of Internet of Things

(IoT) [1], [2], intelligent networking [3], [4], cloud computing

[5], [6], 5G and next-generation (NextG) cellular networks [7],

[8] make new demands on the capabilities for efficient and

secure network operations. Conventional methods for wireless

networking have been generally based on theoretical models,

pre-defined operational procedures, or empirical guidelines

[9], [10]. Considering the complicated structures and oper-

ational protocols of modern wireless networks, conventional

methods may not be always efficient, robust, or secure in han-

dling dynamic network operational environments with massive

data exchange [9], [11], [12].

Recently, the wide applications of artificial intelligence (AI)

and machine learning have drawn increasing attention in the

area of wireless networking. New research areas have already

emerged to apply AI techniques to enhance wireless network

performance and security [13]–[20]. In particular, network op-

erations generate various data of large volume. Without relying

on specific mathematical modeling or operational guidelines,

AI techniques have enabled a data-driven paradigm to process

wireless signals and network traffic in an efficient and secure

manner. For example, AI has been adopted in different network

layers to improve the network throughput, communication

efficiency, and reduce energy consumption and various costs

[13]–[15]; and many system designs have also embraced AI

to enhance the confidentiality, integrity, and availability of

wireless networks [16]–[18].

In this paper, we aim to provide an overview of existing

applications of data-driven AI in the wireless network. We

study them from two perspectives: performance and security,

and discuss the advantages of using data-driven AI approaches

compared with conventional approaches toward wireless net-

work performance and security. In particular, we discuss the

following major topics in this paper.

• We classify existing popular AI techniques into super-

vised learning, unsupervised learning, and reinforcement

learning, and briefly introduce common algorithms asso-

ciated with them.

• We comprehensively present the use of AI techniques to

improve the performance and security in wireless network

designs throughout the full protocol stack. We begin with

the physical (PHY) and medium access control (MAC)

layers, which are the main focuses of the recent AI-

enabled research. Then, we summarize substantial efforts

that have recently applied AI techniques to mechanisms

at the network layer and above.

• Based on the state-of-the-art, we discuss what the chal-

lenges lie on the path ahead in adopting and creating AI

techniques for future wireless network designs.

The remaining sections of this paper are organized as

follows. In Section II, we briefly summarize AI techniques.

In Sections III and IV, we discuss the use of AI for wireless

networking in lower layers (PHY and MAC) and higher layers

(network layer and above), respectively. We summarize the

future challenges of AI for wireless networking in Section V

and conclude this paper in Section VI.

II. BRIEF SUMMARY OF AI TECHNIQUES

Before we discuss AI techniques for wireless network

designs, we briefly introduce and classify AI and machine

learning techniques. Fig. 1 shows the classification of machine

learning techniques into three main categories: supervised

learning, unsupervised learning, and reinforcement learning

[21], [22], along with common algorithms in each category.

• Supervised learning involves techniques that are trained

by explicit labels. Supervised learning includes classi-

fication and regression algorithms. Common algorithms

include support vector machines (SVM), K-nearest neigh-

bors (K-NN), random forest, linear regression, neural
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Fig. 1. Taxonomy of AI/machine learning techniques, along with commonly
used models.

network (NN) based deep learning such as feedforward

neural network (FNN), recurrent neural network (RNN),

and convolutional neural network (CNN) [23].

• Unsupervised learning does not need labeled data, which

is classified into dimension reduction, clustering, and gen-

erative algorithms. Principal component analysis (PCA)

and autoencoder are two common dimension reduction

algorithms. Autoencoder has a similar nature to wire-

less communication because it has an encoding-decoding

structure [24]. K-means is a widely used clustering algo-

rithm. Unlike discriminative classification, generative ad-

versarial network (GAN) is a generative machine learning

algorithm [23].

• Reinforcement learning is categorized into model-based

and model-free algorithms. One of the most common

models for model-based reinforcement learning is based

on the Markov decision process (MDP). Model-free algo-

rithms are categorized into value-based algorithms such

as the Q-learning, and policy-based algorithms such as

the actor-critic algorithm. Besides, deep reinforcement

learning is an algorithm that combines reinforcement

learning with deep learning. Multi-agent reinforcement

learning enables multiple agents in the environment.

III. AI IN PHY AND MAC LAYERS

In a wireless network, the lower layers, including the PHY

layer and the MAC layer, are responsible for interacting

with the spatially and temporally varying wireless medium to

ensure efficient, reliable, and secure wireless communication.

Studies have demonstrated that machine learning designs have

been successfully integrated into lower-layer designs, enabling

wireless networks to (i) adapt to fluctuating environmental

conditions (e.g., signal propagation, attenuation, interference)

[25]–[33], and (ii) enhance security against various threats,

such as the identification of unauthorized access to wireless

networks, suspicious behavior, or protecting the confidential-

ity, integrity, and availability of wireless networks [34]–[40].

In this section, we elaborate on how existing approaches

integrate machine learning into wireless networks from two

aspects: (i) improving the performance and (ii) enhancing the

security.
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A. Using AI for Performance

Fig. 2 summarizes how AI has been applied to different

designs at the PHY and MAC layers to improve the commu-

nication performance.

1) Improving PHY Layer Performance: In the PHY layer,

we discuss how machine learning can be utilized to 1) op-

timize channel coding, 2) detect high-dimensional signals,

3) advanced channel estimation, 4) optimize CSI feedback

procedures, 5) detect modulation without decoding, and 6)

improve beam management.

Channel Coding: Channel coding is an essential technique

to improve the reliability of wireless communication over a

noisy channel (e.g., mitigating wireless collisions [41]). Some

studies have used machine learning to design advanced coding

processes [13], [24]–[26], [42]. For example, the work of

[13] introduced an RNN-based decoder for polar codes in

5G radio. RNN decomposes the iterative operations of the

conventional decoder into layers that can significantly reduce

memory consumption by sharing the weights of different

iterations. Deep learning can train a Tanner graph for error-

correcting codes [42]. The deep learning framework improves

the performance of the belief propagation decoding algorithm

with little extra complexity. Autoencoders have also gained

broad attention [24]–[26]. By using autoencoder in the deep

generative model, [26] was able to reconstruct the Gray coding

before decoding by using the prior information obtained from

the channel model.

In addition, machine learning-based modulation and coding

schemes for link adaptation were proposed in [43], [44].

Parameters for modulation and coding scheme have a proba-

bilistic model based on signal-to-interference-plus-noise ratio

(SINR) [44]. This model is formulated as a multi-armed bandit

problem under the reinforcement learning framework. Efficient

solutions are used to learn the optimal parameters given the

channel state.

Signal Detection: The conventional signal detection method

based on the maximum-likelihood estimation can be an

NP-hard problem [10]. Recent advances in multiple-input

multiple-output (MIMO) technology with high-dimensional

signals have even exacerbated the complexity problem at the

receiver. To address this issue, existing research has focused

on developing AI-based methods for detecting MIMO signals



[11], [27]–[30], [45], [46]. The authors in [46] proposed a

deep learning-based MIMO detection called MMNet. MMNet

aims to learn the parameter models of an iterative decoder,

which eliminates the need to make an impractical assumption

that one knows the MIMO channel matrix distribution. In

MMNet, parameters can be adaptively adjusted by measuring

the channel matrix continuously. Many existing studies on

signal detection always assumed that the channel is linear

with perfect channel state information (CSI). However, in

practice, this assumption does not always hold. The work

in [11] replaced the traditional iterative detection algorithm

with deep learning to enhance resilience against CSI error and

channel non-linearity.

Channel Estimation: In wireless networks, channel inter-

ference generally incurs a negative impact, particularly in

MIMO systems. The interference can significantly reduce the

accuracy of channel estimation. Deep learning has been used

for improving the channel estimation performance in [7], [31],

[47], [48]. While minimum mean square error estimation

is the most accurate, it has a high level of complexity,

whereas least squares estimation is faster but less accurate.

To combine the advantages of both methods, a deep learning

method has been proposed in [31], which theoretically proved

that noise can be effectively filtered so that least squares

estimation can approach the close performance of minimum

mean square error estimation. The work in [7] considered

a 5G vehicular network where conventional methods use

Doppler rate estimation to estimate decision-directed channels,

but these methods do not work well in a highly dynamic

environment. The work proposed to use deep learning to learn

a channel without knowing the exact Doppler rate, enabling

more accurate decision-directed channel estimation.

CSI Feedback: It is necessary to perform the sounding

process in a beamforming-based multiuser MIMO system, in

which each wireless station feedbacks its CSI to the access

point for precoding to mitigate interference across different

stations. It has been shown that the use of compressed sensing

in deep learning can further improve the efficiency of CSI

feedback [12], [32], [49], [50]. The CNN-based CsiNet+

framework in [12] has an encoder-decoder structure to com-

press and quantize the CSI matrix. As opposed to the tradi-

tional quantization in deep learning, which requires retraining

when changing the bit quantization rate, CsiNet+ is trained by

optimizing quantization offset, thus CNN parameters can be

fixed without retraining. In [32], a deep learning framework is

proposed for extracting CSI features at different resolutions.

CSI matrices with different densities require different kernels

and resolutions. To extract features at different resolutions, two

different convolutional layers are applied in parallel.

Modulation Recognition: Automatic modulation recognition

(AMR) is a term used to describe the identification of the

modulation scheme used in a communication system without

decoding signals. Recently, AI techniques have shown their

promising potential in this application [4], [51]. The work

in [52] used K-NN combined with genetic programming to

identify four common modulation schemes. K-NN evaluates

the fitness of new features generated by genetic program-

ming based on input features. Due to the simplicity of K-

NN, the design is low in complexity without compromising

the classification accuracy. It is also possible to recognize

signal waveforms by transforming complex-valued signals into

contour stellar images, then using deep learning methods for

image recognition [51], in which the amplitude, frequency,

phase, noise, and error are represented by colors and shapes.

Simulation results in [51] also validated that such computer

vision technology can be applied to AMR.

Beam Management: In 5G/NextG wireless networks,

millimeter-wave (mmWave) has been used to support higher

data rate transmissions. Due to the directional nature of the

mmWave technology, each device uses a dedicated beam to

communicate with its connected peer. However, this leads

to a complex beam management procedure between the

transceivers. Machine learning methods have been proposed

for solving a variety of beam management problems. For ex-

ample, considering the beam selection in a vehicle-to-vehicle

network, the dynamic nature of such a network makes it

difficult to find a beamforming solution that can accommodate

its changes [33], [53], [54]. The work in [33] uses iterative

SVM to classify beamforming and select the optimal one.

Iterative SVM uses signal power, path loss, and angle of

arrival/departures (AoA/AoD) as features for model training,

and predicts the analog beam when the link between vehicles

is changed.

Tracking beams in a dynamic network is also challenging

[55]–[57]. For beam tracking in an unmanned aerial vehicle

(UAV) system, drones need to quickly switch beam directions

to maximize the SINR when they fly around. Therefore, a fast

beam tracking technique is necessary. Although it is difficult to

obtain an accurate channel model in a UAV system, Q-learning

can learn from the tracking experience without a model to

predict tracking [55] by optimizing beam selection by using

the SINRs from different beams as rewards.

Beam alignment aims to find and maintain the optimal beam

direction between transceivers [58]–[60]. Due to the small

antennas used in 5G devices, conventional beam alignment

techniques may not be feasible for small devices. The work

in [58] uses two machine learning classifiers, i.e., random

forest and multilayer perceptron (MLP), for beam alignment.

Given a user’s location, the work uses exhaustive search to find

optimal access points and beamforming, then uses locations as

features to train the classifiers. After training, classifiers only

need the user’s location to predict optimal access points and

beamforming. The classifiers are shown robust to the general

urban outdoor environment.

2) Improving MAC Layer Performance: Machine learning

has been used at the MAC layer to optimize the performance

by managing a variety of resources as follows.

Power Allocation and Energy Management: Several studies

have adopted AI methods for power allocation and energy

management [6], [61]–[67]. The work in [64] considered a



cognitive radio network that consists of sensors, primary users,

and secondary users. The primary and secondary users share

the same spectrum resource. Primary users can adjust their

power allocation based on their rules. However, secondary

users can not obtain primary users’ power allocation infor-

mation and have to use the strength of the received signal

from sensors to change their power allocation. As a result,

[64] designed a deep reinforcement learning framework for

secondary users to predict primary users’ transmission power

allocation. In [67], a deep Q-network was developed to learn

the optimal sleeping rules for mobile networks to reduce

energy consumption. In the proposed deep Q-network method,

data traffic from different time periods can be effectively

learned, thus reducing the bias caused by current traffic. The

method has been shown stable and adaptable in a dynamic

environment than conventional Q-learning.

Spectrum and Access Management: Spectrum and chan-

nel access management can also leverage AI to improve

its efficiency [14], [68]–[79]. For example, non-orthogonal

multiple access (NOMA) has become a popular design for

5G/NextG networks, which requires comprehensive manage-

ment of power and spectrum, such that the receiver can

successfully decompose signals from users. A multi-task deep

learning-based NOMA was proposed in [1], which is able to

modulate, spread symbols, and detect. The design is to create a

new structure of autoencoder. Each user’s bits are modulated to

a symbol independently by one of the isolated sublayers. The

symbol is spread to a sequence, and then multiple sequences

are jointly detected by a neural network. The design was

further improved in [74] by introducing a balancing technique

among users to avoid some users getting trapped in local

optima. Targeting the dynamic spectrum access scenario where

wireless devices dynamically and autonomously access and

use available spectrum resources in a given frequency band,

[69] considered a probability model in multichannel wireless

networks. In the model, each user accesses a channel to

send data packets with a probability, and will be informed

whether the packets are received successfully. A multi-agent

deep reinforcement learning was created to learn the best time

slot for spectrum access and maximize the data rate on the

channel. The study investigated several cases with different

rewards and objective functions, including cooperative rewards

and global rewards.

User Association: User association is a process to associate a

user with an appropriate access point based on geographical,

channel, interference, and bandwidth information. Machine

learning techniques for user association have been investigated

in [80]–[82]. In particular, [80] proposed a multi-agent rein-

forcement learning model to optimize the association decision.

In this model, each user is associated with an agent, and

the SINR is used to evaluate the goodness. The experimental

results show that this model can achieve up to 99.8% of

the optimal performance. In [82], the user association and

resource allocation were considered jointly in a large-scale

heterogeneous cellular network. When users are associated
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Fig. 3. PHY and MAC security mechanisms leveraging AI.

with different base stations, both network resources and com-

munication quality can be optimized. It is assumed that users

do not know the network environment and are selfish to benefit

themselves, which is formulated as a stochastic game. By

defining the network utility as the reward of each user, their

multi-agent deep reinforcement learning framework can find

the Nash equilibrium among users.

B. Using AI for Security

In addition to using AI to improve the communication per-

formance, the literature also investigated how to leverage AI

to enhance wireless network security against various attacks.

Fig. 3 summarizes related major topics at the PHY and MAC

layers, which will be discussed in the following.

1) Security at PHY Layer: At the PHY layer, various

machine learning-based mechanisms have been proposed to

enhance authentication, combat spoofing attacks and jamming,

and detect anomaly and eavesdropping.

Physical Layer Authentication: It has been demonstrated

that secret information can be coupled with random chan-

nel responses for secure information exchange without using

conventional cryptography. Typically, these designs mainly

involve physical-layer authentication (PLA). Some implemen-

tations of machine learning on PLA were discussed in [3],

[34]–[38]. For example, [37] used logistic regression to predict

unique features in the channel matrix as a way for user

authentication, showing better performance than using the

conventional received signal strength indicators. In [38], a

method was proposed to allow Bob using Alice’s packets

to train one class nearest neighbor algorithm. Packets not

classified as belonging to Alice are marked as suspicious.

The work in [3] developed a CNN-based radio frequency

fingerprinting model by using baseband error signals in the

time domain. This method utilizes the frequency offset as a

feature during the training process, which is difficult to spoof

and therefore can be used to identify attackers.

Signal Spoofing Attacks: Spoofing attack is a common attack

to compromise the authentication process [16], [83]–[85].

There are studies specifically targeting spoofing attacks in

wireless networks based on AI techniques. For example, the

authentication scheme in [16] models the virtual channels

of a MIMO system. The sparsity and total energy of users’

virtual channels are considered features used by a logistic

regression classifier to distinguish spoofing attacks. As the



spoofing attacker can be smart and try to learn from waveform

and channel status information to improve the spoofing success

probability, [84] proposed a GAN model that allows the

spoofing attacker trains deep learning to obtain the best signals

against the defense mechanism obtained by training another

deep learning model. This GAN-based attacker can generate

signals that are easily misidentified as normal users.

Jamming: Jamming is a common strategy of sending wireless

signals with the same frequency in order to disrupt ongo-

ing communication [86]. Some machine learning-based anti-

jamming methods have been developed in [17], [87]–[92].

In [17], the attacker’s goal is to disrupt secondary users in

a cognitive radio network. Secondary users leverage spatial

diversity to transmit signals at different locations to avoid

attackers. This study proposes to use deep reinforcement

learning to learn the optimal location for the secondary user at

each time slot. The work in [87] investigated a multi-channel

cognitive radio network where secondary users’ access is not

protected, thus making them vulnerable to jamming attacks.

The secondary user’s defense strategy is to switch channels in

order to hide from the attacker when the attacker is searching

for different channels. In this study, the channel hopping is

modeled as a Markov decision process (MDP) where the

transition probability describes the action of the secondary

user.

Combating Wireless Key Attacks: The varying wireless

channel state can be leveraged to generate a random secret

key. A defense method against wireless key attack was con-

sidered in [93]. In a wireless network, the wireless secret

key generation technique enables key agreement protocols to

ensure safe encryption. The performance of wireless secret

key generation can be evaluated by the secret key rate.

However, both hardware impairment and the forged signal can

downgrade the secret key rate. Secret key generation requires

randomness distillation that uses pilot signals, thus attackers

can inject forged pilot signals. Hardware impairment leads

to the mismatch of randomness observation, which can be

fixed by deep learning. The attacker is defended against by

using RNN to predict the source of common randomness and

enhance the randomness distillation. The defense method in

[93] has up to 30% improvement compared with others.

2) Security at MAC Layer: At the MAC layer, we discuss

how AI techniques have been used in security topics related to

spoofing, data poisoning, denial-of-service (DoS), and eaves-

dropping.

MAC Spoofing: Spoofing attacks at the MAC layer have

been studied for years [94], such as using machine learning

[39], [40]. When two packets are sent from different MAC

addresses, the proposed deep learning classifier in [39] can

identify whether MAC addresses are associated with the same

device by CSI even when two devices of the same model are

sending messages at the same location and their CSI still has

variances. The work in [40] uses sequence numbers of frames

associated with identifies features to train a machine learning

model. The experiment conducted in a real-world environment

shows it is effective in noisy IEEE 802.11 networks.

DoS Attacks: DoS attacks targeting the MAC layer are

discussed in [95] to undermine the frame formatting and flow

control. The study showed that attackers can flood forged IEEE

802.11 management frames in WiFi. Management frames are

essential for the initialization of WiFi setup. A forged man-

agement frame can de-authenticate and disconnect devices.

Without upgrading protocol or hardware, machine learning-

based classifiers can classify de-authentication frames based

on the traffic features, such as the number of different frames

and their exchange.

Data Poisoning: Data poisoning attacks have been proposed

in [96]–[98] to circumvent multi-access mechanisms. In par-

ticular, in a cooperative spectrum sensing scenario, in which

sensing devices can send their results to a data fusion server

to determine whether a channel is free. Malicious devices can

send poisonous data to the fusion center, which may lead to the

server making incorrect decisions. Different from traditional

statistics-based methods, this line of research has developed

surrogate models based on adversarial machine learning for

attackers to mimic the fusion center’s decision process, based

on which to generate poisonous data in a precise way. Experi-

mental results show that the success probability of adversarial

machine learning-based attacker achieves up to 82% attack

success rate.

Anomaly Detection and Defending against Eavesdropping:

Anomaly detection is a method against malicious access

or anomalous phenomena [99], [100]. In [99], an anomaly

detection algorithm for a wireless sensor network implemented

in a microgrid is considered. The algorithm adopts machine

learning to detect data integrity with a low false alarm rate

during the experiments. The study in [101] trained a machine

learning model with the traffic features under IEEE 802.11

protocol to detect an anomaly. Detecting eavesdropping [102],

[103] is a challenge because it is a passive attack and does

not need to actively transmit signals. Some anti-eavesdropper

defense strategies were developed in [104], [105]. The idea

in [104] is to mix signals with artificial noise to confuse any

eavesdropper. FNN is used to optimize the secrecy throughput,

which is evaluated by the power of artificial noise power,

the time taken by transferring power, and the redundancy of

wiretap code.

IV. AI IN NETWORK LAYER AND ABOVE

While the PHY and MAC layers are always the focus

of wireless network research, considerable efforts have also

been devoted to using AI for the wireless network layer and

above. In this section, we aim to summarize such research

efforts toward improving the wireless performance and se-

curity. Fig. 4 summarizes existing machine learning-based

mechanism designs toward improving the performance and

enhancing security at the network layer and above.

A. AI for Performance

We first review existing methods of applying AI techniques

to improve the network performance.
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1) Network and Transport Layers: Existing studies have

been focused on AI-enabled routing, traffic engineering, and

data aggregation at the network layer and intelligent conges-

tion control at the transport layer.

Routing and Traffic Engineering: Routing is one of the

major tasks in the network layer. Leveraging machine learning

methods can help routers determine when and where the data

traffic should be sent efficiently [19], [106]. For example, the

work in [19] considered that an IoT network serves High

Volume Flexible Time (HVFT) applications. HVFT needs to

transfer a large volume of data to the cloud server such as

prefetching videos with ultra-high bit rate. A deep reinforce-

ment learning-based policy was created to coordinate HVFT

with other time-sensitive applications such as video streaming

for the IoT network. HVFT is scheduled to avoid time-

sensitive applications by deep reinforcement learning with the

reward set to be the total HVFT throughput. This design is

able to transmit 14.7% more data without downgrading time-

sensitive applications.

Data Aggregation: Data aggregation can improve the ef-

ficiency of wireless networks by reducing redundant data

[107], [108]. Conventional aggregation techniques may not be

flexibly efficient as they were generally built on fixed routes. In

[108], a reinforcement learning-based data aggregation design

was created for a mobile vehicular network (VANET) scenario.

Every vehicle in the VANET uses distributed MDP model to

learn from nearby vehicles’ actions and rewards. Every vehicle

adds a delay before transmitting data as action. The reward is

the distance between data in different route nodes. Therefore,

data from different vehicles can arrive at the same time and

then be aggregated, achieving a good trade-off between delay

and redundancy with the number of redundant data reduced

without causing a long delay.

Congestion Control: A variety of machine learning algo-

rithms have been applied for congestion control at the transport

layer, including K-means [109], SVM [110], neural network

[111], and reinforcement learning [15], [112]–[116]. Rein-

forcement learning has received more attention recently. For

example, [112] considered a mobile network with varying link

bandwidths. Users can switch between links with different

channel capacities, which leads to a large-scale dynamic rein-

forcement learning state space. The congestion window size

is defined as the action and network throughput as the reward.

Then, Kanerva coding in reinforcement learning is applied to

speed up the convergence rate by adequately choosing a part

of the state space to approximate the full space.

2) Application Layer: We briefly discuss common applica-

tions where machine learning techniques have been proposed

to improve the performance.

Context-aware Applications: Context-aware applications can

adapt to serve users based on the context of users. Various

machine learning-based applications have been proposed in

[2], [117]–[120]. For example, [117] proposes a location-based

mobile computing application by using deep learning. It can

predict users’ tracking or user identification based on biometric

motion. Global interactions are obtained by merging local

interactions from different sensing modalities. Features such as

frequency are extracted to train deep learning. It can handle

both regression and classification in a unified way. Another

popular context-aware application is indoor localization [118].

Multiple machine learning algorithms are trained, and their

predictions are fused to improve accuracy.

Caching: Machine learning-based content caching methods

have been proposed in [8], [121], [122]. One of the imple-

mentations is the intelligent base station with caching [122].

It has a placement delivery array system in the base station

that uses the double-coded caching technique. It is formulated

as an optimization problem that minimizes the delay and

power consumption. The wireless network is modeled as an

MDP with unknown transition probabilities because it is not

available in a real-world scenario. Deep reinforcement learning

is used to solve the MDP by taking the action of scheduling

decisions and optimizing the reward of the transmission delay

and power.

Application Functionality and Management: Traffic clas-

sification is another important application of AI techniques

[106], [123]. The work in [123] developed Atlas on wireless

networking at HP Labs. Atlas is a traffic classifier that can

check the data traffic and identify its source software and

applications. However, it is challenging to obtain training

datasets for machine learning because massive and various

network flow samples are hard to label. Atlas addresses

this problem by using the mobile agents installed on some

dedicated testing devices to collect the network logs, which

are then used as the training data.

Network function virtualization (NFV) is a key function in

a software-defined network (SDN) [20], [124]. A software-

defined radio was proposed in [20] to control IoT network

parameters. NFV maps the transmission requests to virtual

requests at the software level, which is modeled as MDP.

MDP is solved by multi-agent deep reinforcement learning

where every agent learns to select devices to form optimal



routes and allocate proper power to devices. The study in

[125] considered SDN management to support mobile edge

clouds for video streaming. The functions of SDN such as

video quality, transcoding, and caching are controlled by the

virtual appliances of NFV. Both bandwidth allocation and

power consumption of virtual appliances are optimized by

deep reinforcement learning.

Computational Resource Management: AI techniques can

also help computational resource allocations in wireless net-

works [126]–[129]. In mobile edge computing, it is important

to determine how to allocate the workload to mobile edges

based on their available computing resources. A reinforcement

learning-based framework for each edge to maximize each

user’s energy consumption and computing time is proposed in

[128]. The work of [127] considered an energy-saving model

in IoT networks to reduce energy consumption based on a

reinforcement learning model that allows every edge device

to learn offloading decisions locally without accurate global

information.

B. AI for Security

We then review existing studies related to using AI tech-

niques to enhance the wireless network performance.

1) Network Layer: At the network layer, attacks mainly

focus on disruptions to normal operations of network traffic.

DoS Attacks: The DoS attack is a common attack at the

network layer [18], [130], [131]. 5G network slicing is a

technology that divides a network into multiple virtual net-

works, which can be targeted by DoS attacks [18]. A deep

learning framework has been proposed in [18] to jointly predict

DoS attacks and slice traffic. The detection of DoS attacks

is based on packet features including flow duration, internet

protocol (IP) addresses, ports, and protocols. Deep learning

with Kalman backpropagation was also proposed to detect

DoS attacks in [130]. Features used in [130] include flow

duration and flow inter-arrival time. The Kalman filter shows

its capability to predict and detect DoS attacks by adjusting

deep learning weights.

Loophole Attacks: A new insider attack called loophole attack

was proposed in [132]. The attacker can be launched at a

malicious gateway node. By intercepting and rerouting data in

a loop to delay traffic, it can attack the IPv6 routing protocol

for low-power and lossy networks. To counter attackers, traffic

features such as rank, topology inconsistency, and rerouting

procedures are used to train a deep learning framework.

Simulations in [132] show that the deep learning framework

achieves more than 90% accuracy to identify such attackers.

Anomaly Detection: Machine learning-based anomaly detec-

tion has become a common way to detect anomaly in network

traffic based on packet features. A general comparison of

machine learning-based anomaly detection was given in [133],

which tested various machine learning algorithms, including

SVM, decision tree, random forest, and K-means; and common

network attacks, including SYN flooding, land, UDP flood,

ping of death, smurf, IP sweeping, and port scan. Generally,

those machine learning algorithms can be used to detect

suspicious features of network traffic. Tree-based methods

were observed with better performance than others in [133].

2) Application Layer: Recently, there are also substantial

efforts focusing on using AI for application layer security.

Phishing and Malware: A strategy against phishing in fog

networks was designed in [134] and built upon a neural

network-based fuzzy detector. In the detector, 27 features are

selected from uniform resource locator information and web

information, and then are fuzzed as three classes and provided

to a neural network to detect phishing. Machine learning

has been proposed to detect malware at the application layer

[135]–[137]. For example, Q-learning has been used in [135],

[137] for malware detection in mobile and IoT networks,

respectively.

Location Privacy: Location privacy [138], [139] has become

an increasingly important topic recently with new attacks

emerging to infer a mobile user’s location. For example,

[140] showed that attackers can target the application layer

to steal the geographical information of users. The use of

machine learning towards location privacy has been discussed

in [141]–[143]. Anonymizing the spatiotemporal trajectory

data is an effective method to protect privacy before publishing

data [142], in which trajectories are clustered by k-means

to confuse adversaries without information loss measured by

generalization hierarchy trees.

Cross-layer Defenses: Some methods can work across layers

to defend against attacks [144], [145]. In [144], DDoS attacks

across the PHY layer and application layers were taken into

consideration. Three kinds of DDoS attacks were analyzed:

silent call attacks, message spamming attacks, and signaling

attacks, all leading to changes in network traffic features.

A deep learning framework in [144] was trained by a large

volume of data to accurately detect such attacks. In [145],

distributed DoS of TCP, HTTP, and UDP protocols were

considered. Decision trees were used to distinguish the features

of flow because distributed DoS on different protocols will

lead to some specific changes, such as the TCP SYN, HTTP

GET, or POST requests.

V. SUMMARY OF CHALLENGES GOING FORWARD

Based on our review, we find that the application of AI on

wireless networks is under rapid development, and there still

exist challenges to be solved on the path ahead.

• Interpretability of operational wireless data. Many exist-

ing machine learning frameworks work like black boxes,

which lack interpretability. They need experts to deter-

mine which features are dominant and should be used

to train models [19], [27], [51]. How to select wireless

network features, why these features are important, and

accordingly lead to accurate classification for an AI-based

design worth more research efforts.

• Model Adaptation to Dynamics. A distinguishing feature

of the wireless network is the dynamically-changing

environmental data, such as user mobility and time-

varying channel fading. They cause confusion, noise, and



unreliability in data. Some models are designed typically

to process certain kinds of data [13], [42]. Generally,

it is worthy of more studies regarding how a trained

machine learning model based on wireless data for one

environment for a time period can be reliably applied to

a different environment at another time period.

• Balancing between Complexity and Performance. Ma-

chine learning frameworks, in particular neural networks,

can incur a higher complexity than conventional methods,

indicating that IoT devices with limited cost budgets still

have difficulty in adopting them. Low-complexity neural

network implementation and deployment can provide one

feasible way for AI-empowered IoT devices.

• Balancing between AI and Conventional Methods. AI

may not be the optimal choice for every wireless network

task as conventional methods can provide more stable

and interpretable results sometimes. Therefore, we think

adequately adopting AI to balance between AI-based and

conventional methods is important in wireless network

operations.

• Adversarial Machine Learning and Effective Defense.

Using machine learning unfortunately creates a new di-

mension of security risks. Adversarial machine learning

can attack existing machine learning models by ma-

liciously manipulating the learning process with small

perturbations [97]. As a result, AI-based methods need to

be carefully reviewed to address the risk of adversarial

examples in wireless networking.

VI. CONCLUSION

In this paper, we surveyed the literature on a rapidly growing

area of AI for wireless networking. We summarized the use

of AI techniques from the PHY layer to the application layer

in two major aspects: improving performance and enhancing

security. We also discuss the challenges on the path ahead.

As we have seen, different AI techniques can be applied

or re-designed for various wireless algorithms, mechanisms,

architectures, and systems, making AI for wireless networking

a challenging and promising research area.
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