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Abstract—Cell-free massive MIMO and symbiotic radio are
promising beyond 5G (B5G) networking architecture and trans-
mission technology, respectively. This paper studies cell-free sym-
biotic radio systems, where a number of distributed access points
(APs) cooperatively send primary information to a receiver,
and simultaneously support the backscattering communication
of the secondary backscatter device (BD). An efficient two-phase
uplink-training based channel estimation method is proposed
to estimate the direct-link channel and cascaded backscatter
channel, and the achievable primary and secondary communica-
tion rates taking into account the channel estimation errors are
derived. Furthermore, to achieve a flexible trade-off between the
primary and secondary communication rates, we propose a low-
complexity weighted-maximal-ratio transmission (weighted-MRT)
beamforming scheme, which only requires local processing at
each AP without having to exchange the estimated channel state
information. Simulation results are provided to show the impact
of the channel training lengths on the performance of the cell-free
symbiotic radio systems.

I. INTRODUCTION

Along with the rapid deployment of the fifth-generation

(5G) mobile communication networks, researchers have started

the investigation of 6G targeting for network 2030 [1], [2].

In order to support orders-of-magnitude performance im-

provement in terms of coverage, connectivity density, data

rate, reliability, latency, etc., many promising technologies

have been extensively studied, such as extremely large-scale

MIMO/surface [3], [4], TeraHertz communication [5], non-

terrestrial networks (NTN) [6], [7], and AI-aided wireless

communications [8]. In particular, cell-free massive MIMO [9]

and symbiotic radio [10] were recently proposed as promis-

ing networking architecture and transmission technology for

beyond 5G (B5G), respectively.

Cell-free massive MIMO is different from the classical

cellular networking architecture in the sense that it blurs the

conventional concepts of cells or cell boundary [9]. Instead,

distributed access points (APs), which are connected to the

central processing unit (CPU), exploit their local channel state

information (CSI) to simultaneously serve the users. As such,

cell-free massive MIMO system is expected to mitigate the

inter-cell interference issues in small cell systems and provides

users with appealing uniform good service everywhere [11].

Meanwhile, no exchange of CSI is required among different

APs, which enables low complexity and light backhaul load

between APs and CPU. Therefore, significant research efforts

have been recently devoted to the theoretical analysis and

practical design of cell-free massive MIMO, e.g., precoding

design [12], power optimization [9], and energy efficiency

analysis [13], [14].

On the other hand, in terms of transmission technology for

B5G, symbiotic radio, which combines the benefits of the

conventional cognitive radio (CR) and ambient backscattering

communications (AmBC), has been proposed for spectral- and

energy-efficient communications [10]. In typical symbiotic ra-

dio systems, the secondary device not only utilizes the spectral

but also the power of the primary system via the passive

backscattering technology [15]. Based on the relationship of

symbol durations of the primary and the secondary signals,

symbiotic radio system can be classified as commensal symbi-

otic radio (CSR) and parasite symbiotic radio (PSR) [16]. In

CSR, the secondary signals have much longer symbol duration

than the primary signals, making the secondary backscattering

transmission contribute additional multipath components to

enhance the primary communication. As a result, the primary

and secondary communications form a mutualism relationship

[16]. By contrast, in PSR, the primary and secondary signals

have equal symbol duration, and the secondary signals are

often treated as interference to the primary signals. Significant

research efforts have been recently devoted to the study of

symbiotic radio systems, e.g., in terms of performance analysis

[17] and resource allocations [18], [19].

However, all the aforementioned existing works studied

cell-free massive MIMO and symbiotic radio separately, i.e.,

cell-free system with the conventional active transmission or

symbiotic radio transmission in conventional cellular network

or the basic point-to-point communications. As the promising

B5G networking architecture and transmission technology, re-

spectively, it is natural that cell-free networking and symbiotic

radio communication would merge each other to reap the

benefits of both. This thus motivates our current work to

study cell-free symbiotic radio systems, which, to our best

knowledge, have not been studied in the existing literature. In

cell-free symbiotic radio systems, a number of distributed APs

cooperatively send primary information to a receiver, and con-

currently support the passive backscattering communication of

the secondary backscatter device (BD). As such, the distributed

cooperation gain by APs can be exploited to enhance both

the primary and secondary communication rate. An efficient

two-phase uplink-training based channel estimation method

is proposed to estimate the direct-link channel and cascaded
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Fig. 1. Cell-free symbiotic radio, where M distributed APs cooperatively
transmit primary information to the receiver and concurrently support the
secondary backscattering communication.

backscatter channel, respectively. Furthermore, the interrela-

tionship between the primary and secondary transmission is

revealed by deriving their achievable rates taking into account

the channel estimation errors. Besides, to achieve a flexible

trade-off between the primary and secondary communication

rate, a low-complexity weighted-maximal-ratio transmission

(weighted-MRT) beamforming scheme is proposed, which

only requires local processing at each AP without having to

exchange the estimated CSI among APs. Numerical results are

provided to show the performance of the cell-free symbiotic

radio system with different training lengths.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cell-free symbiotic radio

system, which consists of M distributed APs, one information

receiver, and one BD. The M APs cooperatively send primary

information to the receiver, and simultaneously support the BD

for secondary communication via backscattering to the same

receiver. The considered setup may model a wide range of ap-

plications, e.g., with the receiver corresponding to smartphones

and the BD being the smart home sensor nodes. We assume

that each AP is equipped with N antennas, and the receiver

and BD each has one antenna. Denote by gm ∈ CN×1 and

fm ∈ CN×1 the multiple-input single-output (MISO) channels

from the mth AP to the receiver and BD, respectively, where

m = 1, ...,M . Further denote by q ∈ C the channel coefficient

from the BD to the receiver. Then, the cascaded backscatter

channel from the mth AP to the receiver via the BD is qfm.

In this paper, we focus on the PSR setup [16], where

the symbol duration of the primary and secondary signals

are equal. Let s(n) ∼ CN (0, 1) and c(n) ∼ CN (0, 1)
denote the circularly symmetric complex Gaussian (CSCG)

information-bearing symbols of the primary and secondary

signals respectively. Further denote by p the transmit power

of each AP, and wm ∈ CN×1 with ‖wm‖2 = 1 denotes the

transmit beamforming vector of the mth AP. Then the received

signal at the receiver is

r(n) =
M
∑

m=1

[√
pgH

mwms(n)+
√
p
√
αqfHmwms(n)c(n)

]

+z(n),

(1)

where α denotes the power reflection coefficient, z(n) ∼
CN (0, σ2) is the additive white Gaussian noise. Based on

the received signal r(n) in (1), the receiver wishes to decode

both the primary and secondary signals. To that end, since

the backscatter link is typically much weaker than the direct

link, the receiver may first decode the primary symbols s(n),
by treating the backscattered signals as noise, whose power is

E[pα|∑M

m=1 qf
H
mwms(n)c(n)|2] = pα|q|2|∑M

m=1 f
H
mwm|2.

Therefore the signal-to-interference-plus-noise ratio (SINR)

for decoding the primary information is

γs =
p|∑M

m=1 g
H
mwm|2

pα|q|2|∑M

m=1 f
H
mwm|2 + σ2

. (2)

Note that due to the product of c(n) and s(n) in the

second term of (1), the resulting noise for decoding s(n) is

no longer Gaussian. However, by using the fact that for any

given noise power, Gaussian noise results in the maximum

entropy and hence constitutes the worst-case noise [20], [21],

the achievable rate of the primary signal in (1) is

Rs = log2(1 + γs). (3)

After decoding the primary information, the first term in (1)

can be subtracted from the received signal before decoding the

secondary symbols c(n). The resulting signal is

r̂c(n) =
√
p
√
αq

∑M

m=1
fHmwms(n)c(n) + z(n). (4)

Note that since s(n) varies across different secondary sym-

bols c(n), (4) can be interpreted as a fast-fading channel,

whose instantaneous channel gain depends on |s(n)|2 [22].

With s(n) ∼ CN (0, 1), its squared envelope follows an

exponential distribution. Therefore, the ergodic rate of the

backscatter communication (4) can be expressed as [16], [23]

Rc = Es

[

log2
(

1 +
pα|q|2|∑M

m=1 f
H
mwm|2|s(n)|2

σ2

)

]

=

∫ ∞

0

log2(1 + βx)e−xdx

= −e
1
β Ei(− 1

β
) log2 e,

(5)

where Ei(x) ,
∫ x

−∞
1
u
eudu is the exponential integral, and

β =
pα|q|2|

∑
M
m=1

fHmwm|2
σ2 is the average received SNR of the

backscatter link.

Note that the above analysis is based on the assumption

of perfect CSI on fm, gm, and q. In practical wireless

communication systems, these channels need to be acquired

via e.g., pilot-based channel estimation. In the following, we

propose the channel estimation methods for cell-free symbiotic

radio systems and analyze the achievable rates taking into

account the channel estimation errors.

III. CHANNEL ESTIMATION AND ACHIEVABLE RATE

ANALYSIS

Similar to the extensively studied massive MIMO systems,

efficient channel estimation for cell-free massive MIMO can

be achieved by exploiting the uplink-downlink channel reci-

procity [24], [25], i.e., the downlink channels can be efficiently

estimated via uplink training. However, different from the



existing cell-free massive MIMO systems [9], the channel

estimation for cell-free symbiotic radio requires estimating

not only the direct-link channels gm, but also the backscatter

channels q and fm,m = 1, ...,M . To this end, in the following,

we propose a two-phase based channel estimation method

for cell-free symbiotic radio systems. In the first phase, pilot

symbols are sent by the receiver while muting the BD, so as

to estimate the direct-link channels gm,m = 1, ...,M . In the

second phase, pilots are sent both by the receiver and the BD

so that, together with the estimation of the direct-link channels,

the cascaded backscatter channels qfm, are estimated.

A. Direct-Link Channel Estimation

First, we discuss the uplink training-based estimation of

the direct-link channels between the receiver and the M APs.

Denote by τ1 the length of the uplink training sequence, and

let pt be the training power. Further denote by ϕ1 ∈ Cτ1×1

the pilot sequence, where ‖ϕ1‖2 = τ1. The received training

signals by the N antennas of the mth AP over the τ1 symbol

durations, which is denoted as Y′
m ∈ CN×τ1 , can be written

as

Y′
m =

√
ptgmϕ

H
1 + Z′

m, m = 1, ...,M, (6)

where Z′
m denotes the i.i.d CSCG noise with zero-mean and

power σ2. With the pilot sequence ϕ1 known at the APs, Y′
m

can be projected to ϕ1, which gives

y̌′
m =

1√
pt
Y′

mϕ1 = τ1gm +
1√
pt
ẑ′m, (7)

where ẑ′m = Z′
mϕ1 is the resulting noise vector. It can be

shown that ẑ1,m is i.i.d. CSCG noise with power τ1σ
2, i.e.,

ẑ′m ∼ CN (0, τ1σ
2IN ).

With gm being a zero-mean random vector, its linear

minimum mean square error estimation (LMMSE), denoted

by ĝm ∈ CN×1, is [26]

ĝm = E[gmy̌
′H
m ]

(

E[y̌′
my̌

′H
m ]

)−1
y̌′
m

= Rg,m(τ1Rg,m +
σ2

pt
IN )−1y̌m,

(8)

where Rg,m = E[gmgH
m] denotes the covariance matrix of

gm. By further decomposing the direct-link channel as gm =√
bmdm, with bm denoting the large-scale channel coefficient,

and dm ∈ CN×1 denoting the zero-mean CSCG small-scale

fading component, i.e., dm ∼ CN (0, IN ). Then gm is CSCG

distributed with covariance matrix Rg,m = bmIN , and thus

LMMSE estimation is also the optimal MMSE estimation. In

this case, (8) can be simplified as

ĝm =
ptbm

ptτ1bm + σ2
y̌′
m. (9)

It can be shown that ĝm follows the distribution

ĝm ∼ CN (0,
e1b

2
m

1 + e1bm
IN ), (10)

where we have defined the transmit training energy-to-noise

ratio (ENR) as e1 ,
ptτ1
σ2 .

Let g̃m denote the channel estimation error of the mth AP,

i.e., g̃m = gm − ĝm. With MMSE estimation, it is known

that g̃m is uncorrelated with ĝm [26], which follows the

distribution

g̃m ∼ CN (0,
bm

1 + e1bm
IN ). (11)

It is observed from (11) that as the transmit training ENR e1
increases, the variance of the channel estimation error reduces,

as expected.

B. Backscatter Channel Estimation

With the estimation ĝm for the direct-link channels, in the

second phase, pilot symbols are sent from both the receiver

and the BD to estimate the cascaded backscatter channels

qfm, m = 1, ...,M . Let τ2 denote the length of the training

sequence in the second phase and ϕ2 ∈ Cτ2×1 be the pilot

sequence sent by the receiver, with ‖ϕ2‖2 = τ2. The received

training signal by the mth AP can be written as

Y∗
m =

√
ptαqfmϕ

H
2 +

√
pt(ĝm + g̃m)ϕH

2 + Z′′
m, (12)

where Z′′
m denotes the i.i.d. CSCG noise with power σ2.

Note that without loss of generality, we assume that the pilot

symbols backscattered by the BD are all 1. After subtracting

the terms related to the estimation ĝm of the direct-link

channels from (12), we have

Y′′
m =

√
ptαqfmϕ

H
2 +

√
ptg̃mϕ

H
2 + Z′′

m. (13)

With ϕ2 known at the APs, the projection of Y′′
m after

scaling by 1√
ptα

, is

y̌′′
m =

1√
ptα

Y′′
mϕ2 = τ2hm +

τ2√
α
g̃m +

1√
ptα

ẑ′′m, (14)

where we have defined the cascaded backscatter channel as

hm , qfm, and ẑ′′m , Z′′
mϕ2. It can be shown that ẑ′′m ∼

CN (0, τ2σ
2IN ).

Let Rh,m = E[hmhH
m] denote the covariance matrix of

the cascaded backscatter channel hm. Then the LMMSE

estimation of hm based on (14) is

ĥm = E[hmy̌
′′H
m ]

(

E[y̌′′
my̌

′′H
m ]

)−1
y̌′′
m

= Rh,m(τ2Rh,m +
τ2
α
Rg̃,m +

σ2

ptα
IN )−1y̌′′

m,
(15)

where Rg̃,m = E[g̃mg̃H
m] is the covariance matrix of g̃m.

If the channel coefficients in fm are i.i.d. distributed

with variance ζm, we then have Rh,m = E[|q|2fmfHm ] =
υmζmIN = ǫmIN , where υm = E[|q|2] and ǫm = υmζm.

As a result, (15) can be simplified as

ĥm =
αptǫm

αptτ2ǫm + ptτ2bm
1+e1bm

+ σ2
y̌′′
m. (16)

Define the transmit training ENR in the second phase as

e2 ,
ptτ2
σ2 . It then follows from (11) and (16) that

R
ĥ,m

= E[ĥmĥH
m] =

αe2ǫ
2
m

αe2ǫm + e2bm
1+e1bm

+ 1
IN . (17)

Let h̃m = hm − ĥm denote the estimation error. We have

Rh̃,m , E
[

(hm − ĥm)(hm − ĥm)H
]

= Rh,m −R
ĥ,m

=
ǫm( e2bm

1+e1bm
+ 1)

αe2ǫm + e2bm
1+e1bm

+ 1
IN .

(18)



It follows from (11) that if e1 → ∞, in which case the

direct-link channel gm is perfectly estimated without any error,

the variance of the estimation error in (18) reduces to the same

form as that in (11).

C. Achievable Rate Analysis

In this subsection, we derive the achievable primary and sec-

ondary rates based on the channel estimation ĝm and ĥm,m =
1, ...,M , by taking into account the channel estimation errors.

By substituting gm = ĝm + g̃m and qfm = ĥm + h̃m into

(1), the received signal for information transmission can be

written as

r(n) =
√
p
∑M

m=1

[

(ĝm + g̃m)Hwms(n)+
√
α(ĥm + h̃m)Hwms(n)c(n)

]

+ z(n).
(19)

For decoding the primary signals s(n), besides the interfer-

ence from the backscatter symbols c(n), the term caused by

the channel estimation error g̃m is also treated as noise [21],

[27]. Therefore, (19) can be decomposed as

rs(n) = DS′ · s(n) + ER+ ST+ z(n), (20)

where DS′,ER, and ST denote the desired signal, estimation

errors and the secondary transmission signal respectively,

which are given by

DS′ =
√
p
∑M

m=1
ĝH
mwm, (21)

ER =
√
p
∑M

m=1

(

g̃m +
√
αh̃mc(n)

)H
wms(n), (22)

ST =
√
p
∑M

m=1

√
αĥH

mwms(n)c(n). (23)

Therefore, the resulting SINR can be expressed as (24)

shown at the top of the next page, and the achievable rate

is Rs = log2(1 + γs).

Note that for any given channel estimations ĝm and ĥm,

since the channel estimation errors g̃m and h̃m are random,

the SINR in (24) and hence its rate Rs is random. By

taking the expected achievable rate with respect to the random

estimation errors g̃m and h̃m, we have the result (25) shown

at the top of the next page, where E =
∑M

m=1

[

bm
1+e1bm

+
αǫm(

e2bm
1+e1bm

+1)

αe2ǫm+
e2bm

1+e1bm
+1

]

+ σ2

p
accounts for the average channel esti-

mation error and noise. Note that the inequality in (25) follows

from Jensen’s inequality, and the fact that log2(1 +C/x) is a

convex function for x > 0.

Next, we derive the achievable rate of the secondary signals

c(n). After decoding s(n), the primary signals s(n) can be

subtracted from (19) based on the estimated channel ĝm. The

resulting signal is

rc(n) =
√
p
∑M

m=1

[√
α(ĥm + h̃m)Hwms(n)c(n)

+ g̃H
mwms(n)

]

+ z(n).
(26)

By treating the terms caused by the channel estimation error

g̃m and h̃m as noise, (26) can be decomposed as

rc(n) = DS′′ · c(n) + ER+ z(n), (27)

where ER denotes the estimation errors given in (22), and

DS′′ denotes the desired signal, which is given by

DS′′ =
√
p
∑M

m=1

√
αĥH

mwms(n), (28)

The resulting SINR is

γc=
|DS′′|2

Es,c

[

|ER|2
]

+ σ2

=
α|∑M

m=1 ĥ
H
mwm|2|s(n)|2

∑M

m=1

∑M

l=1 w
H
m(g̃mg̃H

l +αh̃mh̃H
l )wl+

σ2

p

,

(29)

and the achievable rate is Rc = log2(1 + γc).

Note that different from (24), as the desired channel DS′′

also depends on the primary symbols s(n), the SNR in (29) is a

random variable that depends on both |s(n)|2 and the channel

estimation errors. Consider the expectation of Rc, with the

expectation taken with respect to both |s(n)|2 and the channel

estimation errors, we have

E[Rc] = Eg̃m,h̃m,s

[

log2(1 + γc)
]

≥Es

[

log2
(

1+
α|∑M

m=1 ĥ
H
mwm|2|s(n)|2

Eg̃m,h̃m

[

M
∑

m=1

M
∑

l=1

wH
m(g̃mg̃H

l +αh̃mh̃H
l )wl

]

+ σ2

p

)

]

= Es

[

log2
(

1 +
α|∑M

m=1 ĥ
H
mwm|2|s(n)|2
E

)

]

=

∫ ∞

0

log2(1 + βcx)e
−xdx

= −e
1
βc Ei(− 1

βc

) log2 e,

(30)

where the inequality is obtained by applying Jensen’s in-

equality to the convex function log2(1 + C/x), and βc =
α|

∑
M
m=1

ĥH
mwm|2

E
represents the average SNR for the secondary

signals taking into account the channel estimation errors.

D. Weighted-MRT Beamforming

It can be observed from (25) and (30) that for cell-free

symbiotic systems, the achievable primary and secondary

communication rates depend on the transmit beamforming

vectors wm. In particular, in order to maximize the primary

communication link, all the M APs set their beamforming

vector {wm}Mm=1 as the MRT beamforming vector matched

to the estimated direct-link channel ĝm, which is

ws
m =

ĝm

‖ĝm‖ , m = 1, ...,M. (31)

On the other hand, to maximize the secondary communica-

tion rate in (30), wm is set as the MRT beamformer matched

to the estimated backscatter link ĥm, which is

wc
m =

ĥm

‖ĥm‖
, m = 1, ...,M. (32)

In order to achieve a flexible trade-off between the primary

and secondary communication rate, in this paper, we propose

a low-complexity weighted-MRT beamforming scheme, where

the transmit beamforming vector for each AP is set as

wm = κ
[

ρws
m + (1 − ρ)wc

m

]

, m = 1, ...,M, (33)

where 0 ≤ ρ ≤ 1 is a weighting coefficient that controls

the trade-off between the primary and secondary communi-

cation rate, and κ is a power normalization factor to ensure

‖wm‖2 = 1 for any given ρ. By varying ρ between 0 and

1, the achievable rate regions of the primary and secondary



γs =
|DS′|2

Es,c

[

|ER|2
]

+ Es,c

[

|ST|2
]

+ σ2

=
|∑M

m=1 ĝ
H
mwm|2

Es,c

[

|s(n)|2|∑M

m=1

(

g̃m+
√
αh̃mc(n)

)H
wm|2

]

+αEs,c

[

|∑M

m=1ĥ
H
mwm|2|s(n)|2|c(n)|2

]

+ σ2

p

.

=
|∑M

m=1 ĝ
H
mwm|2

∑M

m=1

∑M

l=1 w
H
m(g̃mg̃H

l +αh̃mh̃H
l )wl+α|∑M

m=1ĥ
H
mwm|2+ σ2

p

.

(24)

E[Rs] = Eg̃m,h̃m

[

log2(1 + γs)
]

≥ log2

(

1 +
|∑M

m=1 ĝ
H
mwm|2

Eg̃m,h̃m

[
∑M

m=1

∑M

l=1 w
H
m(g̃mg̃H

l +αh̃mh̃H
l )wl

]

+α|∑M

m=1ĥ
H
mwm|2+ σ2

p

)

= log2

(

1 +
|∑M

m=1 ĝ
H
mwm|2

∑M

m=1 w
H
m(Rg̃,m + αRh̃,m)wm + σ2

p
+ α|∑M

m=1ĥ
H
mwm|2

)

= log2

(

1 +
|∑M

m=1 ĝ
H
mwm|2

E +α|∑M

m=1ĥ
H
mwm|2

)

(25)

transmission can be obtained. Note that weighted-MRT beam-

forming is especially appealing for cell-free symbiotic radio

systems, due to its low-complexity and scalability, since each

AP can perform the beamforming locally with its own channel

estimations ĝm and ĥm, without having to exchange the

estimated CSIs among APs.

IV. SIMULATION RESULTS

In this section, simulation results are provided to evaluate

the performance of cell-free symbiotic radio systems. We set

up a Cartesian coordinate system, where the BD is located

at the origin (0,0), and the receiver is located at (5m, 0).

Furthermore, we assume that M = 16 APs, each with

N = 4 antennas, are evenly spaced in a square area of

size 750m × 750m, i.e., their locations correspond to the

4× 4 grid points, with the x- and y-coordinates chosen from

the set {-375m, -125m, 125m, 375m}. The channels of all

communication links are independent, where the small-scale

fading coefficients follow the i.i.d. CSCG distribution with

zero mean and unit variance. Furthermore, the large-scale

channel gains of all links are modeled as b = β0d
−γ , where

β0 = ( λ
4π )

2 is the reference channel gain with λ = 0.0857m

denoting the wavelength, d represents the corresponding link

distance, and γ denotes the path loss exponent. We set γ = 2.7
for the AP-to-BD and AP-to-receiver channels, and γ = 2.1
for BD-to-receiver channels. The power reflection coefficient

is α = 1, and the transmitter-side SNR for both information

and pilot transmission is set as p
σ2 = pt

σ2 = 130 dB, which may

correspond to p = pt = 20 dBm and σ2 = −110 dBm. The

simulation results are obtained by taking the average values

over 1000 channel realizations.

Fig. 2 shows the achievable rate regions of the primary

and secondary rates with different uplink training lengths τ1,

and hence different training ENR e1 = ptτ1
σ2 , while the pilot

length in the second training phase is fixed to τ2 = 100.

Note that each point of the curve corresponds to a primary-

secondary rate pair with the weighted-MRT beamforming

(33), by varying the weight ρ from 0 to 1 with step size

0.1. It is observed from Fig. 2 that with the training SNR
pt

σ2 and training length τ2 fixed, the achievable rate regions

critically depend on the training length τ1. For τ1 = 1, which

corresponds to low training ENR e1 in the first phase, the

secondary communication rate is almost zero, regardless of

the beamforming weight ρ. This can be explained by the fact

that when e1 is low, there exists severe channel estimation

error for the direct-link channel estimation, whose detrimental

effect will be exacerbated for the estimation of the weaker

cascaded backscatter channels in the second training phase.

This thus severely limits the achievable rate of the secondary

backscattering communication. As τ1 increases to 100 so that

both the direct-link and backscatter channels are estimated

more accurately, the rate region enlarges significantly.

By fixing τ1 = 100, Fig. 3 plots the achievable rate regions

with different training lengths τ2 in the second phase. Similar

to Fig. 2, it is observed from Fig. 3 that the rate region enlarges

significantly as τ2 increases, as expected. It is also interesting

to note that with larger τ2, the minimum primary communi-

cation rate (corresponding to ρ = 0) actually reduces. This

can be explained by the fact that as the cascaded backscatter

channels are estimated more accurately with larger τ2, it results

in stronger interference to the primary communication with

MRT beamforming matched to the secondary link, which thus

decreases the minimum primary rate. However, the maximum

primary rate (ρ = 1) is almost unaffected by τ2. By comparing

Fig. 2 and Fig. 3, it is also observed that larger rate regions

are achieved for τ2 = 10 and τ2 = 1 in Fig. 3 than its

counterpart in Fig. 2. This implies that if the total training

length τ1+τ2 is fixed, higher priority should be given to the

first training phase. This is expected since the estimation of

the direct-link channels in the first phase impacts not only

the primary communication rate, but also the quality of the

channel estimation of the backscatter channels.
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Fig. 2. Achievable rate regions with different training lengths τ1 in the first
phase, where τ2 = 100.
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Fig. 3. Achievable rate regions with different training lengths τ2 in the second
phase, where τ1 = 100.

V. CONCLUSION

In this paper, a novel cell-free symbiotic radio system

was studied, in which a number of distributed APs coop-

eratively send primary information, while concurrently sup-

porting the secondary backscattering communication. A two-

phase uplink-training based channel estimation method was

proposed to estimate the direct-link channel and cascaded

backscatter channel. Furthermore, a low-complexity weighted-

MRT beamforming scheme was proposed to achieve a flexible

trade-off between the primary and secondary communication

rate. Simulation results were provided to demonstrate the

performance of the cell-free symbiotic radio systems.
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