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Abstract—With delayed and imperfect current channel state
information at the transmitter (CSIT), namely mixed CSIT, the
sum degrees-of-freedom (sum-DoF) in the two-user multiple-
input multiple-output (MIMO) broadcast channel and the K-
user multiple-input single-output (MISO) broadcast channel with
not-less-than-K transmit antennas have been obtained. However,
the case of the three-user broadcast channel with two transmit
antennas and mixed CSIT is still unexplored. In this paper,
we investigate the sum-DoF upper bound of three-user MISO
broadcast channel with two transmit antennas and mixed CSIT.
By exploiting genie-aided signaling and extremal inequalities, we
derive the sum-DoF upper bound as (1 − α)3/2 + 9α/4, which
is at most 12.5% larger than the expected sum-DoF, given by
(1 − α)3/2 + 2α. This indicates that the gap may mitigate by
better bounding the imperfect current CSIT counterpart.

Index Terms—DoF, mixed CSIT, upper bound, three-user
MISO broadcast channel

I. INTRODUCTION

It has been recognized that channel state information at
the transmitter (CSIT) is very important to communication
systems. Unfortunately, perfect CSIT is always desirable, but
oftentimes intractable. There can be two practical scenarios
having delayed CSIT, namely CSIT reflect only past state
information of channel. One case is high-mobility commu-
nications, where the channel state information (CSI) feedback
is lagging behind the CSI varying [1]. The other case is satel-
lite communications, where the large communication latency
makes the CSIT feedback delayed [2]. To understanding the
fundamental performance limits for networks with delayed
CSIT, characterizing the degrees-of-freedom (DoF), which is
a first-order approximation of capacity when signal-to-noise
ratio (SNR) is high, was therefore considered [3]–[7].

As a seminal work, the DoF region of the K-user multiple-
input single-output (MISO) broadcast channel with delayed

CSIT was characterized in [3]. Subsequently, the DoF region
of the two-user multiple-input multiple-output (MIMO) broad-
cast channel with delayed CSIT was derived in [4]. For the
DoF region of the three-user MIMO broadcast channel with
delayed CSIT, related works can be found in [5]–[7].

Shifting from stringent requirement on delayed CSIT, there
can be a mix of delayed and imperfect current CSIT, so
called mixed CSIT. This is because the wireless channels
are temporally correlated, and the transmitter can estimate
partial current CSIT from delayed CSIT due to this temporal
correlation. With mixed CSIT, the DoF region of two-user
MISO broadcast channel was characterized in [8] and [9].
Then, the DoF region of the two-user broadcast channel and
interference channel with mixed CSIT was derived in [10].
For the two-user MIMO interference channel with mixed
CSIT, a unified precoding strategy was proposed in [11]. The
DoF region of two-user Z MIMO interference channel with
mixed CSIT was derived in [12]. For multi-hop networks,
the DoF region of two-hop MISO broadcast channel with
mixed CSIT was obtained by [13]. Recently, for the K-user
MISO broadcast channel with mixed CSIT when the number
of transmit antennas is not less than K, the sum-DoF were
characterized in [14]. It was found that this sum-DoF in K-
user broadcast channel is indeed a convex combination of
the sum-DoF of delayed CSIT and the sum-DoF of imperfect
current CSIT. However, although many intriguing results have
been reported, back to the three-user MISO broadcast channel
with two transmit antennas and mixed CSIT, there is still
unclear for the sum-DoF.

In this paper, we study the sum-DoF upper bound for
the three-user MISO broadcast channel with mixed CSIT,
when number of transmit antennas is two. This sum-DoF
upper bound is derived via the standard converse techniques.
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Fig. 1. System model of three-user MISO broadcast channel with mixed CSIT,
where the transmitter has M antennas and each receiver has one antenna.
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Fig. 2. Flow chart of the upper bound proof for M = 2.

More specifically, we use the same genie-aided signaling and
extremal inequalities as in [8], [10], [14], [15]. We expect the
sum-DoF is a convex combination of the sum-DoF of delayed
CSIT and the sum-DoF of imperfect current CSIT. However,
this sum-DoF upper bound has a gap from the expected sum-
DoF, rather than the tightness when the number of transmit
antennas is large. Fortunately, this gap is at most 12.5%
larger than the expected sum-DoF. This result encourages us
to design a better sum-DoF upper bound, which may improve
by better bounding the imperfect current CSIT counterpart.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a three-user MISO
broadcast channel, where the transmitter equipped with M
antennas is denoted by Tx and three single-antenna receivers
are denoted by Rx1, Rx2 and Rx3, respectively. The received
signal at the Rxi, i = 1, 2, 3, is expressed as

yi(t) = hH
i (t)x(t) + zi(t), (1)

where t represents the time slot, hH
i (t) ∈ C1×M represents

the channel vector for Rxi, x(t) ∈ CM×1 is the transmit-
ted signal subject to power constraint E

(
∥x(t)∥2

)
≤ P ,

zi(t) ∼ CN (0, 1) is the additive white Gaussian noise
(AWGN), which is independent of channel vectors and the
transmitted signal. For convenience, we further define H(t) ≜
[h1(t),h2(t),h3(t)]

H ∈ C3×M and Hn ≜ {H(t)}nt=1. At the
t-th time slot, Tx is assumed to know the historical delayed

CSIT Ht−1. Therefore, Tx can produce an imperfect estimate
of the current CSI Ĥ(t). The channel estimate is modeled as

hi(t) = ĥi(t) + h̃i(t), (2)

where the channel estimate ĥi(t) ∼ NC(0, (1 − σ2)I) and
the channel estimate error h̃i(t) ∼ NC(0, σ

2I) are mutually
independent, where I denotes the identity matrix. H(t) is
independent of (Ht−1, Ĥt−1) when conditioned on Ĥ(t).
Besides, Rxs are assumed to know Ht and Ĥt after the
transmission at time slot t. According to [10], CSIT quality is
defined as

α = − lim
P→∞

log σ2

logP
. (3)

Under this definition, E[|hH
i w|2] ∼ P−α given that w is a

normalized zero-forcing precoding vector (i.e., ĥH
i w = 0),

where α = 0 means that only delayed CSIT is available, while
α → ∞ corresponds to the case with perfect current CSIT.
Since α > 1 is sufficient to achieve the maximum DoF, α ∈
[0, 1] is analyzed in this article from the DoF perspective.

Denote Wi the message for Rxi and Ri =
log |Wi|

n the rate,
where |Wi| is the cardinality of the corresponding message set.
The rate tuple (R1(P ), R2(P ), R3(P )) is said to be achievable
if there exists a coding scheme such that the average decoding
error probability P

(n)
e for all messages approaches zero as the

channel use n goes to infinity. The sum-capacity CΣ(P ) is
defined to be the supremum of all achievable sum-rates. There-
fore, the sum-DoF is defined as d1+d2+d3 = limP→∞

CΣ

logP .

III. MAIN RESULTS AND DISCUSSION

Theorem 1: For the three-user MISO broadcast channel with
two transmit antennas and mixed CSIT, defined in Section-II,
the sum-DoF upper bound is given by

d1 + d2 + d3 ≤ (1− α)
3

2
+

9

4
α. (4)

A. Proof of Theorem 1

For three transmit antennas, the sum-DoF upper bound is
matched with the sum-DoF lower bound, which was derived
in [15]. For one transmit antenna, the sum-DoF is trivial.
Therefore, it remains to investigate the sum-DoF upper bound
with two transmit antennas.

In this case, our proof of the upper bound is established on
standard technique given in [8], [10], [14], [15], including

1) Genie-based bounding technique to upper bound the
achievable rates [8], [10].

2) Extremal inequality to upper bound the entropy differ-
ence terms [16].

Specifically, as shown in Fig. 2, we first apply the same genie-
aided signaling and then utilize the same extremal inequality
as in [8], [10], [14], [15] to bound the achievable rates.

Below, please find our derivation of the upper bound when
antenna configuration is M = 2.

A genie provides Rxi with Rxj’s message Wj as well
as the received signals yj(m),∀m ≤ t, where j > i. For
convenience, we denote notations Y[i:j](t) ≜ {yk(t)}jk=i,



n(R1 −O(1))

2
+

n(R2 −O(1))

2
+ n(R3 −O(1))

(a)

≤
n∑

t=1

{
1

2
h(Y[1:3](t)|U1(t),H(t))− 1

2
h(Y[1:3](t)|W1,U1(t),H(t)) +

1

2
h(Y[2:3](t)|U2(t),H(t))

−1

2
h(Y[2:3](t)|W2,U2(t),H(t)) + h(y3(t)|U3(t),H(t))− h(y3(t)|W3,U3(t),H(t))

}
=

n∑
t=1

{
1

2
h(Y[1:3](t)|U1(t),H(t))− 1

2
h(Y[2:3](t)|W2,U2(t),H(t)) +

1

2
h(Y[2:3](t)|U2(t),H(t))

−h(y3(t)|W3,U3(t),H(t))
}
+ h(y3(t)|U3(t),H(t))− 1

2
h(Y[1:3](t)|W1,U1(t),H(t))

(b)

≤
n∑

t=1

{
1

2
h(Y[1:3](t)|U1(t),H(t))− 1

2
h(Y[2:3](t)|W2,U2(t),H(t),Y t−1

1 ) +
1

2
h(Y[2:3](t)|U2(t),H(t))

− h(y3(t)|W3,U3(t),H(t),Y t−1
2 )

}
+ n logP + nO(1)

=

n∑
t=1

{
1

2
h(Y[1:3](t)|U1(t),H(t))− 1

2
h(Y[2:3](t)|U1(t),H(t)) +

1

2
h(Y[2:3](t)|U2(t),H(t))− h(y3(t)|U2(t),H(t))

}
+ n logP + nO(1) (8)

1

2
h
(
Y[1:3](t)|U1(t),H(t)

)
− 1

2
h
(
Y[2:3](t)|U1(t),H(t)

)
≤ EĤ(t) max

D⪰0
tr(D)≤P

EH(t)|Ĥ(t)

(
1

2
log det

(
I+H[1:3](t)D(t)HH

[1:3](t)
)
− 1

2
log det

(
I+H[2:3](t)D(t)HH

[2:3](t)
))

(9)

1

2
h
(
Y[2:3](t)|U2(t),H(t)

)
− h (y3(t)|U2(t),H(t))

≤ EĤ(t) max
D⪰0

tr(D)≤P

EH(t)|Ĥ(t)

(
1

2
log det

(
I+H[2:3](t)D(t)HH

[2:3](t)
)
− log

(
1 + hH

3 (t)D(t)h3(t)
))

(10)

Y n
[i:j] ≜ {Y[i:j](t)}nt=1, H[i:j](t) ≜ [hi(t),hi+1(t), ...,hj(t)]

H

and z[i:j](t) ≜ [zi(t), zi+1(t), ..., zj(t)]
H , where j ≥ i.

Employing Fano’s inequality, we can upper bound the
achievable rate of Rx1 as

n(R1 −O(1))

(a)

≤ I(W1;W[2:3],Y
n
[1:3]|H

n, Ĥn)

(b)
= I(W1;Y

n
[1:3]|W[2:3],Hn, Ĥn)

(c)
=

n∑
t=1

I(W1;Y[1:3](t)|W[2:3],Y
t−1
[1:3] ,H

n, Ĥn)

(d)
=

n∑
t=1

(
h(Y[1:3](t)|W[2:3],Y

t−1
[1:3] ,H

t, Ĥt)

−h(Y[1:3](t)|W[1:3],Y
t−1
[1:3] ,H

t, Ĥt)
)

=

n∑
t=1

(
h(Y[1:3](t)|U1(t),H(t))

−h(Y[1:3](t)|W1,U1(t),H(t))
)

(5)

where U1(t) ≜
{
W[2:3],Y

t−1
[1:3] ,H

t−1, Ĥt
}

; (a) holds by using

Fano’s inequality; (b) holds due to the independence of mes-
sages; (c) holds by using the chain rule of mutual information;
(d) holds due to the definition of mutual information.

The achievable rate of Rx2 is bounded as

n(R2 −O(1))

(a)

≤ I(W2;W3,Y
n
[2:3]|H

n, Ĥn)

(b)
= I(W2;Y

n
[2:3]|W3,Hn, Ĥn)

(c)
=

n∑
t=1

I(W2;Y[2:3](t)|W3,Y
t−1
[2:3] ,H

n, Ĥn)

(d)
=

n∑
t=1

(
h(Y[2:3](t)|W3,Y

t−1
[2:3] ,H

t, Ĥt)

−h(Y[2:3](t)|W[2:3],Y
t−1
[2:3] ,H

t, Ĥt)
)

=

n∑
t=1

(
h(Y[2:3](t)|U2(t),H(t))

−h(Y[2:3](t)|W2,U2(t),H(t))
)

(6)

where U2(t) ≜
{
W3,Y

t−1
[2:3] ,H

t−1, Ĥt
}

; (a) holds by using
Fano’s inequality; (b) holds due to independence of messages;



1

2
h
(
Y[1:3](t)|U1(t),H(t)

)
− 1

2
h
(
Y[2:3](t)|U1(t),H(t)

)
≤ max

p(U1(t)),p(x(t)|U1(t))

(
h
(
Y[1:3](t)|U1(t),H(t)

)
2

−
h
(
Y[2:3](t)|U1(t),H(t)

)
2

)
(a)

≤ max
p(U1(t))

EU1(t) max
p(x(t)|U1(t))

(
h
(
Y[1:3](t)|U1(t),H(t)

)
2

−
h
(
Y[2:3](t)|U1(t),H(t)

)
2

)

= max
p(U1(t))

EU1(t) max
p(x(t)|U1(t))

EH(t)|U1(t)

(
h
(
Y[1:3](t)|U1(t),H(t)

)
2

−
h
(
Y[2:3](t)|U1(t),H(t)

)
2

)
(b)
= max

p(U1(t))
EU1(t) max

p(x(t)|U1(t))
EH(t)|Ĥ(t)

(
h
(
H[1:3](t)x(t) + z[1:3](t)|U1(t)

)
2

−
h
(
H[2:3](t)x(t) + z[2:3](t)|U1(t)

)
2

)
(c)
= max

p(U1(t))
EU1(t) max

D⪰0
tr(D)≤P

max
p(x(t)|U1(t))

cov(x(t)|U1(t))⪯D

EH(t)|Ĥ(t)

(
h
(
H[1:3](t)x(t) + z[1:3](t)|U1(t)

)
2

−
h
(
H[2:3](t)x(t) + z[2:3](t)|U1(t)

)
2

)
(d)

≤ max
p(U1(t))

EU1(t) max
D⪰0

tr(D)≤P

max
K(t)⪯D

EH(t)|Ĥ(t)

(
1

2
log det

(
I+H[1:3](t)K(t)HH

[1:3](t)
)

−1

2
log det

(
I+H[2:3](t)K(t)HH

[2:3](t)
))

= max
p(U1(t))

EU1(t) max
D⪰0

tr(D)≤P

EH(t)|Ĥ(t)

(
1

2
log det

(
I+H[1:3](t)K

∗(t)HH
[1:3](t)

)
− 1

2
log det

(
I+H[2:3](t)K

∗(t)HH
[2:3](t)

))
(e)

≤ EĤ(t) max
D⪰0

tr(D)≤P

EH(t)|Ĥ(t)

(
1

2
log det

(
I+H[1:3](t)D(t)HH

[1:3](t)
)
− 1

2
log det

(
I+H[2:3](t)D(t)HH

[2:3](t)
))

(11)

(c) holds by using the chain rule of mutual information; (d)
holds due to the definition of mutual information.

The achievable rate of Rx3 is bounded as

n(R3 −O(1))

(a)

≤ I(W3;Y
n
3 |Hn, Ĥn)

(c)
=

n∑
t=1

I(W3; y3(t)|Y t−1
3 ,Hn, Ĥn)

(d)
=

n∑
t=1

(
h(y3(t)|Y t−1

3 ,Ht, Ĥt)

−h(y3(t)|W3,Y
t−1
3 ,Ht, Ĥt)

)
=

n∑
t=1

(h(y3(t)|U3(t),H(t))

−h(y3(t)|W3,U3(t),H(t))) , (7)

where U3(t) ≜
{
Y t−1
3 ,Ht−1, Ĥt

}
; (a) holds by using Fano’s

inequality; (b) holds due to the chain rule of mutual informa-
tion; (c) holds due to the definition of mutual information.

In the following, we upper bound the weighted sum-rate
given by (8) on the top of page 3, where O(1) denotes a

constant which does not scale as power P ; (a) From (5), (6)
and (7); (b) Differential entropy decreases due to conditioning.

Lemma 1: For each entropy difference term in (8), we can
establish upper bounds in (9) and (10).

Proof: To avoid repetition, we only give the proof of the
first entropy difference term provided in (11) shown on the
top of the last page, where K and K∗ denote the covariance
matrix of x(t) and the optimal K, respectively. The reason of
each step is given as follows:

(a) The maximization is moved inside the expectation and
this is not less than the original value.

(b) H(t) is independent of (Ht−1, Ĥt−1) when conditioned
on Ĥ(t).

(c) The maximization is divided into two parts (i.e., trace
constraint and covariance matrix constraint).

(d) x(t) with Gaussian distribution is optimal for maximiza-
tion, which is derived via extremal inequality [16].

(e) K∗ always satisfies K∗ ⪰ 0, tr(K∗) ≤ P and inner
expectation only relates to Ĥ(t), where tr(·) denotes
the trace.

According to (9), (10) and [10, Lemma 3], we have the



Fig. 3. Sum-DoF upper bound.

Fig. 4. Gap between the upper bound and the expected.

following upper bound of the weighted rate.

R1 −O(1)

2
+

R2 −O(1)

2
+R3 −O(1)

≤ 1

2
α logP + logP +O(1).

Therefore, we obtain

d1
2

+
d2
2

+ d3 ≤ 1 +
α

2
. (12)

Due to the symmetry, we have

d1
2

+ d2 +
d3
2

≤ 1 +
α

2
, (13)

d1 +
d2
2

+
d3
2

≤ 1 +
α

2
. (14)

By adding (10)-(12), we can obtain the desired result

d1 + d2 + d3 ≤ 3

2
+

3α

4
=

3

2
(1− α) +

9

4
α. (15)

B. Discussion

For M = 2, the sum-DoF of delayed CSIT is 3/2 and the
sum-DoF of perfect current CSIT is 2. Therefore, we expect
the sum-DoF as (1 − α)3/2 + 2α. However, this value is
not toughed by our upper bound, as illustrated in Fig. 3. In

addition, Fig. 3 shows that the gain between M ≥ 3 Case and
M = 2 Case is increasing when α approaches 1. We further
depict the gap in Fig. 4, where it shows the gap increases with
α and is at most 12.5% larger than the expected sum-DoF. By
comparing our bound with expected one, we infer that the
imperfect current CSIT part in bounding may be improved.

For the three-user MISO broadcast channel with mixed
CSIT, the sum-DoF upper bound is now complete, given by

d1 + d2 + d3 ≤


(1− α)18/11 + 3α, M ≥ 3,

(1− α)3/2 + 9α/4, M = 2,

1, M = 1.
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