
ESDI: Entanglement Scheduling and Distribution in
the Quantum Internet

Huayue Gu, Ruozhou Yu, Zhouyu Li, Xiaojian Wang, Fangtong Zhou

Abstract—Quantum entanglement distribution between re-
mote nodes is key to many promising quantum applications. Ex-
isting mechanisms have mainly focused on improving throughput
and fidelity via entanglement routing or single-node scheduling.
This paper considers entanglement scheduling and distribution
among many source-destination pairs with different requests over
an entire quantum network topology. Two practical scenarios are
considered. When requests do not have deadlines, we seek to min-
imize the average completion time of the communication requests.
If deadlines are specified, we seek to maximize the number of
requests whose deadlines are met. Inspired by optimal scheduling
disciplines in conventional single-queue scenarios, we design a
general optimization framework for entanglement scheduling and
distribution called ESDI, and develop a probabilistic protocol to
implement the optimized solutions in a general buffered quantum
network. We develop a discrete-time quantum network simulator
for evaluation. Results show the superior performance of ESDI
compared to existing solutions.

Keywords—Quantum network, entanglement scheduling, entan-
glement routing

I. INTRODUCTION
A quantum network enables efficient and secure quantum
communication based on quantum entanglement [17]. Long-
distance quantum communication is key to various novel
quantum applications including quantum key distribution
(QKD) [4], distributed quantum computing (DQC) [5], [6]
and quantum cryptography [27]. Recently, practical quantum
networks have been built around the world [7], [34], such as
the DARPA quantum network [12], SECOQC Vienna QKD
network [24], and the Tokyo QKD network [28].

Entanglement is the most crucial resource in a quantum
network. In quantum information processing and communi-
cation, information is represented as quantum bits (called
qubits), which cannot be transmitted via classical communica-
tion channels without information loss. To transmit quantum
information between two arbitrary quantum-capable devices,
entanglement must be leveraged for the execution of quantum
protocols. The primary function of a quantum network is to
distribute entanglements between nodes over long distances.

Because of its importance, entanglement distribution has
received significant attention recently. Prior work has focused
on entanglement routing, i.e., finding paths to establish end-to-
end entanglements with high throughput and/or quality [36]–
[38]. In this line of research, the most common goal is to
maximize network-wide throughput of entanglement distri-
bution for all source-destination (SD) pairs, potentially with
constraints on the quality of the distributed entanglements.
In reality, however, each SD pair may utilize the quantum
network to support specific applications, and different ap-
plications have different requirements for entanglement dis-
tribution rate and time constraints. Considering two typical
quantum applications, QKD and DQC. QKD relies on a long-
term stream of entanglements between two parties requesting

Gu, Yu, Li, Wang and Zhou ({hgu5, ryu5, zli85, xwang244,
fzhou}@ncsu.edu) are all with NC State University, Raleigh, NC 27606, USA.

secure communications, and is not sensitive to instantaneous
entanglement distribution rate, as long as sufficient entangle-
ments are accumulated over a relatively long period of time.
Meanwhile, DQC has a stringent requirement for completing
communication tasks as quickly as possible, to avoid informa-
tion decoherence in quantum memories.

The above motivates scheduling entanglements among SD
pairs while considering different communication requirements
and demands. Existing work has formulated entanglement
scheduling in simple queueing scenarios, focusing on schedul-
ing at a single quantum switch [22]. The assumption that all
nodes should connect to a central quantum switch is rather
strong and unrealistic. Given that real-world quantum links,
such as optical fiber, can only distribute entanglements over no
more than a few hundred kilometers [21], a general multi-hop
network topology is realistic in building large-scale quantum
networks [36]. Extending existing scheduling algorithms to
this multi-hop scenario is very challenging, as scheduling in
a queueing network is generally NP-hard even without any
quantum-specific characteristic being considered [30].

In this paper, we study scheduling in a general quantum
network, while considering SD pairs with different requests
(called commodities) for quantum communication demands
and/or deadlines. Two scenarios are specifically considered:
1) each commodity has a demand (number of entanglements)
but not a deadline, in which case we seek to minimize the av-
erage completion time for all commodities’ demands; 2) each
commodity has a demand and a deadline, in which case we
seek to maximize the number of commodities whose deadlines
are met. In addition to hardness of the scheduling problem,
challenges come from the probabilistic nature of quantum
operations in entanglement distribution, making it impossible
to obtain an exact estimation of the completion time of each
commodity. Our main contributions are as follows:

• We study and formally define the entanglement schedul-
ing and distribution problem in a general quantum net-
work with heterogeneous quantum applications.
• We propose ESDI, a general framework for entanglement

scheduling and distribution, and propose two entangle-
ment scheduling and distribution algorithms: ESDI-O
for commodities having demands but no deadlines, and
ESDI-E for commodities having demands and deadlines.
• We develop practical probabilistic protocols for entangle-

ment distribution in a buffered quantum network.
• Extensive simulation results show the superior perfor-

mance of our solutions compared to state-of-the-arts.

Organization: §II introduces the background. §III presents
our quantum network model. §IV proposes a general frame-
work for multi-commodity entanglement scheduling and dis-
tribution. §V and §VI propose algorithms for scheduling
commodities without and with deadlines, respectively. §VII
presents our protocol design. §VIII and §IX present simulation
results and conclusion, respectively.

ar
X

iv
:2

30
3.

17
54

0v
1

 [
cs

.N
I]

 3
0

M
ar

 2
02

3

II. BACKGROUND AND RELATED WORK
Quantum communication transfers quantum states from one
place to another. A quantum network enables long-distance
quantum communication between arbitrary end points [32].

Early work mainly focused on idealized network topolo-
gies including square-grid [23], ring and sphere topolo-
gies [29]. Unfortunately, these ideal network designs are far
from realistic due to physical and geographical limitations.
Considering a general network topology, recent works have
paid much attention to entanglement routing for multiple SD
pairs [8]. Shi et al. [31] proposed two algorithms, Q-PATH and
Q-CAST, for entanglement routing to maximize the throughput
(entanglement distribution rate). Zhao et al. [37] designed
a redundant entanglement provisioning and selection (REPS)
algorithm to maximize throughput for multiple SD pairs in a
circuit-switched, multi-hop quantum network. Zeng et al. [36]
proposed an integer programming-based solution with branch-
and-price to maximize throughput. Farahbakhsh et al. [13]
presented opportunistic routing with theoretical analysis.

None of the above studies have considered the scheduling
of entanglement distribution in a general quantum network.
Panigrahy et al. [22] developed a max-weight scheduling
policy to stabilize queues in a star-shaped quantum network.
Pouryousef et al. [26] studied the link entanglement and
storage resource allocation problem in a quantum overlay
network. These works focus on scheduling in a specialized,
single-repeater quantum network. Li et al. [18] proposed an
effective routing scheme for multiple requests from SD pairs,
but they only focus on the fair sharing of entanglements
without considering the characteristics of requests.

Meanwhile, most research in entanglement routing consid-
ers a bufferless quantum network, where entanglement genera-
tion and swapping must be completed in one time slot. Other-
wise, the intermediate entanglements will be discarded. With
recent advances in quantum memories with long coherence
times, quantum networks with buffers have been shown to im-
prove quantum network performance and throughput [8], [14].
Dai et al. [8] first studied the optimal remote entanglement
distribution (ORED) protocol in a buffered quantum network
for a single SD pair and provided an upper throughput bound
for any entanglement routing protocols. Dai et al. [10] also
analyzed the queuing delay for a single channel in a quantum
network. However, the ORED protocol only considers one SD
pair in a quantum network and may not be practical for large-
scale operations. This paper considers multiple SD pairs with
heterogeneous quantum communication requests, and designs
a comprehensive framework to satisfy their demands.

III. QUANTUM NETWORK MODEL
In this section, we present preliminaries and modeling of a
quantum network. All notations are summarized in Table I.

A. Quantum Information Basics
We consider the prevalent discrete-variable binary state quan-
tum systems. A qubit differs from a classical binary bit
represented by either 0 or 1, and can be in a superposition of
two basis states. Let |0〉 and |1〉 be the two single-qubit basis
states. Here |·〉 is called a ket in Dirac notation denoting a
column vector representing the (pure) state of a qubit. A qubit
is written as |b〉 = α|0〉+β|1〉, with complex numbers α, β as
amplitudes of the two basis states, satisfying |α|2 + |β|2 = 1.
Measuring this qubit yields a classical bit of either 0 with a
probability of |α|2 or 1 with probability |β|2.

TABLE I: Notation Table
Parameters Description
G = (V,E) quantum network with nodes V and links E
U the set of SD pairs
ce, pe, qv capacity, ebit generation and swapping success

probabilities
si, ti the source and destination of the ith SD pair
Zi the set of commodities in the ith SD pair
zij the jth commodity in the ith SD pair
dij , a

i
j , δ

i
j the demand, arrival time and deadline of the

commodity zij
Ps, Pc the priority list for SD pairs and commodities
P ic the set of commodities belong to SD pair i
P ic [l] the l commodities in list P ic
κ the scheduling length
Θij ,∆

i
j the remaining demand and time slots of zij

SτT the network state after Phase-τ at time T
ZT the set of active commodities at time T
ΠτT available ebits numbers after Phase-τ at time T
Mm:n,Dm:n

k:n ,Rm:n Input buffer & output buffer & receiving buffer

Variables Description
ηsiti the entanglement distribution rate of si:ti
fm:k
m:n amounts of entangled qubit pairs of m:k would

be distributed to m:n after swapping.
gm:n amounts of ebits would be generated along phys-

ical link m:n divided by the capacity cmn

A two-qubit system is described by a superposition of four
basis states |00〉, |01〉, |10〉 and |11〉. Let |b1b2〉 = α00|00〉+
α01|01〉 + α10|10〉 + α11|11〉, such that |α00|2 + |α01|2 +
|α10|2 + |α11|2 = 1. If a simultaneous measurement is taken
on these two qubits, it will yield either 00 with probability
|α00|2, 01 with probability |α01|2, 10 with probability |α10|2,
or 11 with probability |α11|2. Now, consider a special class
of two-qubit states: the four orthogonal Bell states written
as |Φ±〉 = 1√

2
(|00〉 ± |11〉), and |Ψ±〉 = 1√

2
(|01〉 ± |10〉).

Two qubits jointly in a Bell state are considered an EPR pair
or Bell pair. Each Bell pair is a maximally entangled state
because it is the superposition of only two complementary
states out of the four basis states, and the two qubits are
perfectly correlated. Bell pairs form the basis of two-party
quantum communications: if Alice and Bob each holds one
qubit in a Bell pair, they can use it to exchange quantum
information by local operations and classical communication.
An entangled qubit pair is called an ebit.

B. Entanglement Generation and Swapping
Entanglements can be distributed over long distances via the
generation and swapping of entangled photons.

Entanglement generation is the process of generating an
entangled pair of photons that are separated by a physical
distance, and each photon in the pair is sent to one of two end
nodes through a quantum-capable channel, such as an optical
fiber. The most common entanglement generation operation
is spontaneous parametric down-conversion (SPDC), where a
pump laser is shot at a nonlinear crystal and probabilistically
generates entangled photon pairs at a high rate. However,
entangled photons will get lost during transmission because
of channel attenuation or other environmental factors, and the
success probability of entanglement generation will decrease
exponentially as distance increases [25]. For instance, with
a typical single-mode fiber loss of 0.2dB/km [23], a 10000-
pair-per-second entanglement source would only be able to
successfully distribute 1 pair per second on average over
200km of distance. We consider ebits generated and distributed
along a physical channel as elementary ebits.

(b) Entanglement

Swapping

(c) Entanglement

Established

(a) Entanglement

Generation

BSMAlice Bob

Chloe

classic

Alice Bob

Chloe

Alice Bob

Chloe

Alice Bob

Chloe

BSM ResultsBSM Results SwappingEntanglementEntanglement QubitQubit RepeaterRepeaterBSMBSMBSM Results SwappingEntanglement Qubit RepeaterBSM

Alice Bob

Chloe

Alice Bob

Chloe

Alice Bob

Chloe

Fig. 1: Entanglement Generation and Swapping

Entanglement swapping is a key process in quantum
repeaters to compensate for photon losses in long-distance
entanglement generation. In Fig. 1, assume Alice and Bob both
perform entanglement generation with Chloe, resulting in one
ebit between Alice and Chloe and another between Bob and
Chloe. In order to get an end-to-end ebit between Alice and
Bob, Chloe will first entangle the two local qubits, and then
perform a Bell State Measurement (BSM) to decide which of
the four Bell states her local qubits are in. She then sends the
result to either Alice or Bob, who applies a unitary operation to
the local qubit to turn Alice’s and Bob’s qubits into a Bell pair
without physical interaction. Note that because of BSM, this
process destroys the two qubits at Chloe regardless of whether
the swapping succeeds. If there are multiple repeaters between
Alice and Bob, this process can be repeated recursively until
an end-to-end ebit is formed. The established long-distance
end-to-end ebit can then be used for quantum communication
without involving any intermediate nodes.

C. Quantum Network Model
We consider a quantum network consisting of quantum re-
peaters interconnected by lossy links. The physical topology
is denoted by an undirected graph G = (V,E), where node
v ∈ V denotes a quantum repeater and link e ∈ E is a
physical link. For conciseness, we use m:n to interchangeably
denote an unordered node pair {m,n} for m,n ∈ V ; note
that m:n = n:m since they are unordered. Each node v ∈ V
is associated with swapping success probability qv ∈ (0, 1].
Each link e ∈ E consists of ce quantum channels where ce
is called its capacity, and success probability pe ∈ (0, 1] for
entanglement generation along each channel.

We consider a time-slotted quantum network with discrete
time T = {1, 2, 3, . . . } following existing work [31], [37].
Each time slot T ∈ T corresponds to the possible generation
and distribution of one ebit along a quantum channel, as well
as the completion of one round of swapping at all nodes. Each
time slot is divided into three phases described below:

1) For any edge m:n ∈ E, node m and node n attempt to
generate an ebit along each quantum channel with the
success probability of pmn;

2) For node pair m:n and intermediate node k where ebits
are available between both m:k and k:n, node k can
attempt to perform entanglement swapping with success
probability of qk to establish ebits between m and n by
using pairs of ebits between m:k and k:n.

3) For SD pair si:ti ∈ U , established ebits are distributed
to each commodity to be defined in §III-D for quantum
communications.

To optimize network performance, we assume a central
network controller oversees the entanglement establishment
process across the entire network. The controller communi-
cates with nodes via classical communication, collects infor-

mation from network nodes and SD pairs, and makes global
entanglement scheduling and routing decisions.

D. Commodities and Demands
Consider a set of SD pairs in a quantum network requesting
end-to-end ebits for communication. Following conventional
networking terminology, each request is a commodity, denoted
by zij ∈ Zi, where Zi is the set of all commodities belonging
to SD pair i. Each commodity is described by a tuple, zij =
(dij , a

i
j , δ

i
j), where dij denotes the number of requested end-

to-end ebits (the demand), aij denotes the arrival time, and δij
denotes the deadline for finishing the demand. If a commodity
does not have a deadline but wants to be completed as quickly
as possible, we define δij =∞. We assume commodities arrive
over time, and the network controller has no knowledge of
future commodities before they arrive.

Given the time-slotted model, the network state evolves
over time. For ease of description, let SτT denote the network
state after the Phase-τ at time slot T , for τ∈{0, 1, 2}; S0T
denotes the state at the beginning of time slot T . Each
SτT = (G,ZT ,Π

τ
T), where ZT =

⋃
i Z

i
T denotes the set of

commodities that are active at time T , i.e., they arrived on
or before time T with unfinished demands and unexpired
deadlines at time T ; Πτ

T :V × V→ Z∗ denotes the number of
ebits available between arbitrary node pair m:n after Phase-τ
at time slot T . We use Θi

j to denote the unfinished remaining
demand of zij ∈ ZiT at time T . The value of Πτ

T depends
on the ebits successfully generated after each Phase-1, the
ebits successfully swapped after each Phase-2, and the network
model (whether buffers exist; see §VII).

The goal of the network controller is to meet as many
deadlines of commodities as possible, and complete commodi-
ties without deadlines as fast as possible, by making real-time
decisions on: 1) how to generate ebits over physical links, 2)
how to swap ebits at intermediate repeaters, and 3) how to
distribute end-to-end ebits to commodities.

IV. MULTI-COMMODITY ENTANGLEMENT SCHEDULING
AND DISTRIBUTION: A GENERAL FRAMEWORK

Consider a commodity arrives with a demand and/or a dead-
line. The goal of entanglement scheduling and distribution is
to deliver as many end-to-end ebits as possible so that the
commodity can finish as quickly as possible and hopefully
within its deadline. However, as the overall network entangle-
ment generation rate is bounded by the capacities and further
discounted by probabilities of generation and swapping, the
primary challenge would be resource contention between
multiple commodities with different demands and deadlines.
In the worst case, a fair sharing network may simply lead
to all commodities missing deadlines, while some may have
succeeded if prioritization between commodities is applied.

We propose network-wide entanglement scheduling, com-
bined with entanglement distribution, to deal with network
resource contention. Below, we first motivate entanglement
scheduling via prioritization, and then define a general frame-
work for optimizing entanglement scheduling and distribution
with different scheduling (prioritization) disciplines.

A. A Motivating Example
As shown in Fig. 2, consider A, B and D all connected
to a quantum repeater C each with a capacity of 2, and
two commodities A-B and A-D arrive at the same time.
For simplicity, assume entanglement generation and swapping

A

CB D
2

2 2 A-D

A-B

6
time

1

2

ebits

0
(b) Fair Sharing (c) Scheduling(a) Network topology

6

1

2

0 3

A-DA-B

ebits

time

Physical link
Commodity

Fig. 2: Motivating example. (a) Network topology with two
commodities A-B and A-D and capacity of each link is 2; (b)
fair sharing; (c) scheduling with A-B prioritized over A-D.

are deterministic, i.e., all success probabilities are 1. Both
commodities have the same demands of 6 end-to-end ebits.
In a fair-sharing quantum network, entanglements generated
at link A-C are equally shared for swapping to generate A-B
and A-D ebits respectively, each at a rate of 1 ebit per time
slot. Both commodities finish in 6 time slots, with an average
completion time of 6. Now assume scheduling (prioritization)
is employed, where A-B is given priority over A-D. By utiliz-
ing all capacities on links A-C and B-C, commodity A-B can
finish within 3 time slots by generating 2 end-to-end ebits per
time slot, while commodity A-D’s completion time remains
the same. The average completion time is 3+6

2 = 4.5, yielding
a 25% improvement. If commodity A-B has a deadline of 4
time slots and commodity A-D has a deadline of 6 time slots,
only A-D can meet its deadline under fair-sharing, while both
commodities can meet their deadlines under prioritization,
yielding an 100% improvement of deadline satisfaction ratio.

The example shows the significance of scheduling in serv-
ing time-sensitive communication demands. Such demands
widely exist in near-term quantum applications, due to short
coherence time in quantum computers, fast changing object
environments in quantum sensing, bursty QKD demands, etc.
We also highlight that the same motivation has been observed
and utilized in classical communication such as data center
networks, where scheduling of traffic flows can significantly
reduce end-to-end latency and improve user experience [2],
[35]. The unique characteristics of quantum networking, how-
ever, have posed significant challenges in direct application of
classical flow scheduling disciplines to quantum networks.

B. Problem Statement
Considering the probabilistic nature of quantum operations, in
this subsection, we formally define the entanglement schedul-
ing and distribution (ESDI) problem.

Definition 1. Given a quantum network G and commodities
Z =

⋃
i Zi, a solution to the entanglement scheduling and

distribution (ESDI) problem consists of three algorithms,
(Agen,Aswap,Adis) to perform the following tasks respectively:
• Agen(S0T): In Phase-1 at time T , decide the number of

ebits to attempt along physical link e ∈ E;
• Aswap(S1T): In Phase-2 at time T , given the number of

ebits between node pairs m:k and k:n respectively, decide
how many ebit pairs are used to swap for node pair m:n,
for ∀m, k, n ∈ V ; and

• Adis(S2T): In Phase-3 at time T , given the number of ebits
between each SD pair s:t ∈ U , decide how many ebits
are distributed to each commodity zij ∈ Zi.

We note that the above defined problem incorporates
all existing entanglement routing or distribution methods as
solutions [9], [31], [36]–[38], thus enabling fair comparison
between existing and new solutions. Meanwhile, we emphasize

that each algorithm in {Agen,Aswap,Adis} can be either deter-
ministic or probabilistic. Despite this, the inputs to Aswap and
Adis are always probabilistic regardless of previous phases’
outputs, due to the probabilistic nature of the actual quantum
operations (generation and swapping) in the first and second
phases. This probabilistic nature makes the ESDI problem
intrinsically challenging.

C. Multi-Commodity Remote Entanglement Distribution
While existing work has tried to design specific algorithms
for specific objectives (such as maximizing total entanglement
distribution rate (EDR) or ensuring fairness), our first goal
is to design a general optimization framework for ESDI
that can incorporate flexible objectives and constraints. In
the following, we first extend the single-commodity Optimal
Remote Entanglement Distribution (ORED) formulation in [9]
to a multi-commodity formulation (MRED), serving as the
backbone of our optimization framework.

Define variables F = {fm:k
m:n ≥ 0 |m, k, n ∈ V }∪{gm:n ∈

[0, 1] | (m:n) ∈ E}. Here fm:k
m:n represents the number of ebits

between m:k that would be contributed to swapping with ebits
between k:n at node k; gm:n represents the number of ebits
that would be attempted to be generated along physical link
m:n ∈ E, divided by the link capacity cmn. Then, the MRED
formulation is defined as follows:

(MRED) find F (1)
s.t. fm:k

m:n = fk:nm:n, ∀k,m, n ∈ V ; (1a)
I(m:n) = Ω(m:n), ∀m,n ∈ V,m:n /∈ U ; (1b)
I(s:t) ≥ Ω(s:t), ∀s:t ∈ U. (1c)

Two auxiliary functions I(m:n) and Ω(m:n) are defined as:

I(m:n) , 1m:npmncmngm:n+
∑

k∈N\{m,n}

qk
2

(
fm:k
m:n+fk:nm:n

)
; (1d)

Ω(m:n) ,
∑

k∈N\{m,n}
(fm:n
m:k + fm:n

k:n) , (1e)

where 1m:n = 1 if m:n ∈ E and 0 otherwise. Here
I(m:n) denotes the input (established) ebits between m:n,
and Ω(m:n) denotes the output (consumed) m:n-ebits for
swapping to generate ebits between all other node pairs.
Explanation: Program (1) defines a feasibility problem: find-
ing appropriate variables {gm:n} (entanglement generation)
and {fm:k

m:n} (entanglement swapping), such that: 1) every
swapping between m:k and k:n at node k consumes an equal
number of m:k- and k:n-ebits as in Constraint (1a); 2) for non-
SD pairs, all acquired ebits will be used for further swapping
as in Constraint (1b); 3) for any SD pair s:t, the input ebits
should be no less than the output as in Constraint (1c), with the
difference corresponding to end-to-end ebits that are kept to be
used between s:t themselves. Taking a closer look at I(m:n),
it consists of both ebits generated directly along link m:n (the
first term), and ebits obtained by swapping at all intermediate
nodes k (the second term), both discounted by the correspond-
ing success probabilities pmn and qk respectively. The output
Ω(m:n) consists of all m:n-ebits contributed to swapping to
generate either m:k ebits with n as an intermediate node, or
k:n-ebits with m as an intermediate node.

The MRED formulation itself does not consider online
decision making as implicitly included in the ESDI problem
definition, since there is no input or decision variable with re-
spect to the time T (or any time-related input). It nevertheless
constitutes a major building block in our framework design due
to its ability to incorporate various optimization objectives and

constraints. For example, define ηst as the total entanglement
generation rate (EDR) of all commodities between SD pair
s:t ∈ U , and η ,

∑
s:t∈U ηst the total EDR of all SD pairs.

The following theorem generalizes Theorem 1 in [9] (with
proof omitted due to page limit) showing optimality of the
MRED formulation w.r.t. the total EDR of all commodities:

Theorem 1. The optimal total EDR η∗ is upper bounded by
maxF{

∑
s:t(I(s:t)−Ω(s:t)) | F is feasible to (1)}, and there

exists a stationary ESDI protocol with expected total EDR
equal to η∗.

D. A General Framework for ESDI
We design a general ESDI framework based on the MRED
formulation and the idea of prioritization as shown in Algo-
rithm 1. Based on the set of commodities and their remaining
demands, our framework adjusts the prioritization between SD
pairs, by dynamically adding or removing objective functions
and constraints to the MRED formulation in (1). It further bal-
ances between scheduling (prioritizing certain SD pairs) and
work conservation (maximizing network EDR). The solution
to the prioritized MRED is then executed by a probabilistic
protocol to implement the prioritization quickly.

Algorithm 1: ESDI General Framework
1 F ←⊥;
2 for all time slot T ∈ T do
3 if F =⊥ or priorities may change then
4 Adjust objectives and constraints in Program (1);
5 Solve adjusted (1) to update optimal F ;
6 Execute F ;

In general, the framework keeps track of the set of active
commodities and priorities among them. When initializing, or
when priorities among active commodities change, the back-
bone Program (1) will be adjusted with objective functions
and/or constraints reflecting the latest priorities. It then gets
solved to derive the optimal solution F , which will be executed
over time until priorities change again. The priority changes
are decided by a scheduling algorithm and could happen in
a number of cases such as changes in active commodities and
demands. The solution F is instead executed by a distribu-
tion protocol consisting of {Agen,Aswap,Adis} as defined in
Definition 1. In the following, we will focus on the design
of these elements, including two scheduling algorithms for
deadline-agnostic (§V) and deadline-aware (§VI) commodities
respectively, and a generic distribution protocol that can be
tailored to both types of commodities (§VII).

V. ESDI WITHOUT DEADLINE CONSTRAINTS
In this section, we consider ESDI for commodities without
deadlines. An example is QKD between end points [19], [24],
whose focus is to accumulate a sufficient number of classical
key bits obtained from entanglements as soon as possible. The
main goal of scheduling is to minimize the average completion
time of all commodities in a quantum network.

A. Motivation: Shortest Job First Scheduling
Shortest job first (SJF) and its variant, shortest remaining
time first (SRTF), are optimal scheduling policies for average
task completion time in classical real-time task scheduling.
SJF allocates the idle processing unit to the task with the
shortest completion time among the remaining tasks, while
SRTF allows a newly arriving task to preempt the currently

processing task. Due to their strong performance and simple
implementation, SJF and SRTF are widely used in network
traffic scheduling [3], [16]. Nevertheless, extending these
policies to ESDI is very challenging. First, scheduling over a
network of repeaters is more challenging than scheduling on
a single machine and is generally NP-hard [15]. In this case,
exclusively scheduling one commodity at a time is clearly
inefficient since the network may simultaneously support mul-
tiple commodities without resource contention. Second, the
probabilistic nature of quantum operations makes it impossible
to obtain the exact completion time of each commodity.

Our goal is to design an algorithm that simulates the
behavior of an SJF scheduler in the quantum network scenario,
while balancing between strict scheduling (one commodity at
a time) and work conservation (achieving high utilization of
network resources and throughput). The design of our algo-
rithm includes two components: 1) an MRED formulation with
strict priorities, and 2) an SJF-based prioritization algorithm.

B. MRED with Strict Priorities
Consider a priority list of SD pairs Ps given as input, which
consists of κ SD pairs sorted from high to low priority. Let
ηi = ηsiti be the expected EDR between SD pair si:ti ∈ Ps
with index i. The MRED with strict priorities (MRED-SP) is
formulated by enforcing strict priorities among commodities:

(MRED-SP) max η1, max η2, . . . , max ηκ,

max
∑

s:t∈U
ηst (2)

s.t. ηst = I(s:t)− Ω(s:t), ∀s:t ∈ U ; (2a)
Constraints (1a)–(1e).

Explanation: Program (2) is a multi-objective optimization
problem with up to κ + 1 objectives. The first κ objectives
enforce strict priorities among SD pairs, i.e., the program
will first optimize for η1, then optimize for η2 while keeping
optimality of η1, then optimize for η3 while keeping optimality
of both η1 and η2, so on and so forth. The last objective, which
optimizes for the total EDR of all SD pairs, is added to achieve
work conservation, i.e., utilizing the remaining resources un-
used by the κ prioritized SD pairs to maximize the overall
throughput of the network. With Constraint (2a) providing a
definition of each ηst, Program (2) is an optimization version
of Program (1) enforcing constraints (1a)–(1e).
Remark: We note that while the list Ps may also be defined
upon commodities instead of SD pairs, it is not meaningful in
the formulation. Consider two commodities belonging to the
same SD pair s:t. Incorporating both in the priority list results
in adding the objective ηst twice to Program (2), which has no
impact than just adding one for the higher-priority commodity,
but will increase solving time of the multi-objective program.

C. ESDI-O: SJF-based Priority Scheduling
The key in utilizing Program (2) for ESDI is to form
the priority list Ps of SD pairs. Following the intuition
of SJF, Ps should reflect how fast each SD pair will be
able to finish its commodity, i.e., the expected completion
time (ECT) of the commodity, with the lowest demand.
This is however challenging because of the difficulty in
modeling the exact probability distributions governing the
entanglement generation and swapping processes across the
network. Nevertheless, as our primary goal is to define pri-
orities instead of obtaining the accurate ECTs, we may use
an approximation—a lower bound of the ECT. Specifically,

consider a commodity zij ∈ Zi receives an expected EDR of
η, and define a random variable η(T) as the actual number
of ebits generated and distributed to zij in every time slot

T . We have ECT ij = E
[
min

{
T ′
∣∣∣∑T ′

T=1 η(T) ≥ dij
}]
≈

E
[
min

{
T ′ |E[η] · T ′ ≥ dij

}]
=E[dij/E[η]]. By Jensen’s in-

equality, we then have ECT ij ≥ dij/E[η].
To rank SD pairs by priorities, we use dij/E[η] as an

approximate ECT for each commodity. Here E[η] is computed
by running MRED with only one SD pair in the quantum
network, i.e., exclusively allocating all network resources to a
single SD pair. SD pairs are then ranked by the approximate
ECT of the commodity with the smallest demand for each pair.
After ranking, a multi-commodity (multi-objective) MRED-SP
formulation is solved to obtain the eventual ESDI solution.

Algorithm 2: ESDI-O for Commodities without Deadlines
Input: Network G = (V,E), commodities Z, SD

pairs U , scheduling length κ
1 F ← ∅, ZT ← ∅ for ∀T , ηst ←⊥ for ∀s:t ∈ U ;
2 for SD pair s:t ∈ U do
3 ηst ← maxF{ηst |Program (1)};
4 for T = 1, 2, . . . do
5 Add arriving commodities to ZT ;
6 if active commodity list ZT has changed then
7 Ps ← sort SD pairs by minj{dij}/ηsiti ;
8 Keep first κ SD pairs in Ps and drop the rest;
9 F ← solve Program (2) with Ps;

10 Execute F by calling (Agen,Aswap,Adis);
11 ZT+1 ← ZT \ {zij | dij is finished};
12 return when all commodities have finished.

Based on the above intuition, Algorithm 2 gives the
detailed online ESDI-O algorithm to minimize the average
completion time of all commodities. Line 1 initializes the
solution F , the active commodity list ZT and the expected
EDR ηst for every SD pair. In Line 3, the expected EDR
for each SD pair is computed offline, by assuming it is the
only SD pair in the network. In the online process, whenever
the active commodity list ZT changes with either commodity
arriving at time T or was completed after T − 1, the solution
F will be updated. First, in Line 7, SD pairs will be sorted by
lower bound of the ECT of each SD pair’s commodity with
the lowest demand, i.e., minj{dij}/ηsiti . The first κ SD pairs
are then entered into Program (2) in the priority list Ps, and
the solution F will be updated after solving Program (2) in
Line 9. Then, in every time slot, the up-to-date solution F
is executed, by calling (Agen,Aswap,Adis) which we detail in
§VII-B. Finally, completed commodities will be removed from
the active commodity list ZT+1 in Line 11.
Remark: In addition to following the general intuition of SJF
that we outlined before, Algorithm 2 also contains several
practical design elements to improve its performance in prac-
tice. First, the solution F is only updated when the commodity
list changes. Second, when scheduling with different sets
of commodities, we seek to preserve the relative priorities
between commodities, by sorting only based on the original de-
mand dij instead of the remaining demand of each commodity.
While these may seem counter-intuitive from the scheduling
perspective, we find that they actually help improve the per-
formance by achieving better work conservation. Specifically,
because the network generates ebits probabilistically between

each pair of swapping node pairs m:k and k:n, almost in
any time slot T there is one side with more generated ebits
than the other side, leading to intermediate ebits not being
utilized in time T . These intermediate ebits would be wasted
if the underlying swapping decisions have changed, wasting
resources and degrading throughput. By updating the solution
F only when active commodities change, and preserving
relative priorities among commodities, the algorithm can min-
imize the number of times that the underlying swapping
decisions change, hence reducing wastage and accelerating the
completion of commodities.

VI. ESDI WITH DEADLINE CONSTRAINTS
In this section, we consider ESDI for commodities with dead-
lines. In some quantum applications like DQC, decoherence
is a critical challenge, where the quantum information stored
in qubits gradually decoheres over time (even with quantum
error correction) [5]. It is thus crucial to finish transmitting
the information before irreversible errores happen.

A. Motivation: Earliest Deadline First Scheduling
When scheduling tasks with deadlines, Earliest Deadline First
(EDF) is a provably optimal preemptive scheduling policy
in classical real-time scheduling [16]. But similar to SJF, it
cannot be directly extended due to the quantum network char-
acteristics, more specifically, difficulty in accurately estimating
the ECT and the multi-resource contention among multiple
commodities. Further, the previous formulation in (2) is no
longer suitable because of deadlines, since it would prioritize
one commodity strictly over another, neglecting cases where
a set of deadlines may mostly or all be satisfied when the
commodities jointly share the network resources.

This section develops an EDF-inspired algorithm following
the same structure as in the last section, including: 1) an
MRED formulation enforcing deadline-aware priorities, and
2) an EDF-based prioritization algorithm.

B. MRED with Deadline Constraints
Here, instead of giving a list of SD pairs with strict priorities
among them, we are given a priority list of commodities Pc,
such that we seek to make sure all commodities in Pc can be
completed by their deadlines on expectation. Each commodity
zij ∈ Pc has a remaining demand Θi

j denoting the number
of end-to-end ebits yet to be distributed, and ∆i

j remaining
time slots until the deadline of the commodity. Let Uc be the
set of SD pairs that commodities in Pc belong to, and let
P ic ⊆ Pc be the set of commodities belonging to i ∈ Uc. The
commodities in each P ic are sorted in non-decreasing order of
their remaining time slots ∆i

j . We further facilitate notation
by defining P ic [l] as the first l commodities in list P ic .

Note that SD pairs in Uc are not prioritized over each
other, i.e., all SD pairs are treated the same; but priorities are
defined among commodities belonging to each SD pair in the
priority list P ic . Let ηsiti be the expected EDR between SD
pair si:ti ∈ U as previously defined. The MRED with deadline
constraints (MRED-DC) is formulated as followed:

(MRED-DC) max
∑

s:t∈U
ηst (3)

s.t.
ηsiti∆

i
j ≥

∑
zij∈P i

c [l]
Θi
j ,

∀si:ti ∈ Uc, l = 1, 2, . . . , |P ic |;
(3a)

Constraints (1a)–(1e) and (2a).

Explanation: Different from Program (2) in which the ob-
jectives enforce strict priorities, the objective function in
Program (3) is merely to achieve work conservation, i.e.,
maximizing overall network throughput. Instead, the prior-
itization is fully enforced through Constraint (3a), which
specifies requirements on the expected EDR of each SD pair
in the priority set Uc. Consider an SD pair i with only one
commodity zij ∈ P ic . Constraint (3a) basically specifies that
the expected number of ebits distributed within the remaining
time slots ∆i

j , must be able to satisfy all the remaining demand
Θi
j of the commodity, that is, ηsiti∆

i
j ≥ Θi

j .
The case gets trickier when an SD pair has multiple

commodities in P ic . In this case, having ηsiti∆
i
j ≥ Θi

j for
each individual zij ∈ P ic is no longer sufficient, since the dis-
tributed end-to-end ebits must be shared among commodities.
Nevertheless, a close inspection reveals that with respect to a
single SD pair, the contention among commodities precisely
replicates the classical single-machine task scheduling prob-
lem with deadlines, in which case EDF is proved to be optimal.

Indeed, Constraint (3a) fully simulates EDF with respect
to each SD pair, by always requiring the commodity with the
smallest remaining time slot ∆i

j to be completed first. The
first commodity zij1 ∈ P

i
c [1] thus satisfies the same condition

ηsiti∆
i
j1
≥ Θi

j1
. For the second commodity zij2 ∈ P ic [2] \

P ic [1], it can only start after zij1 has finished, and hence the
condition for it to finish becomes ηsiti∆

i
j2
≥ Θi

j1
+ Θi

j2
. The

third commodity similarly requires ηsiti∆
i
j3
≥ Θi

j1
+ Θi

j2
+

Θi
j3

, so on and so forth. Constraint (3a) gives the general form.
Remark: MRED-DC prioritizes commodities via constraints,
which is generally stronger than prioritization via objectives.
This is to enforce the deadline requirement of commodities.
Meanwhile, MRED-DC can be more work conserving than
MRED-SP, in the sense that each prioritized commodity or
SD pair does not try to take all the network resources, but
instead would only take what is needed to complete before the
deadline, leaving more room for network-wide throughput op-
timization. Note that despite MRED-DC requiring completion
on expectation, a prioritized commodity may not be able to
finish after all due to statistical inevitability. But we find such
cases relatively rare and do not impact MRED-DC’s practical
performance with the prioritization algorithm in §VI-C.

On the other hand, one implication of prioritization via
constraint is the possibility of an infeasible program, in which
it may not be possible for all input commodities to complete
on expectation (due to too short remaining deadlines or too
much contention). We address this by the following algorithm.

C. ESDI-E: EDF-based Priority Scheduling
The essence of utilizing Program (3) is to adjust the commod-
ity priority list based on the active commodities dynamically.
The priority list Pc should be able to reflect how many
time slots commodities have for completing their demands.
At time T , the remaining time slots for commodity zij is
∆i
j = δij − T + 1.

Algorithm 3 provides the detailed online ESDI-E algorithm
to maximize the number of commodities that could be finished
before their deadlines. Line 1 initializes the solution F , the
active commodity list ZT , and the expected EDR ηst for every
SD pair. For the online process, any commodity not finished
by its deadline will be dropped in Line 3. The solution F
and commodities in the priority list Pc will be updated once
new commodities arrive or commodities leave at time slot T ,

Algorithm 3: ESDI-E for Commodities with Deadlines
Input: Network G = (V,E), commodities Z, SD

pairs UT , scheduling length κ
1 F ← ∅, ZT ← ∅ for ∀T , ηst ←⊥ for ∀s:t ∈ U ;
2 for T = 1, 2, . . . do
3 ZT ← ZT \ {zij | δij < T};
4 Add arriving commodities to ZT ;
5 ∆i

j ← δij − T + 1 for ∀zij ∈ ZT ;
6 if active commodity list ZT has changed then
7 Pc ← ∅;
8 F ← solve Program (3) with Pc;
9 for zij ∈ ZT in increasing order of ∆i

j do
10 if |Pc| = κ then break;
11 Pc ← Pc ∪ {zij};
12 F ← solve Program (3) with Pc;
13 if F is infeasible then Pc ← Pc \ {zij};
14 Execute last feasible F via (Agen,Aswap,Adis);
15 Update remaining demands Θi

j for zij ∈ ZT ;
16 ZT+1 ← ZT \ {zij | dij is finished};
17 return when all commodities have finished.

starting from Line 6. Active commodities will be sorted by
the remaining deadlines ∆i

j to ensure commodities with more
urgent deadlines could be served as soon as possible in Line 9.

The priority list Pc is built incrementally via sequentially
solving Program (3), with the goal of forming a maximally
feasible priority list with up to κ prioritized commodities.
In each iteration at Line 9, one commodity is added to Pc,
and Program (3) is solved to decide if all commodities in
Pc can finish by their deadlines on expectation. If adding a
commodity makes Program (3) infeasible, it will be dropped
from Pc. The eventual solution F at time T is the last feasible
solution of Program (3). The rest for executing the solution
F and updating the active commodity list are the same as in
Algorithm 2.
Remark: For the same reason in ESDI-O (minimizing wasted
intermediate ebits), ESDI-E also updates the solution only
when the commodity list changes. Sorting commodities by
remaining deadlines naturally preserves the relative priorities
among commodities, similar to using the original demands for
sorting in ESDI-O. Meanwhile, ESDI-E may be significantly
slower than ESDI-O with a large κ, due to the need of
repeatedly solving Program (3) in each update iteration to
ensure feasibility. For this reason, κ should be kept as a
small value, which additional benefits work conservation for
maximizing network throughput.

VII. ESDI: ENTANGLEMENT DISTRIBUTION DESIGN
With the solution F output by either ESDI-O or ESDI-E, we
next design algorithms {Agen,Aswap,Adis} to implement the
solution, targeting at a buffered quantum network scenario.

A. Buffered Quantum Network
In existing work on entanglement routing or distribution, it is
commonly assumed that quantum memories are unavailable or
have extremely short coherence time [31], [36]–[38]. Hence
ebits generated for swapping must be either consumed or dis-
carded in one time slot. This severely limits the entanglement
generation rate of the quantum network. Nevertheless, recent
advances in quantum memories have demonstrated relatively
long storage times of coherent qubits from seconds [11]
to over 1 hour [20]. This has motivated recent designs of

Alice Bob

Chloe

EntanglementEntanglementRepeaterRepeater QubitQubit Entangled qubitEntangled qubit BufferBufferEntanglementRepeater Qubit Entangled qubit BufferEntanglementRepeater Qubit Entangled qubit Buffer

Alice Bob

Chloe

Alice Bob

ChloeEntanglement

Swapping

Entanglement

Swapping

Fig. 3: Buffered quantum network. Different colors of buffers
and entanglements represent half part of an ebit being stored at
the corresponding repeater’s buffer and entanglement between
the corresponding repeaters, respectively.

buffered quantum networks, where intermediate repeaters can
store ebits for an extended period before entanglement swap-
ping [8], [9], [14]. Below, we first describe a general model
for a buffered quantum network and then present protocols
implementing our optimized entanglement scheduling and
distribution solutions.

As is shown in Fig. 3, We consider establishing ebits
between one SD pair Alice and Bob, with the help of repeater
Chloe. Assume after the entanglement generation, there are
one entanglement between Alice and Chloe and two entangle-
ments between Chloe and Bob. Each ebit would be stored
in buffers at both ends, respectively. Now Chloe performs
entanglement swapping for one ebit pair from each buffer.
If swapping succeeds, an ebit is generated between Alice and
Bob while the two qubits in Chloe’s buffer are both consumed.
After getting the swapping result, Alice would move her local
qubit from her buffer with Chloe to her buffer with Bob, and
Bob would move his local qubit from his buffer with Chloe to
his buffer with Alice, which can be done by simply relabeling
these qubits. The remaining unused ebits between Chloe and
Bob would be stored in Chloe’s and Bob’s buffers to wait for
another Alice-Chloe pair for swapping.

B. Entanglement Distribution Design
Given a solution F output by a central quantum network con-
troller, we design a multi-commodity extension of the protocol
in [8] to achieve the expected entanglement distribution rate.

For the generation process (Agen), each link m:n will
continuously attempt to generate elementary ebits at rate
cmn · gm:n. For any node pair m:n, we consider set Mm:n to
store established ebits between node m and node n, and set
Dm:n
m:k to store m:n-ebits that will be used to swap into m:k-

ebits. For an SD pair s:t ∈ U , an additional set Rs:t is kept
to store all end-to-end ebits distributed between source s and
destination t. All sets are physically implemented by quantum
buffers with classical labels at both m and n, with Mm:n

denoting the input buffer of the node pair, Dm:n
m:k denoting the

output buffer for “next-hop” node pair m:k, and Rm:n denot-
ing the receiving buffer for storing “completed” end-to-end
ebits to be utilized by upper-layer quantum communication
protocols or applications.

The swapping process (Aswap) is a probabilistic process
with two steps: 1) moving generated/established ebits from
the input buffer to output buffers probabilistically (switching),
and 2) swapping when corresponding buffers are non-empty
(swapping). Whenever an ebit is added to Mm:n, the two
endpoints will implement opportunistic switching, by jointly
tossing a random coin and moving the ebit from Mm:n to

Dm:n
m:k or Rm:n with the following probabilities:

Pr[move to Dm:n
m:k] =

fm:n
m:k∑

k′ f
m:n
m:k′ + ηmn

,

Pr[move to Rm:n] =
ηmn∑

k′ f
m:n
m:k′ + ηmn

.

where ηmn = 0 for a non-SD pair m:n /∈ U . Finally, each
node k will check if for any m:n, there exists

1) fm:k
m:n = fk:nm:n > 0;

2) Dm:k
m:n 6= ∅, and Dk:nm:n 6= ∅.

For each such case, node k performs swapping between each
pair of ebits in Dm:k

m:n and Dk:nm:n respectively. Upon success,
the ebit will then be added toMm:n by m and n. Compared to
the single-commodity protocol in [8], the additional receiving
buffer Rs:t is required for implementing MRED, since each
SD pair may also be assigned to contribute established ebits
for other SD pairs, instead of keeping all ebits to their own
use. All the above can be parallel and asynchronous.

Once end-to-end ebits are established and stored in Rs:t,
it further needs to be distributed to commodities of the same
SD pair. This distribution process (Adis) can be deterministic.
Following our design principles in §V and §VI, we apply the
following policies:

1) For commodities without deadlines, the commodity with
the least remaining demand will be served first, followed
by the second, so on and so forth.

2) For commodities with deadlines, the commodity with the
earliest deadline would be served, followed by the second,
so on and so forth.

Both are due to that commodity scheduling for single SD pair
reduces to (deterministic) single-machine classical scheduling,
where SJF and EDF are optimal in corresponding scenarios.

VIII. PERFORMANCE EVALUATION
A. Evaluation Methodology
To evaluate our solution, we developed a discrete-time quan-
tum network simulator. We used random Waxman graphs [33]
with model parameters α = β = 0.8. The success probability
of entanglement generation and swapping were 0.9. Each link
had a capacity uniformly sampled from [3, 10]. We generated
graphs with 20 nodes and picked 1000 SD pairs randomly.

Our simulator was based on a time-slotted model to be
compatible with existing algorithms. We implemented our
ESDI protocol and two state-of-the-arts. Linear programs were
solved using the Gurobi solver [1].

The following algorithms were compared:
• ESDI-B: basic ESDI without scheduling as in (1);
• ESDI-O: ESDI without deadlines in Algorithm 2;
• ESDI-E: ESDI with deadlines in Algorithm 3;
• E2E-F: fidelity-aware protocol in [38] maximizing end-

to-end EDR. We set fidelity as 1 since it is not considered.
• QPASS: QPASS protocol in [31] trying to maximize end-

to-end EDR for multiple SD pairs.
Commodities arrived following a Poisson distribution with

arrival rate λ = 1 by default. Demands of each commodity
followed an exponential distribution with mean of 600 ebits,
and a minimum demand of 100 ebits per commodity. For
a commodity with a deadline, we considered the difference
between its deadline and arrival time to be a random function
with expectation proportional to its demand. Define µ = 0.4. A
unit deadline δ̄ij was drawn from a uniform distribution in the
range [µ−0.1, µ+0.1] for each commodity, and the deadline of

1 2 3 4 5
Arrival rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s r

at
io

ESDI-E
EDSI-B
E2E-F
QPASS

(a) Impact of the arrival rate

200 400 600 800 1000
Demand

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s r

at
io

ESDI-E
EDSI-B
E2E-F
QPASS

(b) Impact of the demand

10 15 20 25 30
Graph Size

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
io

ESDI-E
EDSI-B
E2E-F
QPASS

(c) Impact of the graph size

Fig. 4: Success ratio between ESDI and state-of-the-art algorithms

1 2 3 4 5
Arrival rate

400
600
800

1000
1200
1400
1600

Av
er

ag
e

co
m

pl
et

io
n

tim
e

ESDI-O
EDSI-B

E2E-F
QPASS

(a) Impact of the arrival rate

200 400 600 800 1000
Demand

0
250
500
750

1000
1250
1500
1750

Av
er

ag
e

co
m

pl
et

io
n

tim
e ESDI-O

EDSI-B
E2E-F
QPASS

(b) Impact of the demand

10 15 20 25 30
Graph size

0
2000
4000
6000
8000

10000

Av
er

ag
e

co
m

pl
et

io
n

tim
e ESDI-O

EDSI-B
E2E-F
QPASS

(c) Impact of the graph size

Fig. 5: Average completion time between ESDI and state-of-the-art algorithms

0.2 0.4 0.6 0.8 1.0
Deadline factor

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s r

at
io

1 5 10 15 20
Length of priority list

0.45
0.50
0.55
0.60
0.65
0.70
0.75

(a) Impact of deadlines (b) Impact of the priority list

ESDI-E EDSI-B E2E-F QPASS

Fig. 6: Impact of deadlines and the length of priority list

the commodity with demand dij was set as δij = aij+δ̄
i
j ·dij . We

set the default scheduling length κ = 1. Both QPASS and E2E-
F use Yen’s algorithm where we set the number of paths to 15.
Since they are entanglement routing algorithms for bufferless
quantum networks, we simulated their bufferless behavior by
dropping all ebits after one time slot. Each simulation was run
with 5 seeds to reduce random noise.

The following metrics were used for evaluation. Success
ratio measures the ratio of the number of commodities finished
before their deadlines. Average completion time measures the
average time between each commodity’s arrival and comple-
tion when there is no deadline.

B. Evaluation Results
1) Success ratio for commodities with deadline: Fig. 4

shows the success ratio of ESDI-E and other algorithms with
varying parameters, while all commodities have deadlines. The
success ratio decreased with increasing arrival rate in Fig. 4(a)
and increasing per-commodity demand in Fig. 4(b) due to
more severe resource contention, and increased with increasing
graph size in Fig. 4(c) due to more abundant resources in the
network. From all figures, ESDI-E and ESDI-B achieved the
highest success ratio compared to other algorithms, and ESDI-
E further improved success ratio by up to 55% over ESDI-B.
This leads to two critical observations: 1) MRED with optimal
EDR in a buffered quantum network can significantly improve
network-wide throughput over existing heuristic-based buffer-
less algorithms, and 2) scheduling via prioritization (ESDI-E)

can additionally finish more commodities before deadlines.
2) Average completion time for commodities without dead-

line: Fig. 5 shows the average completion time for ESDI-O
and other algorithms with varying parameters. With higher
arrival rate in Figs. 5(a) or higher demand in Fig. 5(b), the
average completion time of all algorithms increased, again
due to more severe contention of resources. Larger graph size
decreased average completion time in Fig. 5(c) by alleviating
the contention. The key observation across figures is again
that ESDI-O and ESDI-B outperformed the other algorithms
by 1) maximizing network-wide throughput with MRED in
ESDI-B, and 2) scheduling via prioritization in ESDI-O.

3) Impact of deadlines: Fig. 6(a) shows the success ratio
for ESDI-E and other algorithms with varying deadline factors.
For each deadline factor value (such as 0.8), we multiplied
the deadline of every commodity with the factor. From the
figure, we observe increasing success ratios with increasing
deadline factors, due to more commodities being able to finish
before their deadlines. The advantage of ESDI-E (and ESDI-B
compared to other heuristics) was consistent across different
deadlines, showing the constant advantage of our algorithms.

4) Impact of scheduling length κ: Fig. 6(b) shows the
success ratio for ESDI-E and other algorithms with varying
lengths of the priority list for scheduling. Because there was no
priority list in ESDI-B, E2E-F, and QPASS, their success ratios
kept the same. For ESDI-E, we observed a trade-off between
scheduling and work conservation, the two primary goals we
defined in §IV-D. Specifically, increasing the scheduling length
κ from the minimum value 1 to an intermediate value 10
slightly increased the success ratio of ESDI-E, while further
increasing κ led to decrease in the success ratio. The initial
increase was due to our algorithm being able to prioritize
commodities without significant impact on the throughput of
other commodities in the network. As prioritization increased
further, throughput started to degrade since some prioritized
commodities (those with earlier deadlines) might span across
longer paths, thus having lower end-to-end EDR than other
commodities with later deadlines but shorter paths. In practice,
the exact optimal length κ depends on the network topology

and the set of commodities, and finding this optimal schedul-
ing length is an important future work. Fortunately, as we can
observe, even setting κ = 1 (scheduling only one commodity
at a time) still led to a substantial advantage over any non-
scheduling baseline, thus motivating us to set κ = 1 as the
default value for evaluation.

IX. CONCLUSIONS
In this paper, we designed a general optimization framework
ESDI for entanglement scheduling and distribution in a gen-
eral quantum network. Motivated by scenarios where different
quantum communication applications have different demands
and time requirements (such as deadlines), we first developed
a multi-commodity entanglement distribution formulation, and
then designed two scheduling and distribution algorithms
based on the idea of scheduling via prioritization. We further
designed a practical probabilistic protocol to implement the
optimized ESDI decisions in a buffered quantum network.
We developed a discrete-time quantum network simulator for
evaluation. Extensive simulation results showed our solutions
could significantly reduce the average completion time of
quantum communication demands and increase the success
ratio of commodities when compared to existing entanglement
routing and distribution algorithms.

REFERENCES
[1] “Gurobi Optimizer,” accessed 2022-07-25. URL: http://www.gurobi.

com/products/gurobi-optimizer
[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
ACM SIGCOMM, 2010, pp. 63–74.

[3] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in USENIX
NSDI, 2015, pp. 455–468.

[4] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theoretical Computer Science, vol. 560,
pp. 7–11, 2014.

[5] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherar-
dini, and G. Bianchi, “Quantum Internet: Networking challenges in
distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp.
137–143, 2019.

[6] C. Cicconetti, M. Conti, and A. Passarella, “Resource allocation in
quantum networks for distributed quantum computing,” arXiv preprint
arXiv:2203.05844, 2022.

[7] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek,
M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho
et al., “A link layer protocol for quantum networks,” in ACM SIG-
COMM, 2019, pp. 159–173.

[8] W. Dai, T. Peng, and M. Z. Win, “Optimal protocols for remote
entanglement distribution,” in IEEE ICNC, 2020, pp. 1014–1019.

[9] ——, “Optimal remote entanglement distribution,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 3, pp. 540–556, 2020.

[10] ——, “Quantum queuing delay,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 3, pp. 605–618, 2020.

[11] Y. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of
a minute,” Physical Review A, vol. 87, no. 3, p. 031801, 2013.

[12] C. Elliott, “Building the quantum network,” New Journal of Physics,
vol. 4, no. 1, p. 46, 2002.

[13] A. Farahbakhsh and C. Feng, “Opportunistic routing in quantum
networks,” in IEEE INFOCOM, 2022.

[14] H. Gu, Z. Li, R. Yu, X. Wang, F. Zhou, and J. Liu, “Fendi: High-fidelity
entanglement distribution in the quantum internet,” arXiv preprint
arXiv:2301.08269, 2023.

[15] K. Han, Z. Hu, J. Luo, and L. Xiang, “Rush: Routing and scheduling for
hybrid data center networks,” in IEEE INFOCOM, 2015, pp. 415–423.

[16] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in ACM SIGCOMM, 2012.

[17] M. Koashi and N. Imoto, “No-cloning theorem of entangled states,”
Physical Review Letters, vol. 81, no. 19, p. 4264, 1998.

[18] C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for
remote entanglement generation on quantum networks,” npj Quantum
Information, vol. 7, no. 1, p. 10, 2021.

[19] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin,
Q. Shen, Y. Cao, Z.-P. Li et al., “Satellite-to-ground quantum key
distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017.

[20] Y. Ma, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, “One-hour
coherent optical storage in an atomic frequency comb memory,” Nature
Communications, vol. 12, no. 1, pp. 1–6, 2021.

[21] S. P. Neumann, A. Buchner, L. Bulla, M. Bohmann, and R. Ursin,
“Continuous entanglement distribution over a transnational 248 km
fiber link,” Nature Communications, vol. 13, no. 1, p. 6134, 2022.

[22] N. K. Panigrahy, T. Vasantam, D. Towsley, and L. Tassiulas, “On the
capacity region of a quantum switch with entanglement purification,”
in IEEE INFOCOM, 2023.

[23] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu,
D. Englund, and S. Guha, “Routing entanglement in the quantum
internet,” npj Quantum Information, vol. 5, no. 1, pp. 1–9, 2019.

[24] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner,
T. Debuisschert, E. Diamanti, M. Dianati, J. Dynes et al., “The secoqc
quantum key distribution network in vienna,” New Journal of Physics,
vol. 11, no. 7, p. 075001, 2009.

[25] S. Pirandola, R. Garcı́a-Patrón, S. L. Braunstein, and S. Lloyd, “Direct
and reverse secret-key capacities of a quantum channel,” Physical
Review Letters, vol. 102, no. 5, p. 050503, 2009.

[26] S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quantum overlay
network for efficient entanglement distribution,” in IEEE INFOCOM,
2023.

[27] S. I. Salim, A. Quaium, S. Chellappan, and A. B. M. A. Al Islam, “En-
hancing fidelity of quantum cryptography using maximally entangled
qubits,” in IEEE GLOBECOM, 2020, pp. 1–6.

[28] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka,
S. Miki, T. Yamashita, Z. Wang, A. Tanaka et al., “Field test of quantum
key distribution in the Tokyo QKD Network,” Optics Express, vol. 19,
no. 11, pp. 10 387–10 409, 2011.

[29] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner, “Short-
cuts to quantum network routing,” arXiv preprint arXiv:1610.05238,
2016.

[30] D. Shah and J. Shin, “Randomized scheduling algorithm for queueing
networks,” The Annals of Applied Probability, vol. 22, no. 1, pp. 128–
171, 2012.

[31] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in ACM SIGCOMM, 2020, pp. 62–75.

[32] A. Singh, K. Dev, H. Siljak, H. D. Joshi, and M. Magarini, “Quan-
tum internet—applications, functionalities, enabling technologies, chal-
lenges, and research directions,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2218–2247, 2021.

[33] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[34] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-
Y. Liu, B. Li, H. Dai et al., “Satellite-based entanglement distribution
over 1200 kilometers,” Science, vol. 356, no. 6343, pp. 1140–1144,
2017.

[35] R. Yu, G. Xue, X. Zhang, and J. Tang, “Non-preemptive coflow
scheduling and routing,” in IEEE GLOBECOM, 2016, pp. 1–6.

[36] Y. Zeng, J. Zhang, J. Liu, Z. Liu, and Y. Yang, “Multi-entanglement
routing design over quantum networks,” in IEEE INFOCOM, 2022.

[37] Y. Zhao and C. Qiao, “Redundant entanglement provisioning and
selection for throughput maximization in quantum networks,” in IEEE
INFOCOM, 2021, pp. 1–10.

[38] Y. Zhao, G. Zhao, and C. Qiao, “E2E fidelity aware routing and
purification for throughput maximization in quantum networks,” in
IEEE INFOCOM, 2022.

http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer

