

Chen, Z.-G., Zhan, Z.-H., Li, H.-H., Du, K.-J., Zhong, J.-H., Foo, Y. W., Li, Y.,
and Zhang, J. (2015) Deadline Constrained Cloud Computing Resources
Scheduling through an Ant Colony System Approach. In: ICCCRI 2015:
International Conference on Cloud Computing Research and Innovation, Singapore,
26-27 Oct 2015, pp. 112-119. (doi:10.1109/ICCCRI.2015.14).

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/120426/

Deposited on: 24 June 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Deadline Constrained Cloud Computing
Resources Scheduling Through An Ant Colony

System Approach
Zong-Gan Chen1, Zhi-Hui Zhan1* (Corresponding Author), Hai-Hao Li1, Ke-Jing Du2, Jing-Hui Zhong3, Yong Wee Foo4,5,

Yun Li5, Jun Zhang1
1Department of Computer Science, Sun Yat-sen University, Guangzhou, P. R. China, 510275

1Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, P.R. China
1Engineering Research Center of Supercomputing Engineering Software, Ministry of Education, P.R. China

2School of Computer Science and Engineering, South China University of Technology, Guangzhou, P. R. China, 510006
3School of Computer Engineering, Nanyang Technological University, Singapore

4School of Engineering, Nanyang Polytechnic, Singapore
5School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.

*zhanzhh@mail.sysu.edu.cn

Abstract—Cloud computing resources scheduling is essential
for executing workflows in the cloud platform because it relates
to both the execution time and execution costs. In solving the
problem of optimizing the execution costs while meeting deadline
constraints, we developed an efficient approach based on ant
colony system (ACS). For scheduling T tasks on R resources, an
ant in ACS represents a solution with T dimensions, with each
dimension being a task and the value of each dimension being an
integer ranges in [1, R] to indicate scheduling the task on which
resource. With such solution encoding, the ant in ACS constructs
a solution in T steps, with each step optimally selecting one
resource from the R resources, according to both the pheromone
and heuristic information. Therefore, the solution encoding is
very simple and straight to reflect the mapping relation of tasks
and resources. Moreover, the solution construct process is very
natural to find optimal solution based on the encoding scheme.
We have conducted extensive experiments based on workflows
with various scales and various cloud resources. We compare the
results with those of particle swarm optimization (PSO) and
dynamic objective genetic algorithm (DOGA) approaches. The
experimental results show that ACS is able to find better
solutions with a lower cost than both PSO and DOGA do on
various scheduling scales and deadline conditions.

Keywords— cloud computing, resource scheduling, deadline
constrained, task scheduling, ant colony system

I. INTRODUCTION
Cloud computing has developed rapidly in recent years.

According to the NIST’s definition, cloud computing is “a
model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort or the interaction of service providers”[1].

Therefore, cloud computing has lots of computing resources,
e.g., virtual machine (VM), that users can lease these resources
following their demand to execute the workflow [2][3][4].

Now in the era of “Big Data”, the workflows frequently
contain large scale of data that may need a large number of
computing servers with cloud computing being considered as
the best way to deal with such workflows. As is mentioned that
the scale of data is large, so how to schedule those tasks to the
proper resources is an important problem because good method
can generate a scheduling scheme with high efficiency while
keeping the cost low. As the workflow scheduling is a complex
NP-hard problem, intelligent computing algorithm is a great
approach to solving it. Many scientists have done some
research on it. For example, the works by Chen and Zhang [5],
Malawski et al. [6], Mao and Humphrey [7], and Rahman et al.
[8] proposed evolutionary computation based algorithms to
solve the resource scheduling problem. However, many of
these researches do not consider the elasticity and
heterogeneity of the resource in cloud computing. In addition,
execution time is always considered as the only optimization
objective neglecting the schedule cost. But in fact, the schedule
cost should also be taken in to consideration because
investment is an important factor in the business that cannot be
ignored.

In 2014, a deadline based resource provisioning and
scheduling algorithm was proposed by Rodriguez and Buyya
[9]. The model attempts to find the solution that can meet the
deadline constraint and at an optimal cost. It struck a balance
between the cost and time to obtain maximum profit. Although
the PSO approach they proposed has some promising results,
there are still rooms for enhancement. The PSO approach
makes use of the resource index to encode the resource.
However, the index is just a symbol which does not represent
any character of the resource, which leads to the flight of the
PSO with certain blindness. Moreover, the PSO approach does
not perform well in the situation of tight deadline for large
scale workflow. Later, Li et al. [10] proposed to use renumber
strategy to enhance the PSO and also extended the scheduling
to multiobjective optimization [11].

This work was partially supported by the National Natural Science
Foundations of China (NSFC) with No. 61402545, the Natural Science
Foundations of Guangdong Province for Distinguished Young Scholars with
No. 2014A030306038, the Project for Pearl River New Star in Science and
Technology with No. 201506010047, the NSFC Key Program with No.
61332002, the NSFC for Distinguished Young Scholars with No. 61125205,
the Fundamental Research Funds for the Central Universities (15lgzd08), and
the National High-Technology Research and Development Program (863
Program) of China No.2013AA01A212.

In Proc IEEE International Conference on Cloud Computing Research and Innovation, Singapore 26-27 Oct 2015, pp. 112-119

DOI 10.1109/CCCRI.2015.14

1

In 2015, Chen et al. [12] proposed a dynamic objective
genetic algorithm (DOGA) approach to solve the deadline
based cloud resource scheduling model. In DOGA, the
encoding problem of PSO has been solved. Moreover, DOGA
uses dynamic objective strategy which focuses on execution
time first, that is, to find the feasible solution to meet the
deadline constraint, and subsequently focus on the execution
cost after the feasible solution is found. Therefore, DOGA can
find better results than PSO does. Nevertheless, DOGA still
cannot obtain solution with execution cost small enough and
fails to meet very tight deadline constraint. Moreover, the
mutation and crossover are quite inefficiency because they are
highly dependent on randomness.

In this paper, we proposed an ant colony system (ACS)
based approach to solve the deadline based cloud resource
scheduling model. In ACS, heuristic information is used to
guide the search. In this paper, we make use of information
such as the price of resource, the size of tasks and the topology
structure of tasks. With heuristic information, the algorithm can
give a good guidance during the construction of the solution.
Compared to the random initialization of PSO and DOGA, our
ACS approach can find a better solution even in the first
generation with the guidance of heuristic value.

For solving the problem of scheduling T tasks on R
resources, an ant in ACS represents a solution with T
dimensions, with each dimension being a task and the value of
each dimension being an integer ranges in [1, R] to indicate
scheduling the task on which resource. With such solution
encoding, the ant in ACS constructs a solution in T steps, with
each step optimally selecting one resource from the R resources,
according to both the pheromone and heuristic information.
Therefore, the solution encoding is very simple and straight to
reflect the mapping relation of tasks and resources. Moreover,
the solution construct process is very natural to find optimal
solution based on the encoding scheme.

The rest of this paper is organized as follows. Section II
presents some background introductions of the deadline based
model [9] and fitness evaluation. Section III presents the ACS
approach. Section IV presents the experimental results. Finally,
Section V presents the conclusion.

II. BACKGROUND

A. The Workflow Scheduling Model
Fig. 1 is an example of a workflow model. The tasks of the

workflow have the topology structure, for example, t2 cannot
be executed until t1’s execution is finished. Moreover, a
parent’s task needs to transfer data to its child tasks when they
are executed in different resources. We represent the time to
transfer data in the link between parent task and child task.

Fig. 1. A simple workflow model

Two objectives ‘total execution time’ (TET) and ‘total
execution cost’ (TEC) are defined in Eqs. (1) and Eqs. (2).

max{ | }
it iTET ET t T= ⊂ (1)

| |

1
(())

j j j

R

r r r
j

TEC C LET LST
=

= × −∑ (2)

where
it

ET represents the ‘end time’ that the task ti ends its
execution.

jrC represents the cost to lease the resource rj for a
unit of time.

jrLST represents the ‘lease start time’ of rj while

jrLET represents the ‘lease end time’ of rj. TET is calculated
by the end time of the task which ends its execution lastly.
TEC is calculated by the sum of the cost to lease every
resource while the cost to lease every resource is calculated by
multiplying the cost of the resource by its lease time.

The model’s goal is to minimize the cost and to meet the
deadline constraint. The formulation of the optimization
objective is shown in Eqs. (3) and Eqs. (4).

 Minimize TEC (3)
TET deadline< (4)

B. Scheduling Scheme
In ACS, the encode scheme of an ant uses the index of the

task and resource to encode the solution. Every dimension
represents the corresponding task and its value represents the
resource it runs on. A simple example of encoding with 7
tasks and 3 resources is shown in Fig. 2.

Fig. 2. An example of ACS encoding for workflow shceduling

C. Fitness Evaluation
As we use Eqs. (3) and Eqs. (4) to evaluate an ant’s fitness,

a function should be declared to obtain TEC and TET. Before
we declare the function, we first define some data needed for
the function. We define the array exetime to represent the
execution time, for example, exetime[i][j] represents the time
needed for task ti to run on the resource rj. We also define the
array transfertime to represent the time needed for the parent
task to transfer data to its child, for example, transfertime[i][j]
represents the time needed for task ti to transfer data to task tj..
Fig. 3 shows example of transfertime and exetime arrays,
generated based on Fig. 1 and Fig. 2.

Since all the relevant variables are identified, we can
obtain the workflow scheduling. Fig. 4 shows the workflow
scheduling generated from Fig. 2 and Fig. 3.

2

1

2

3

4

5

6

7

0 2 3 0 0 0 0
0 0 0 2 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 1 0
0 0 0 0 0 0 2
0 0 0 0 0 0 1
0 0 0 0 0 0 0

t
t
t

transfertime t
t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3

4

5

6

7

1 6 4
4 5 6
3 6 8
2 2 3
3 1 4
3 2 6
5 6 8

t
t
t

exetime t
t
t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1t 2t 3t 4t 5t 6t 1r 2r 3r7t

Fig. 3. An example of transfertime and exetime in a worlflow

Fig. 4. Example of workflow scheduling.

[]r
t

ant i
i

PT exe transfer= +

[] ant ir R∉

[]r tpos i i
LST ST=

[]{ }ant iR R r= ∪

[]r tpos i i
LET ET=

| |

1

C *()i r ri i

R

i

TEC LET LST
=

= −∑
{ }max : Tt ii

TET ET t= ⊂

[]
max(max{ : parents()},)

i p ant it t p i rST ET t t LET= ∈

[| |]ant T

∅

[][[]]exe exetime i ant i=

[]
=

i ant it rST LET

[][]transfer transfertime i c+ =

[]r
t t t

ant i
i i i

ET PT ST= +

Fig. 5. The pseudo-code to calculate TEC and TET

The pseudo-code to calculate TEC and TET is shown in
Fig. 5, which is also found in our previous paper [12]. The
first step is to initialize TET, TEC, and R. R, which is
initialized as ∅ , represents the set of resource that the
workflow leases during the execution. Next, every coordinate i
is iterate through. For task ti, the resource is obtained from
executing the array ant[i]. For ti’s start time

it
ST , the value is

determined by the following criteria, that is, if ti has no parent,

it
ST is equal to

[]ant irLET . And if ti has parent tp, ti’s
it

ST is equal

to the time after tp end its execution. ti’s processing time
it

PT is
equal to execution time exe plus the time that ti use to transfer
data to its child, named transfer. The end time of ti,

it
ET , is

calculated by
it

ST plus
it

PT . If rant [i] isn’t in the set of R,
which means rant [i] hasn’t been leased, the lease start time of
rant [i] []ant irLST , is equal to

it
ST while the lease end time

[]ant irLET is the end time of ti. Finally, TEC and TET can be
obtained through Eqs. (1) and (2).

III. ACS APPROACH

A. Solution Encoding
ACS was proposed by Dorigo and Gambardella in 1997,

inspired by the foraging behavior of ants [13]. The ACS
algorithm is designed to solve discrete combinational
optimization problem (COP), e.g., the traveling salesman
problem (TSP). In this paper, we find that the cloud resource
scheduling problem for workflow execution is a kind of COP
that is much suitable solved by ACS. Comparing to the process
of using ACS for TSP, every task selects its execution resource
similar to that every city select its path to the next city. As
shown in Fig. 6, an ant represents a solution, denoting which
resource is executed on for each task. In our proposed ACS
approach, it has similar algorithmic structure to traditional ACS
for TSP that our ACS selects the optimal resource for each task
step by step.

According to the illustration of Fig. 6, ACS uses integer to
encode the solution. As shown in Fig. 2, the coordinate i’s
value represents the resource that ti runs on. For example,
dimi=j represents that ti runs on the resource rj. Therefore, in
Fig. 6, task t1 is scheduled on r2, tasks t2 and t3 are scheduled
on r1, task t4 is scheduled on r3, task t5 is scheduled on rm,
while task tn is scheduled on r2.

Fig. 6. Illustration of a solution of an ant in search.

3

B. Initialization of Pheromone
In traditional ACS for TSP, the calculation of 0τ , which is

the initial value of pheromone, is 0 1/ ()DDD Cτ = × , where D
is the number of city and CDD is the route generated by greedy
algorithm. In our cloud computing scheduling model, we set
the number of task, which is |T|, as D. We first use greedy
algorithm to obtain a solution []gS i by Eq. (5). Then we
calculate the TEC of []gS i and use it as CDD. As a result, 0τ is
calculated by Eq. (6).

()()
| | 1

0

[] , []
T

g
i

S i arg min exetime i j C j
−

=

= ×∑ (5)

0 1/ (| |)Sg
T TECτ = × (6)

The 0τ is the initial value of all the pheromone (,)i jτ that
deployed on every (task, resource) pair.

C. Construction of Solution
After initializing all the pheromone (,)i jτ with the value

of 0τ , ACS goes to the solution construction process for all
the ants.

In this process, ants will construct their solutions in
parallel, which means all the ants will select resource for t0, in
the first step, then all the ants go to the second step to select
resource for t1, and so on, until the |T|th step for all the ants
selecting resource for t|T|-1.

In each step, every ant will select resource for the
corresponding task in two ways, exploitation and exploration,
which is shown in Eq. (7). For ti, we will first generate a
random number [0,1]q∈ , if 0q q≤ , the ant will do exploitation,
that is, the ant will greedily select the high pheromone value
and heuristic value. Otherwise, the ant will select the resource
by roulette wheel selection. The formulation of roulette wheel
selection is shown in Eq. (8), where (,)p i j represents the
probability for ti to select rj.

() () 0

0

 { , , }

ti
arg max i j i j q qr
Roulette Wheel Selection q q

β
τ η⎧⎪ × ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ⎨

>⎪⎩
 (7)

()
() ()

() ()| | 1

0

, ,
,

, ,R

j

i j i j
p i j

i j i j

β

β

τ η

τ η
−

=

×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

 (8)

Herein, the (,)i jτ is the pheromone value between the task
ti and the resource rj. The (,)i jη is the heuristic information
value between the task ti and the resource rj that indicating the
desirable of scheduling the task ti on the resource rj. In order
to obtain the heuristic information value, we consider the cost
for execute time. The cost for execute time of scheduling the
task ti on the resource rj is calculated as:

_ [][] []exe cost exetime i j C j×= (9)

Therefore, the (,)i jη is calculated as:

1[][]
_

i j
exe cost

η = (10)

D. Pheromone Updating Rules
1) Global Updating Rule
After every generation, we will change the pheromone

value of the globally best solution. The formulation is shown in
Eq. (11), where ρ is the evaporation rate and (,)b i jτΔ is
calculated by Eq. (12).

() () (), 1 , (,), (,)b besti j i j i j i j Sτ ρ τ ρ τ= − × + ×Δ ∀ ∈ (11)

(), 1 /b besti j TECτΔ = (12)

2) Local Updating Rule
During the construction of the solution, the pheromone

value changes as volatilization occurs due to both the new
pheromone amount deposited by ants on the route and to
pheromone evaporation. For example, an ant choses rj for ti, the
route (i,j)’s pheromone value will volatilized. The formulation
is shown in Eq. (13), where ξ is volatilization rate.

() () () 0, 1 ,i j i jτ ξ τ ξ τ= − × + × (13)

E. Flowchart of the ACS
To facilitate software programing of our algorithm, if the

solution’s TET is larger than the deadline, we define the TEC
as 1,000,000, a figure that far exceeds the feasible solution’s
TEC. We identify that the algorithm cannot find a solution if a
feasible solution is not found within 10000 generations.

The whole flowchart of using ACS to optimally schedule
the cloud tasks on cloud resources is shown in Fig. 7.

Fig. 7. Flowchart of ACS

4

IV. EXPERIMENTS AND COMPARISONS

In our experiment, for every type of resource rj, we define
its processing capability (capj) as Random(1,10) and its cost
per unit time as Normal(capj,0.1). Where Normal(a, b)
represents the random value generated by the normal (Gaussian)
distribution with mean a and standard deviation b. For every
task ti, we define its size ti_ as Random(10,30) while its exetime
on rj is defined as Normal(ti_size/cap,0.1). We calculate
transfertime[i][child(i)] by Eq. (14) while during our
experiment, bandwidth is 20.

[][()]
(0.) _ /1,1 i

transfertime i child i
Rand t size bandw tom id h= ×

 (14)

Fig. 8. Algorithm for generating a topological structure

In cloud computing, the tasks are assumed to have a
complex topological structure. We design an algorithm shown
in Fig. 8 to generate the topological structure of the tasks where
the tasks can be executed successively. For such task ti, its
child tasks’ index is greater than i. We set a parameter Pchild to
be the probability that a task tk to be the child of ti. Pchild
increases with the incensement of i, in order to generate a
balance structure. Fig. 8 is similar to the one in [12] except the
difference in the probability settings of Pchild.

We use 3 different scales of workflow to do our experiment
— small, medium and large. Small workflow has 50 tasks.
Medium workflow has 100 tasks. Large workflow has 200
tasks. The type of resource is set to be 6, the same as in [9].

In PSO approach, according to [9], c1=c2=2.0, ω=0.5, and
the population is 100. While in DOGA approach, we follow the
proposals in [12] as Pc=0.8 and Pm =0.002 when setting TET as
optimization objective and Pc =0.15 and Pm =0.008 when
setting TEC as optimization objective. The population is also
set as 100.

In ACS approach, the parameters are shown in Table I.

Table I Parameter values of ACS
Population 10 ρ 0.1

α 1 ξ 0.1
β 5 0q 0.9

A. Comparison with Same Evolutionary Generation
The three algorithms may require many generations to find

a feasible solution, named FGEN. If FGEN >10000, we regard
that the algorithm cannot find a solution. Otherwise, we let the
algorithm to run 2000 more generations after finding a feasible
solution to search for the best solution with smallest TEC. We

ran the 3 algorithms under different deadline constraints and
compared the results of TEC. We have also plotted the
convergence curves of the TEC metric along the 2000
generations for all the three algorithms (see Fig. 9 to Fig. 14).
The X-axis means generation, named GEN and the Y-axis
means TEC. To reduce the randomness effect, we executed the
three algorithms 30 times on each instance and use the average
result for comparisons. S_DEV represents the standard
deviation of the 30 independent tests. The comparison of 3
algorithms in 3 different scales of workflow is shown
subsequently via a table and two figures. The better results in
the tables are marked with boldface.

1) Small Scale of Workflow
The results of small scale of workflow are shown in Table

II, Fig. 9 and Fig. 10. In the table we can see that in small scale
of workflow, ACS perform well in generating a better solution
with a smaller TEC and meeting a tight deadline constraint. But
DOGA shows better stability with smaller standard deviation.
While in the figures, we can see that the convergence speed of
ACS is the fastest to obtain smaller TEC value.
Table II the Comparison of Small Scale of Workflow with the Same

Evolutionary Generation
Deadline PSO DOGA ACS

150 TEC 1723.16 1524.56 1288.4
S_DEV 36.26 23.4 126.14

120 TEC 1733.65 1538.10 1336.65
S_DEV 23.69 19.75 65.00

0 500 1000 1500 2000
1200

1500

1800

2100

2400

2700

3000

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 9. The result on small scale of data, deadline=150

0 500 1000 1500 2000
1200

1500

1800

2100

2400

2700

3000

3300

3600

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 10. The result on small scale of workflow, deadline=120

5

2) Medium Scale of Workflow
The results of medium scale of workflow are shown in

Table III, Fig. 11, and Fig. 12. In the table we can see that the
gap between ACS and other two algorithms is bigger and ACS
has greater stability than the other two algorithms. From the
figures, we can conclude that ACS also has the fastest
convergence speed to reach a feasible solution quicker.

Table III The Comparision of Medium Scale of Workflow
with The Same Evolutionary Generations

Deadline PSO DOGA ACS

700 TEC 5128.70 3702.41 3289.45
S_DEV 561.71 119.79 87.93

600 TEC 5184.48 3762.09 3351.18
S_DEV 387.53 85.44 59.61

0 500 1000 1500 2000
2000

4000

6000

8000

10000

12000

14000

16000

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 11. The result on medium scale of workflow, deadline=700

0 500 1000 1500 2000
3000

4500

6000

7500

9000

10500

12000

13500

15000

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 12. The result on medium scale of workflow, deadline=600

3) Large Scale of Workflow
The results of large scale of workflow are shown in Table

IV, Fig. 13, and Fig. 14. With the growing scale of workflow,
ACS shows greater ability in solving the problem. In the table
and figures, in terms of stability, TEC solution and
convergence speed, ACS is better than the other two algorithms.

Table IV The Comparision of Large Scale of Workflow
with The Same Evolutionary Generations

Deadline PSO DOGA ACS

1200 TEC 24043.5 15396.68 14384.8
S_DEV 4544.3 1478.1 549.47

1000 TEC 28468.8 15961.69 14498.5
S_DEV 6567.5 1029.5 527.07

0 500 1000 1500 2000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 13. The result on large scale of workflow, deadline=1200

0 500 1000 1500 2000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TE
C

GEN

 PSO
 DOGA
 ACS

Fig. 14. The result on large scale of workflow, deadline=1000

B. Comparison with Same Execution Time
As the population of ACS is far smaller than that of PSO

and DOGA, ACS may have better execution time efficiency.
But the operation of ACS in every generation has higher
complexity than other two algorithms. In order to show the
efficiency of ACS more directly, we set the same executing
time as 60 seconds to do the experiments.

 Similarly, we performed 30 independent experiments for
every algorithm. We again compare the results for TEC and S_
DEV of the 3 algorithms under different deadline constraints
and plotted the convergence curves on the TEC metric along
the 60 seconds of three algorithms. The X-axis means
executing time, named Time and the Y-axis means TEC.

1) Small Scale of Workflow
The results of small scale of workflow are shown in Table

V, Fig.15, and Fig.16. As the scale of workflow is small, all 3
algorithms have good convergence speed. However, ACS
generated a solution with smaller TEC. With the guidance of
heuristic value, ACS can find a better solution in the first
generation.

Table V Comparision of Small Scale of Workflow
with the Same Execution Time

Deadline PSO DOGA ACS

150 TEC 1662.27 1429.55 1261.55
S_DEV 30.55 24.00 136.61

120 TEC 1647.73 1404.43 1337.51
S_DEV 31.95 10.24 79.53

6

0 10 20 30 40 50 60
1200

1500

1800

2100

2400

2700

3000
TE

C

Time

 PSO
 DOGA
 ACS

Fig. 15. The result on small scale of workflow, deadline=150 with the same
execution time

0 10 20 30 40 50 60
1200

1500

1800

2100

2400

2700

3000

TE
C

Time

 PSO
 DOGA
 ACS

Fig. 16. The result on small scale of workflow, deadline=150 with the same
execution time

2) Medium Scale of Workflow
The results of medium scale of workflow are shown in

Table VI, Fig.17, and Fig.18. ACS is also able to generate a
solution with the smallest TEC.

Table VI The Comparision of Medium Scale of Workflow
with the Same Execution Time

Deadline PSO DOGA ACS

150 TEC 4794.67 3448.55 3282.95
S_DEV 301.58 103.81 146.20

120 TEC 4829.50 3498.95 3315.83
S_DEV 358.43 90.24 89.87

0 10 20 30 40 50 60
3000

6000

9000

12000

15000

TE
C

Time

 PSO
 DOGA
 ACS

Fig. 17. The result on medium scale of workflow, deadline=700 with the
same execution time

0 10 20 30 40 50 60

4000

6000

8000

10000

12000

14000

16000

TE
C

Time

 PSO
 DOGA
 ACS

Fig. 18. The result on medium scale of workflow, deadline=600 with the
same execution time

3) Large Scale of Workflow
The results of large scale of workflow are shown in Table

VII, Fig. 19, and Fig.20. In this case, ACS performed better
both in terms of stability and the time taken to find a feasible
solution.

Table VII Comparision of Large Scale of Workflow
with the Same Execution Time

Deadline PSO DOGA ACS

150 TEC 24134.82 16803.40 14850.3
S_DEV 5931.42 1119.96 656.65

120 TEC 28035.01 16224.48 15102.00
S_DEV 4780.08 1279.56 798.85

0 10 20 30 40 50 60
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TE
C

Time

 PSO
 DOGA
 ACS

Fig. 19. The result on large scale of workflow, deadline=1200 with the
same execution time

0 10 20 30 40 50 60
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TE
C

Time

 PSO
 DOGA
 ACS

Fig. 20. The result on large scale of workflow, deadline=1200 with the
same execution time

7

C. Analysis of the Result
1) Convergence

In the case of small scale of workflow, the convergence
speed of the three algorithms is nearly the same. But with the
increasing scale of workflow, ACS has better convergence
speed than PSO and DOGA. This is helped by the heuristic
value of ACS to finding a good solution in the first generation.

2) TEC
In the 3 different scales of data, ACS can generate a better

solution with smaller TEC value than PSO and DOGA do. The
performance of ACS increases considerably with the increasing
scale of workflow when compared with the other two
algorithms.

3) Efficiency
In the 3 different scales of workflow, from the Fig. 9~Fig.

20, we can conclude that in most of the cases, ACS can find a
solution with smaller TEC within the first few evolutionary
generations and seconds.

V. CONCLUSION
In this paper, we have developed an ant colony system

based approach to the resource scheduling problem of cloud
computing under a cost-minimization and deadline-constrained
model. The model has unrestricted availability and can meet
the needs of business organizations. Deficiencies of this model
encountered by PSO [9] and DOGA [12] approaches have been
improved. The experiments under various scheduling scales
and deadline constraints show that the ACS is able to find a
better solution with a smaller TEC than PSO and DOGA do.

Future work will be concerned with enhancing the stability
of the ACS, while the use of other evolutionary computation
algorithms such as differential evolution [14][15], artificial bee
colony [16], enhanced PSOs [17][18], and brain storm
optimization [19] will be investigated. Moreover, dynamic and
multi-objective characteristics will be studied using relevant
algorithms [20][21].

REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”

Communications of the ACM, vol.53, no.6, pp. 50-50, Jun. 2011.
[2] Z. H. Zhan, X. F. Liu, Y. J. Gong, J. Zhang, H. S. H. Chung, and Y. Li,

“Cloud computing resource scheduling and a survey of its
evolutionary approaches,” ACM Computing Surveys, vol. 47, no. 4,
Article 63, pp. 1-33, Jul. 2015.

[3] Z. H. Zhan, G. Y. Zhang, Y. Lin, Y. J. Gong, and J. Zhang, “Load
balance aware genetic algorithm for task scheduling in cloud
computing,” in Proc. Simulated Evolution And Learning, 2014, pp.
644-655.

[4] X. F. Liu, Z. H. Zhan, K. J. Du, and W. N. Chen, “Energy aware
virtual machine placement scheduling in cloud computing based on
ant colony optimization approach,” in Proc. Genetic Evol. Comput.
Conf., 2014, pp. 41-47.

[5] W. N. Chen and J. Zhang, “An ant colony optimization approach to a
grid workflow scheduling problem with various QoS requirements,”
IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev., vol. 39, no. 1,
pp. 29–43, Jan. 2009.

[6] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensembles
in IaaS clouds,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2012, pp. 1–11.

[7] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–12.

[8] M. Rahman, S. Venugopal, and R. Buyya, “A dynamic critical path
algorithm for scheduling scientific workflow applications on global
grids,” in Proc. 3rd IEEE Int. Conf. e-Sci. Grid Comput., 2007, pp.
35–42.

[9] M. A. Rodriguez and R. Buyya, “Deadline based resource
provisioning and scheduling algorithm for scientific workflows on
clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222–235 April-June 2014.

[10] H. H. Li, Y. W. Fu, Z. H. Zhan, and J. J. Li, “Renumber strategy
enhanced particle swarm optimization for cloud computing resource
scheduling,” in Proc. IEEE Congr. Evol. Comput., 2015, Accepted.

[11] H. H. Li, Z. G. Chen, Z. H. Zhan, K. J. Du, and J. Zhang, “Renumber
coevolutionary multiswarm particle swarm optimization for multi-
objective workflow scheduling on cloud computing environment,” in
Proc. Genetic Evol. Comput. Conf., 2015, pp. 1419-1420.

[12] Z. G. Chen, K. J. Du, Z. H. Zhan, and J. Zhang, “Deadline constrained
cloud computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm,” in Proc. IEEE Congr. Evol.
Comput., 2015

[13] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evol. Comput., vol. 1, no. 1, pp. 53-66, 1997.

[14] Y. L. Li, Z. H. Zhan, Y. J. Gong, W. N. Chen, J. Zhang, and Y. Li,
“Differential evolution with an evolution path: A DEEP evolutionary
algorithm,” IEEE Trans. on Cybernetics, vol. 45, no. 9, pp. 1798-1810,
Sept. 2015.

[15] Y. L. Li, Z. H. Zhan,Y. J. Gong, J. Zhang, Y. Li, and Q. Li, “Fast
micro-differential evolution for topological active net optimization,”
IEEE Trans. Cybernetics, DOI:10.1109/TCYB.2015.2437282, 2015.

[16] M. D. Zhang, Z. H. Zhan, J. J. Li, and J. Zhang, “Tournament
selection based artificial bee colony algorithm with elitist strategy,” in
Proc. Conf. Technologies and Applications of Artificial Intelligence,
Taiwan, Nov. 2014, pp. 387-396.

[17] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi, “Orthogonal learning
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 6, pp. 832-847, Dec. 2011.

[18] Y. H. Li, Z. H. Zhan, S. J. Lin, J. Zhang, and X. N. Luo, “Competitive
and cooperative particle swarm optimization with information sharing
mechanism for global optimization problems,” Information Sciences,
vol. 293, no. 1, pp. 370-382, 2015.

[19] Z. H. Zhan, J. Zhang, Y. H. Shi, and H. L. Liu, “A modified brain
storm optimization,” in Proc. IEEE World Congr. Comput. Intell.,
Brisbane, Australia, Jun. 2012, pp. 1-8.

[20] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. Chung, and Y. H. Shi, “Multiple
populations for multiple objectives: A coevolutionary technique for
solving multiobjective optimization problems,” IEEE Transactions on
Cybernetics, vol. 43, no. 2, pp. 445-463, April. 2013.

[21] Z. H. Zhan, J. J. Li, and J. Zhang, “Adaptive particle swarm
optimization with variable relocation for dynamic optimization
problems,” in Proc. IEEE Congr. Evol. Comput., 2014, pp. 1565-1570.

8

