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Abstract—In this paper, a power-constrained hybrid automatic
repeat request (HARQ) transmission strategy is developed to
support ultra-reliable low-latency communications (URLLC). In
particular, we aim to minimize the delivery latency of HARQ
schemes over time-correlated fading channels, meanwhile en-
suring the high reliability and limited power consumption. To
ease the optimization, the simple asymptotic outage expressions
of HARQ schemes are adopted. Furthermore, by noticing the
non-convexity of the latency minimization problem and the
intricate connection between different HARQ rounds, the graph
convolutional network (GCN) is invoked for the optimal power
solution owing to its powerful ability of handling the graph
data. The primal-dual learning method is then leveraged to
train the GCN weights. Consequently, the numerical results are
presented for verification together with the comparisons among
three HARQ schemes in terms of the latency and the reliability,
where the three HARQ schemes include Type-I HARQ, HARQ
with chase combining (HARQ-CC), and HARQ with incremental
redundancy (HARQ-IR). To recapitulate, it is revealed that
HARQ-IR offers the lowest latency while guaranteeing the
demanded reliability target under a stringent power constraint,
albeit at the price of high coding complexity.

Index Terms—Graph neural networks, HARQ-IR, power allo-
cation, time-correlated fading channels

I. INTRODUCTION

NOwadays, ultra-reliable low-latency communications
(URLLC) have become an unprecedented paradigm shift

to support the mission-critical internet-of-things (IoT) appli-
cations [1]. For instance, as per the 3rd generation partnership
project (3GPP), a 32 byte packet is expected to transmit within
1 ms along with a reliability of at least 99.999%. To confront
this stringent requirement, hybrid automatic repeat request
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(HARQ) is one of the key enabling technologies that provide
reliable transmissions to combat channel fading. On the basis
of different encoding and decoding techniques, HARQ can be
divided into three types, namely Type-I HARQ, HARQ with
chase combining (HARQ-CC), and HARQ with incremental
redundancy (HARQ-IR). In essence, HARQ sacrifices the
delay performance to improve reliability, which inevitably
hinders its widespread applications in supporting URLLC.
To overcome this shortcoming, HARQ should be properly
designed with more flexibility to accommodate diverse re-
quirements of latency and reliability.

The optimal design of HARQ schemes has been extensively
studied in the literature. To name a few, in [2], the outage
probability of HARQ-CC was minimized by imposing a
constraint on the average power consumption. The asymptotic
outage probability was used to enable the optimal power
allocation with geometric programming (GP). The similar
method was then applied to solve the minimization of the
expected energy consumption for HARQ-IR given a max-
imum allowable outage tolerance in [3]. Moreover, in [4],
the goodput of HARQ-IR was maximized through the joint
optimization of the transmission powers and transmission rate
under an average power constraint. The joint optimization of
powers and rate was further considered to maximize the energy
efficiency of HARQ schemes, which were solved in closed-
form with the Karush-Kuhn-Tucker (KKT) conditions. Fur-
thermore, the optimization of various HARQ-assisted systems
has also received considerable research interest lately. To be
specific, the power efficient design was considered for HARQ-
CC aided non-orthgonal multiple access (NOMA) systems in
[5], wherein successive convex approximation (SCA) was used
to provide the optimal power solution. HARQ-NOMA-assisted
short packet communications were investigated in [6], where a
genetic algorithm was applied to optimize the power levels in
power-constrained and reliability-constrained scenarios. Apart
from high reliability and limited power consumption, the
guarantee of low latency is also of profound significance to
realize URLLC, while this topic was rarely examined except
in a few existing works. Particularly, in [7], the age of in-
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formation (AoI) was minimized for HARQ-IR-assisted multi-
RIS systems while ensuring power and outage constraints. In
addition, the authors in [8] maximized the overall rates of
enhanced mobile broadband (eMBB) users in HARQ-assisted
grant free systems under the constraint of a maximum tolerable
probability of delay bound violation. However, independent
fading channels were generally assumed in these works [3],
[5]–[8] whose results are inapplicable to the correlated fading
channels. Due to the frequent occurrence of time-selective
fading channels, there is an urgent need to propose a proper
latency assurance strategy for HARQ schemes over correlated
fading channels.

In order to minimize the delivery latency while guar-
anteeing the high reliability, this paper proposes a power-
constrained HARQ strategy by considering time-correlated
fading channels. The simple asymptotic outage expressions
of HARQ schemes are adopted to avoid heavy computational
burden. Unfortunately, the optimization problem still cannot
be easily solved by using the off-the-shelf tools due to the
fractional objective function and non-convex constraints. This
has inspired us to explore the use of artificial intelligence
(AI) techniques. By taking into account that the transmit
power allocated in the current HARQ round is affected by the
previous HARQ rounds regardless of the subsequent HARQ
rounds, and the time correlation takes place among fading
channels, it is natural to come up with graph neural networks
to capture this special transmission structure. The graph convo-
lutional network (GCN) is then invoked for the optimal power
allocation of HARQ by treating different HARQ rounds and
channel correlation as graph nodes and edges, respectively.
The trainable GCN weights are updated by using primal-
dual learning approach. Finally, the latency and the reliability
performance of the GCN-enabled power allocation strategy
for three HARQ schemes was investigated through numerical
experiments, where the three HARQ schemes include Type-
I HARQ, HARQ-CC, and HARQ-IR. Last but not least,
despite its high coding complexity, HARQ-IR can provide
the lowest latency while ensuring reliable performance within
strict power constraints.

The rest of the paper is structured as follows. Section II
elaborates on the system model and formulates the latency
minimization problem for power-constrained HARQ schemes.
In Section III, a GCN-enabled power allocation strategy is
designed to solve the optimization problem. Section IV verifies
the effectiveness of the proposed strategy through numerical
experiments. Finally, concluding remarks are drawn in Section
V.

II. SYSTEM MODEL

This paper considers a point-to-point HARQ-aided URLLC
system. To begin, the system model is delineated in this
section, including HARQ schemes, signal transmission model,
and problem formulation.

A. HARQ Schemes

HARQ can be classified into three categories according to
different coding operations, including Type-I HARQ, HARQ-
CC, and HARQ-IR. More specifically, for both Type-I HARQ
and HARQ-CC, the same codeword is delivered in all HARQ
rounds. At the receiver side, Type-I HARQ decodes its mes-
sage by solely relying on the currently received codeword,
while HARQ-CC combines the erroneously received code-
words for maximal-ratio combining (MRC). Undoubtedly,
HARQ-CC outperforms Type-I HARQ due to the fact that
even the failed packets contain useful information. Unlike
Type-I HARQ and HARQ-CC, HARQ-IR transmits codewords
with different redundancy among all HARQ rounds. Hence,
a long codeword is first chopped into several sub-codewords
at the transmitter, which will be sent one by one upon
retransmission request. At the receiver, the previously received
codewords are then concatenated to form a long codeword
for the joint decoding. Owing to the high encoding/decoding
complexity, HARQ-IR achieves the superior performance of
reliability.

Discard Discard

MRC

code combining

CC

IR

Type-I

MRC

11 11 11

code combining

22 22 33

Fig. 1. An example of HARQ transmissions.

B. Signal Transmission Model

By considering blocking fading channels, the received signal
in the k-th HARQ round can be expressed as

yk = hkxk + nk, (1)

where xk denotes the k-th codeword of length M with
average power pk, and nk denotes a complex additive white
Gaussian noise vector with zero mean vector and identity
covariance matrix, i.e., nk ∼ CN (0, IM ) , hk refers to the
channel coefficient of the k-th transmission. To avoid large
transmission latency under unfavorable fading channels, the



maximum number of HARQ rounds for sending each message
is limited up to K. Due to the frequent occurrence of the
correlation among fading channels [9], the time-correlated
Rayleigh fading channels are used to model hk as

hk = ξk

(√
1− ρ2(k+δ−1)αk + ρk+δ−1α0

)
, (2)

where the factor ρ measures the intensity of the time correla-
tion between channel coefficients, δ and ξk

2 denote the feed-
back delay and the average power of the channel, respectively,
α0, α1, ..., αk are mutually independent and obey complex
normal distributions with zero mean and unit variance.

According to (1), the received signal-to-noise ratio (SNR)
in the k-th transmission can be obtained as

γk = pk|hk|2, k ∈ [1,K], (3)

where pk denotes the average transmit power in the k-th
HARQ round.

C. Problem Formulation of Power-Constrained HARQ for
URLLC

The mission-critical IoT applications usually emphasize
stringent constraints of reliability and latency [10]. Besides,
the IoT devices are frequently equipped with non-rechargeable
battery which cannot provide continuous power supply. The
energy consumption of IoT networks mainly comes from the
radio frequency communication module. Hence, the transmit
powers should be optimally devised to prolong the lifetime of
IoT networks. In this paper, we aim at the accommodation of
low latency as well as high reliability via the power allocation
in different HARQ rounds. To proceed, we denote by Nb and
B the total number of information bits and the bandwidth,
respectively. The delivery latency of these information bits is
thus calculated as

τ =
Nb

ηB
, (4)

where η denotes the effective spectral efficiency. The spectral
efficiency of HARQ scheme can be estimated by using the
long term average throughput (LTAT) of HARQ, which can
be obtained as [11]

η =
R(1− Pout,K)

1 +
K−1∑
k=1

Pout,k

, (5)

where R = b/M and b denote the preset transmission rate
and the number of original information bits, respectively.
In addition, Pout,k refers to the outage probability after k
HARQ rounds. With the definition of the latency, the latency
minimization problem of the power-constrained HARQ while
guaranteeing its high reliability can be formulated as

min
p1,··· ,pK

τ

s.t. Pout,K ≤ ε,
pavg ≤ p̄,

(6)

where the reliability is ensured by imposing a constraint on
the outage probability, and ε denotes the maximum acceptable

outage tolerance, p̄ denotes the maximum allowable total
transmit power, and pavg denotes the average transmit power
that is evaluated as

pavg =

K∑
k=1

pkPout,k−1, (7)

and we stipulate Pout,0 = 1. It should be mentioned that the
power allocation is optimally designed by only utilizing the
statistical channel state information (CSI) to avoid frequent
signaling interactions and conserve time.

III. GCN-ENABLED POWER ALLOCATION STRATEGY

Although the exact outage expressions of HARQ systems
were derived in [12]–[14], the outage expressions involve
the summation of an infinite number of special functions.
Such complex representations entail a high computational
burden for the optimal design. In order to overcome this
issue, the asymptotic expressions of the outage probabilities
are leveraged in the optimal design. As derived in [12]–[14],
the asymptotic outage probabilities of three types of HARQ
schemes are given by

Pout,K =


ςK(2R − 1)

K
, Type− I

ςK(2R − 1)
K
/K!, CC

ςKGK(R), IR

, (8)

where Γ (·) denotes the Gamma function, ςK = (ℓ(ρ,K))−1∏K
k=1 pkξk2 ,

ℓ(ρ,K) quantifies the effect of correlation that is given by

ℓ(ρ,K) =

(
1 +

K∑
k=1

ρ2(k+δ−1)

1−ρ2(k+δ−1)

)
K∏

k=1

(
1− ρ2(k+δ−1)

)
,

(9)
it should be noted that ρ ̸= 1, and GK(R) reads as

GK(R) = (−1)K + 2R
K−1∑
k=0

(−1)
k (R ln 2)K−k−1

(K−k−1)! . (10)

Unfortunately, due to the correlation among different trans-
missions, the fractional form of the objective function, and
non-convexity of constraints, the optimization problem in
(6) still cannot be easily solved by means of the classical
optimization methodologies, such as CVX tools. The success
of the application of GCNs in power allocation policy learning
for wireless networks [15] has motivated us to develop GCN-
based power allocation for power-constrained HARQ schemes.
It is clear that different HARQ rounds and correlations among
them can be represented by graph nodes and edges, respec-
tively. It is noteworthy that GCN is suitable herein due to
its ability of exploiting the graph structure to process data.
In what follows, a GCN-enabled power allocation scheme is
detailed.

A. GCN-Based Power Allocation

To enable the GCN-based power allocation, each HARQ
round is modeled as a graph node. Moreover, as aforemen-
tioned that the statistical CSI is used, the graph edges can
be characterized by the correlation coefficients among fading



channels. More specifically, the channel correlation coefficient
matrix H is calculated as

H = [αij ]1≤i,j≤K , (11)

where the element αij is

αij =

{
E {hi

∗hj} , i ≤ j
0, else

, (12)

wherein the superscript ∗ denotes the complex conjugate
operation and E{·} is the expectation operation. The rationale
of αij = 0 for i > j is due to the fact the j-th HARQ round
cannot be influenced by the i-th HARQ round. With the time-
correlated channel model in (2), the diagonal entries of H can
be calculated as E

{
∥hi∥2

}
= ξi

2 and its off-diagonal entries
are given by E {hi

∗hj} = ξiξjρ
i+j+2δ−2 [16]. Apparently, H

can be treated as the adjacency matrix in the directed graph
network.

For tractability, the power policy functional space p =
(p1, p2, ..., pK) is parameterized by using a graph neural
networks. More specifically, the power allocation policy is
defined as p(H) = Ψ(H;W), where Ψ represents a L-layer
GCN with trainable weights W. Instead of optimizing p, the
neural network parameters W need to be optimally determined
through the primal-dual learning approach [17]. As shown in
Fig. 2, a L-layer GCN structure for the power-constrained
HARQ schemes with K = 5 is given as an example. With
the input V(0) = p̄

K1K to Ψ(H;W), the (l + 1)-th layer
features V(l+1) of GCN are updated by following the layer-
wise propagation rule as

V(l+1) = σl

(
D− 1

2HD− 1
2V(l)W(l)

)
, (13)

where 1K stands for an all-ones column vector, D = diag(H)
denotes the degree matrix, V(l) ∈ RK×nl is the matrix of node
features in the l-th layer, W(l) ∈ Rnl×nl+1 is the trainable
weight matrix in the l-th layer, σl(·) defines the activation
function. Accordingly, the output of the L-th layer of the GCN
is our desired power allocation policy.

B. Primal-Dual Learning Approach

In order to train the neural network weights W, the iter-
ative primal-dual learning approach is applied in this paper.
Moreover, by realizing that the maximum allowable outage
probability is generally very low (e.g., ε = 10−2), we apply
the logarithm transformation to the outage probability, i.e.,
logPout,K , in order to amplify the effect of the outage
constraint and meanwhile accelerate learning and alleviate the
over-fitting. By taking this transformation into consideration,
the Lagrangian of problem (6) is formulated as

LΨ(W, λ, υ) = τ + λ(logPout,K − log ε)

+ υ

(
K∑

k=1

pkPout,k−1 − p̄

)
, (14)

where λ ≥ 0 and υ ≥ 0 are the Lagrangian multiplier
associated with the two constraints in problem (6). It is

noteworthy that τ , Pout,K , and p are the functions of the
trainable parameters W. According to the gradient descent
algorithm, the neural network parameters W at step s can be
updated as

Ws+1 = Ws − θW,s∇WEρ∼A {L(Ws, λs, υs)} , (15)

where the term θW,s denotes the step size at the s-th iteration
and the actual time correlation ρ follows a certain distribution
A within the range [0, 1). Besides, the multipliers are updated
by capitalizing on the sub-gradient method as

λs+1 = [λs + θλ,s(Eρ∼A {log(Pout,K)} − log(ε))]+, (16)

υs+1 = [υs + θυ,s(Eρ∼A {pavg} − p̄)]+, (17)

where θλ,s and θυ,s correspond to the step sizes, and [x]+ =
max{0, x}. The pseudocode of GCN-based power allocation
scheme is shown in Algorithm 1.
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Fig. 2. A general L-layer GCN structure for the power-
constrained HARQ schemes with K = 5.

Algorithm 1 GCN-Based Power Allocation Algorithm

Input: Initial values W, λ, υ, V(0)

Output: The power allocation policy V(L);
1: for epoch s = 1, 2, · · · do
2: Obtain power allocation policy from a mini-batch.
3: Compute the policy gradient of L(Ws, λs, υs).
4: Update the primal variable Ws [cf. (15)]:

Ws+1 = Ws − θW,s∇WEρ∼A {L(Ws, λs, υs)}.
5: Update the dual variable λs and υs [cf. (16)-(17)]:

λs+1 = [λs + θλ,s(Eρ∼A {log(Pout,K)} − log(ε))]+,
υs+1 = [υs + θυ,s(Eρ∼A {pavg} − p̄)]+.

6: end for



IV. NUMERICAL EXPERIMENTS

Numerical experiments are conducted for verification in this
section. For illustration, we assume that ξ1 = · · · = ξK =
1, δ = 1, K = 3, R = 2 bps/Hz, Nb = 106 bits, B =
10 MHz, and ε = 10−2. With regard to the neural network
structure, a 5-layer GCN with intermediate feature dimensions
16, 32, 16 and 2 is implemented. The activation functions
σ(·) in the intermediate layers use “ReLU”, while the last
layer applies “Linear”. A dataset with 1000 samples is used
in the training stage, the total number of training epochs is
set to 500, and the learning rates of θW,s, θλ,s, and θυ,s are
assumed to be 5×10−4, 10−3 and 5×10−5, respectively. The
GCN parameters W are updated by using the adaptive moment
estimation (Adam) optimizer. Besides, the expectations in (15)
- (17) are taken over the sampled mini-batch of size 50, and ρ
is randomly generated from a uniform distribution within the
interval [0, 1).

In Fig. 3, the convergence of the primal-dual learning
algorithm for three HARQ schemes is investigated by setting
p̄ = 15 dBW. Clearly from Fig. 3, the proposed algorithm
can converge within 1200 iterations, which justifies the ef-
fectiveness of the GCN-based power allocation strategy. If
the maximum power constraint p̄ is sufficiently large (e.g.,
15 dBW), the LTAT converges to the predefined transmission
rate R = 2 bps/Hz. Hence, it is observed from Fig. 3 that the
latency approaches to Nb/(Bη) = 106/(107 × 2) = 0.05 s
with the increase of the number of iterations.
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Fig. 3. The convergence analysis of the primal-dual learning
algorithm with respect to the number of iterations.

In Figs. 4 and 5, the minimal latency and the corresponding
outage probability are plotted against the total average transmit
power p̄, respectively, where ρ = 0.5 is considered. It is
not beyond our expectation from both figures that HARQ-
IR performs the best, followed by HARQ-CC, and the worst
is Type-I HARQ. Moreover, it can be seen from Fig. 4 that
a significant latency reduction can be achieved by HARQ-
IR under a small p̄ when compared to the other two HARQ
schemes. In addition, it can be observed from Figs. 4 and 5
that there is no feasible solution for Type-I HARQ and HARQ-

CC under a sufficiently low transmit power. However, under a
large power constraint, e.g., p̄ > 16 dBW, the latency curves of
three HARQ schemes almost coincide with each other. Hence,
the superior performance of HARQ-IR in terms of the low
latency is weakened as p̄ increases. Nevertheless, it can be
seen from Fig. 5 that HARQ-IR still has a notable outage
reduction compared to the other two schemes. Moreover, as p̄
increases, the latency is lower bounded by 0.05 s, which has
been illustrated in Fig. 3. Whereas, the corresponding outage
probabilities of three HARQ schemes continuously decline
with p̄.

10 12 14 16 18 20 22 24

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Fig. 4. The comparison between the latency of different HARQ
schemes.
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Fig. 5. The comparison between the outage probabilities of
different HARQ schemes.

As shown in Figs. 6 and 7, the effects of the time correlation
on the latency and the outage probability are respectively
examined by fixing p̄ = 15 dBW. It is consistent with
the observations in [12]–[14] that the time correlation has a
negative impact on the latency and outage performance. For
example, as the time correlation increases from 0 to 0.98, the
latency of HARQ-IR increases from 0.0554s to 0.0564s, and
the corresponding outage probability of HARQ-IR decreases



from 5.76×10−5 to 1.68×10−3. Moreover, when the HARQ
channels undergo a slightly correlated fading, i.e., ρ < 0.5,
the impact of the time correlation on the latency and the
reliability can be disregarded. To sum up, HARQ-IR has the
superior performance to offer low latency while ensuring high
reliability, albeit at the price of extra coding complexity.
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Fig. 6. Effect of the time correlation on the latency.

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

0
.9

4

0
.9

8

10
-4

10
-3

10
-2

Fig. 7. Effect of the time correlation on the outage probability.

V. CONCLUSION

This paper studied the power-constrained HARQ schemes
for realizing URLLC. More specifically, the transmission
latency of HARQ schemes was minimized while guaranteeing
the high reliability and limited power consumption. To render
the optimization tractable, the asymptotic outage expression
was used. By considering the intricate relationship between
different HARQ rounds, the GCN was invoked to enable
the latency minimization problem owing to its capability of
tackling the graph data. The primal-dual learning method was
then leveraged to train GCN parameters. Finally, the numerical
experiments were performed to corroborate the validity of
the proposed power-constrained HARQ schemes and compare

the latency and reliability performance among three HARQ
schemes.
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