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Abstract—Quantum key distribution is an effective encryp-
tion technique which can be used to perform secure quantum
communication between satellite and ground stations. Quantum
cryptography enhances security in various networks such as
optical fibers and wireless networks. In addition to this, these
networks become vulnerable in presence of high attenuation
due to atmospheric effects and noise. Hence, errors occur due
to decoherence. The noisy quantum channel is modeled and
implemented by the redundancy-free quantum error correction
scheme which provides better security and throughput efficiency
as shown in simulation results.

Index Terms—Quantum Error Correction (QEC); Quantum
Key Distribution (QKD); Quantum Throughput Efficiency;
Redundancy-Free Quantum Error Correction Scheme.

I. INTRODUCTION

IN quantum-based satellite networks, one of the central
demands for free-space quantum communication is the

ability of successful transmission of qubits under noisy
environments [1]–[8]. There are a number of specific
techniques which have been used in space applications, for
example, frequency hopping spread spectrum, game theory
and routing methods for different spread spectrum approaches
[9]–[11].

Quantum key distribution (QKD) protocols are deployed
for satellite communications, but their performance is affected
due to environmental noise, adversary attacks, atmospheric
turbulence, and telescope dimensions [4], [8]. To improve the
performance of QKD-based satellite communication under
such situations, efficient quantum error correction methods
are implemented [12], [13].

A quantum cryptography protocol was proposed in
[14], which takes into account on individual information
carriers and provides a successful secure key generation.
Quantum low-density parity check (LDPC) codes were
introduced for addressing the balance between quantum
LDPC code performance and entanglement consumption [15].
In addition to this, various classical error correction schemes
were proposed in [6], namely Winnow protocol, LDPC
protocol, and Cascade protocol. In these protocols numerous
performance comparison parameters such as throughput
efficiency, computational, communication complexity, and run
time was evaluated [6]. Further, to enhance the security and

quantum throughput efficiency, a scheme of pilot quantum
error correction was proposed in [7], which was developed
specially for quantum based satellite communication where
errors introduced due to polarization mismatch.

In this paper, we discuss error correction schemes and their
probabilities, their performance comparison, specially for
the quantum-based satellite communication, including laser
repetition rate as a performance index with overall quantum
channel estimation. In quantum networks while operating
under free space we need to overcome the problems related
to laser-beam widening, photon losses due to atmospheric
interactions, dark-count rates, background noise, various
day-night lightning conditions, and imperfections in photo-
detectors. Hence, to improve the performance and security
of quantum key distribution based satellite networks under
such conditions, proper modeling of quantum channel is
required. We then apply an effective quantum error correction
technique to improve the quantum throughput efficiency. At
the end, we observe from our results that pilot based-quantum
error correction scheme performs much better than other
already existing error correction methods.

The organization of the paper is as follows. Quantum
key distribution based satellite communication and associate
problems in performing under non-ideal (noise/attacks) cases
are described in section II. Modeling of quantum channel used
to perform QKD-based satellite communication networks is
elaborated in section III. In addition to this, pilot quantum
error correction scheme varying from single qubit to multi-
qubit methods are introduced in section IV. The results and
conclusions are discussed in sections V, and VI, respectively.

II. QUANTUM KEY DISTRIBUTION (QKD) FOR SATELLITE
NETWORKS

In classical communication, bit 0 and 1 is the basic unit
to represent information. In quantum communication photons
and electrons are the fundamental unit to express information
carriers which is known as qubits. In mathematical notation
these qubits are written in the form of Dirac notation, |0〉, and
|1〉, which corresponds to classical bits 0 and 1, respectively.
There are infinitely many quantum state representations in
between |0〉 and |1〉, also these quantum states are in the
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superposition of both |0〉 and |1〉 at a time. In classical world,
there is no such analogy. In present context, the laser emitted
photon’s polarization is represented by these quantum states,
|0〉 and |1〉, which can be understood as 0 and 1, respectively
for classical information. Qubit representation follows

|ψ〉 = α|0〉+ β|1〉. (1)

In the above quantum state representation α, and β are
the complex coefficients and the associate probabilities of
outcomes |0〉 and |1〉 are |α|2, and |β|2, respectively. Also,
|α|2 + |β|2 = 1.

Quantum key distribution (QKD) shares a secure encryption
key between legitimate users (Alice and Bob) [16]. Security
of this encrypted key is based on the laws of quantum
mechanics. Any eavesdropping attempt is detected by the
measurement property of quantum mechanics [12].

A description of quantum key distribution [17] with two
channels, quantum and classical are shown in Fig. 1. Initially,
random bits (known as raw key) are generated by Alice. Next,
Alice chooses random bases corresponding to each bit, |H〉,
|V 〉, |π4 〉, and | 3π4 〉, known as conjugate bases. The encoding
can be performed by encoding 0 for |V 〉, and 1 for |H〉.
In quantum-based satellite networks, after qubit generation,
Alice transmits these qubits to Bob via free space as a
quantum channel. At receiver side, Bob performs quantum
measurements by choosing random conjugate bases. Here
the success probability is 1

2 , because the measurement bases
are randomly chosen. After measurement, Bob announces his
measurement bases to Alice via a classical channel. Finally a
sifted key is generated which corresponds to the same basis
used to encrypt and decrypt the random data. This sifted key is
the same sequence of bits for both the sender and receiver [18].

Quantum-based satellite communications in free-space
is a challenging problem. It faces many problems such
as turbulence generated losses, geometrical losses due to
telescope dimensions, losses due to detector dark count
rate, inefficient quantum devices responsible for information
leakage, and disturbances due to eavesdropper attempts
[18]–[20].

Entangled-based quantum communication is an effective
and faithful approach which provides better security as
compared to faint pulse quantum key distribution technology
[21]. Once a proper entanglement distribution is achieved
among various desired nodes, a global quantum network
is established [22]. In addition to this, as shown in Fig. 1,
we need to apply an effective error correction technique to
correct the errors obtained from the quantum channel, and
finally privacy amplification is applied to get the final secure
keys. In general, privacy amplification methods are performed
to eliminate eavesdropper generated disturbances [19].

III. BASIC OPERATIONS FOR QUANTUM-BASED
SATELLITE COMMUNICATIONS

Here, we will concentrate on quantum error correction
methods to eliminate the effects considered earlier. It is
essential to improve the quantum throughput efficiency for
better performance in real field applications. It can be achieved
by applying an effective quantum error correction technique.
We can model the non-ideal quantum channel by Uθ. The
error introduced in the channel due to noisy environment can
be written as an angle θ ∈ [0, 2π), which could, for example,
mode the angular motion of the satellite.

|θ〉 = cos
θ

2
|0〉+ isin

θ

2
|1〉, (2)

Uθ = e
i θ2

[
1 0
0 −1

]
∆
= cos

θ

2
I + i sin

θ

2

[
1 0
0 −1

]
, (3)

Uθ = cos
θ

2
I + isin

θ

2
Z, (4)

where I and Z are identity and Pauli operators, respectively.

|d〉 = Uθ|ψ〉 = α|0〉+ β|1〉, (5)

where |ψ〉 is the quantum state sent by Alice to Bob, this
|ψ〉 is converted to a damaged quantum state |d〉, by applying
Uθ transformation. Hence the damaged quantum state (|d〉)
received by Bob is not same as input quantum state |ψ〉.
This change occurs due to noisy quantum channel. At this
stage it is necessary to apply an effective quantum error
correction scheme which is known as pilot based quantum
error correction scheme.

IV. QUANTUM ERROR CORRECTION TECHNIQUE FOR
QUANTUM-BASED SATELLITE COMMUNICATION

Here we follow the redundancy-free error correction scheme
[23], [24]. We represent the size of pilot and data qubits by
r and n, respectively, as shown in Fig. 2. The input pilot and
data qubits are Ip and Id, respectively. Also, the output pilot
and data qubits are Op and Od, respectively.

Fig. 1. Quantum communication procedure. Here C, D and M represents en-
coding, decoding and measurement operations, respectively. C/Q represents
classical to quantum conversion.

In quantum-based satellite communication we assume that
Uθ is constant for a time interval T. Hence, considering its
effect, we receive the output pilot qubit state as

Op = UθIpU
†
θ = Tr|θ〉〈θ|, (6)
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Fig. 2. Quantum error correction scheme.
,

|θ〉〈θ| = (cos
θ

2
|0〉+ isin

θ

2
|1〉)(cosθ

2
〈0|+ isin

θ

2
〈1|). (7)

We consider the redundancy-free model [23], [24] in the
quantum-based satellite communication to correct the trans-
mitted qubits and obtain the improved keys, as shown in Fig.
1.

|d〉 ⊗ |θ〉 = 1√
2
[U†θ |d〉 ⊗ |0〉+ Uθ|d〉 ⊗ |1〉]. (8)

In the above equation, |d〉 is the damaged qubit (known as
control qubit as shown in Fig. 3), and |θ〉 is the error-correction
rotation state (known as a target qubit as shown in Fig. 3). In
addition to this, ⊗ is known as Kronecker product or tensor
product. From Eqs. 5 and 8, Bob corrects the error

U†θ |d〉 = U†Uθ|ψ〉 = |ψ〉, (9)

Uθ|d〉 = UθUθ|ψ〉 6= |ψ〉. (10)

Fig. 3. Quantum error correction circuit. Here H, X, M represent Hadamard
gate, Pauli X gate, and measurement operator, respectively.

As shown in Fig. 3, Bob applies his measurement strategies
on lower wire to get the qubit state |0〉 or |1〉. From Eq. 8,
the correct key can be seen to be obtained with the probability
half. This therefore implies that for the efficacy of the scheme
multiple qubit should be used.

Now, assuming that Bob uses an ξ-length qubit string for
correcting |d〉,

|θ〉m = ⊗ξi=1 |2
i−1θ〉, (11)

pe = (1/2)ξ. (12)

pe denotes the failure probability of Bob’s error correction.
Bob considers |d〉 as the control qubit, and ⊗ξi=1 |2i−1θ〉 as
the target qubit. Thus Bob obtains the updated keys as

|d〉 ⊗ |θ〉m = |d〉 ⊗ξi=1 |2
i−1θ〉 (13)

=
1√
2ξ

(
√
2ξ − 1U

(2ξ−1)†
θ |d〉 ⊗ |correct〉

+Uθ|d〉 ⊗ |error〉).

For achieving an improved quantum security and efficiency,
we can use multiple data and multiple pilot qubit strings.
Let n and ξ represent size of the data and pilot qubits,
respectively. Let the received damaged multiple qubits by Bob
are |d1〉⊗|d2〉⊗|d3〉⊗|d4〉...⊗|dn〉. Hence, Bob takes multiple
pilot qubits |θ〉 ⊗ |2θ〉 ⊗ |3θ〉 ⊗ |4θ〉.... ⊗ |2ξ−1θ〉 to correct
the multiple information carriers being communicated between
earth-space stations.

|d〉n ⊗ |θ〉m =
1√
2ξ

(
√

2ξ − 1U
(2ξ−1)†
θ |d〉n ⊗ |correct〉 (14)

+Uθ|d〉n ⊗ |error〉),

|d〉n =

2n−1∑
k=0

Dk|k〉, (15)

where Dk is the independent complex coefficient which
satisfies |D0|2 + |D1|2 +−−−+ |D2n−1|2 = 1.

In detail,

|d〉n ⊗ |θ〉m =
1√
2ξ

(
√

2ξ − 1U
(2ξ−1)†
θ

2n−1∑
k=0

Dk|k〉 ⊗ |correct〉 (16)

+Uθ

2n−1∑
k=0

Dk|k〉 ⊗ |error〉)

=

2n−1∑
k=0

Dk
1√
2ξ

(
√
2ξ − 1U

(2ξ−1)†
θ |k〉 ⊗ |correct〉

+Uθ|k〉 ⊗ |error〉).

ps = 1 − ( 1
2 )
ξ represents success error correction probability

which does not depend on the length of the data qubit string.
From Eq. 12, we can say that in both the cases (single
and multiple qubit data and pilot based schemes), the error
correction probability is the same, as shown in Eq. 12.

From Fig. 4, it is clear that the success probability of the
pilot error-correction increases with the increased number of
pilot states. Following Fig. 3 and Eq. 11, the ξ length pilot
qubit strings can be generated from r pilot states |θ〉:

⊗ξi=1|2
i−1θ〉 = |θ〉 ⊗ ......⊗ |2ξ−1θ〉

r = 2ξ−2(ξ−1)+2ξ−3(ξ−2)+......+22.3+21.2+20.1+1+ξ−1

.
The required number of pilot states and their success proba-
bility is shown in Table I.
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TABLE I
REQUIRED NUMBER OF PILOT QUBITS AND

SUCCESS PROBABILITY FOR QUANTUM ERROR CORRECTION

Length of the Number of Success probability

pilot qubit (ξ) pilot qubits (r) (ps = 1− ( 1
2
)ξ)

ξ =2 r =3 p = 0.75

ξ =3 r =8 p = 0.875

ξ =4 r =21 p = 0.9375

ξ =5 r =54 p = 0.96875

ξ =6 r =135 p = 0.984375

TABLE II
CALCULATED ERROR CORRECTION DATA

FOR MEO (MEDIUM-EARTH ORBIT SATELLITE)

Laser Raw qubits Maximal Corrected qubits D
repetition rate Transmittable qubits with ps = 0.96875

10 GHZ 5.109 25.104 N = 249946 0.021 %
5 GHZ 2.5.109 12.5.104 N = 124946 0.04 %
1 GHZ 5.108 25.103 N = 29946 0.21 %

500 MHZ 2.5.108 12.5.103 N = 12446 0.43 %
100 MHZ 5.107 25.102 N = 2446 2.16 %

V. QUANTUM-BASED SATELLITE COMMUNICATION:
PERFORMANCE ANALYSIS

Here we obtain secret key transmission, assuming a Low
Earth Orbit (LEO) satellite-ground quantum communication.
Assuming the free space channel is constant during time
interval T = 0.5s, we use a laser with a repetition rate
f = 100MHz [20], [25]–[30]. The raw key qubits produced
are given as

Rr = f × T = 0.5× 108 = 5× 107qubits/s. (17)

We use an attenuation δ = 5 × 10−5, produced by telescope
size and detector dark count rate. The size of the data and the
pilot qubits are (n + ξ). Secure keys transmitted during T are

Rt = Rr × δ = 2500 qubits/s. (18)

Efficiency of the quantum error correction scheme depends
on the time T, for which the quantum channel is considered
in a stationary state. The satellite or orbit speed decides the
changes in angle θ. Variation in time T depends on satellite
orbit system (varies with low and high orbit systems) [31]. In
case of Geostationary Earth Orbit (GEO), slow variation in
rotation angle takes place, hence the quantum channel sustains
the stationary state for longer duration T, as compared to
other low orbit satellite systems such as LEO (Low Earth
Orbit) and MEO (Medium Earth Orbit) [32]. In addition
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Fig. 4. Performance comparison between error correction probability and
length of the pilot qubit.
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Fig. 5. Quantum throughput efficiency comparison between classical cascade
QEC (lower blue line) and pilot-based QEC (upper three lines) for N = 2500,
where ξ = 10, 20 and 30 are the length of the pilot qubits.

to this, performance varies with low to high orbit systems,
variations in rotation angle and time parameter T.

Quantum error correction data calculated for MEO satellite
is shown in Table II. The calculation parameters for MEO
satellite are as follows T = 0.5 sec., attenuation (δ) = 5×10−5.
Raw or generated qubits and total transmitted qubits (N =
n+ r) during time interval T are calculated as in the case of
LEO satellite. One more performance parameter is redundancy
(D) which is calculated as

D =
r

r + n
=

r

N
,

where value of r can be selected as per decoding success
probability. The values shown in Table II can be used for
real field applications such as quantum-based MEO satellite
communication.

Quantum throughput efficiency η is

η = 1−

[
1

1−p × ξ
N

]
, (19)
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where the probability corresponding to quantum channel rota-
tion is p, length of the pilot-qubit in quantum error correction
is ξ and length of the total transmitted qubits using quantum
channel is N . Fig. 5 shows that the pilot-based quantum
error correction in quantum-based satellite communications
outperforms the Cascade quantum error correction scheme (see
lower blue line) in terms of quantum throughput efficiency,
because the pilot-based quantum error correction can obtain a
high error correction probability (Fig. 4) with a small fraction
of pilot qubit in total transmitted qubits.

VI. CONCLUSIONS

We use an effective pilot-based quantum error correction to
remove the effects produced by the noisy quantum channel
in quantum-based satellite networks. The simulation results
show that the pilot-based quantum error correction scheme
in quantum key distribution satellite networks outperforms the
classical Cascade quantum error correction scheme in terms of
quantum throughput efficiency, which makes quantum-based
satellite communication feasible.
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