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Abstract—By employing the lens antenna array, beamspace
MIMO can utilize beam selection to reduce the number of
required RF chains in mmWave massive MIMO systems without
obvious performance loss. However, to achieve the capacity-
approaching performance, beam selection requires the accurate
information of beamspace channel of large size, which is chal-
lenging, especially when the number of RF chains is limited.To
solve this problem, in this paper we propose a reliable support
detection (SD)-based channel estimation scheme. Specifically, we
propose to decompose the total beamspace channel estimation
problem into a series of sub-problems, each of which only
considers one sparse channel component. For each channel
component, we first reliably detect its support by utilizing the
structural characteristics of mmWave beamspace channel. Then,
the influence of this channel component is removed from the total
beamspace channel estimation problem. After the supports of all
channel components have been detected, the nonzero elements of
the sparse beamspace channel can be estimated with low pilot
overhead. Simulation results show that the proposed SD-based
channel estimation outperforms conventional schemes and enjoys
satisfying accuracy, even in the low SNR region.

I. I NTRODUCTION

The integration of millimeter-wave (mmWave) and massive
multiple-input multiple-output (MIMO) has been considered
as a key technique for future 5G wireless communications [1],
since it can achieve significant increase in data rates due toits
wider bandwidth and higher spectral efficiency.

However, realizing mmWave massive MIMO in practice is
not a trivial task. One key challenging problem is that each an-
tenna in MIMO systems usually requires one dedicated radio-
frequency (RF) chain (including digital-to-analog converter,
up converter, etc.). This results in unaffordable hardware
complexity and energy consumption in mmWave massive
MIMO systems, as the number of antennas becomes huge [1]
and the energy consumption of RF chain is high at mmWave
frequencies [2]. To reduce the number of required RF chains,
the concept of beamspace MIMO has been recently proposed
in the pioneering work [3]. By employing the lens antenna
array instead of the conventional electromagnetic antennaar-
ray, beamspace MIMO can transform the conventional spatial
channel into beamspace channel by concentrating the signals
from different directions (beams) on different antennas [3].
Since the scattering in mmWave communications is not rich,
the number of effective prorogation paths is quite limited [1],

occupying only a small number of beams. As a result, the
mmWave beamspace channel is sparse [3], and we can select
a small number of dominant beams to significantly reduce the
dimension of MIMO system and the number of required RF
chains without obvious performance loss [4].

Nevertheless, beam selection requires the base station (BS)
to acquire the information of beamspace channel of large
size, which is challenging, especially when the number of
RF chains is limited. To solve this problem, some advanced
schemes based on compressive sensing (CS) have been pro-
posed very recently [5]–[7]. The key idea of these schemes
is to utilize the sparsity of mmWave channels in the angle
domain to efficiently estimate the mmWave massive MIMO
channel of large size. However, these schemes are designed for
hybrid precoding systems [8], where the phase shifter network
can generate beams with sufficiently high angle resolution
to improve the channel estimation accuracy. By contrast, in
beamspace MIMO systems, although the phase shifter network
can be replaced by lens antenna array to further reduce the
hardware cost and energy consumption, the generated beams
are predefined with a fixed yet limited angle resolution. If
we directly apply the existing channel estimation schemes
to beamspace MIMO systems with lens antenna array, the
performance will be not very satisfying [3]. To the best of
our knowledge, the channel estimation problem for beamspace
MIMO systems has not been well addressed in the literature.

In this paper, by fully utilizing the structural characteristics
of mmWave beamspace channel, we propose a reliable support
detection (SD)-based channel estimation scheme. The basic
idea is to decompose the total beamspace channel estimation
problem into a series of sub-problems, each of which only
considers one sparse channel component (a vector containing
the information of a specific propagation direction). For each
channel component, we first detect its support (i.e., the index
set of nonzero elements in a sparse vector) according to
the estimated position of the strongest element. Then, the
influence of this channel component is removed from the total
beamspace channel estimation problem, and the support of the
next channel component is detected in a similar method. After
the supports of all channel components have been detected,
the nonzero elements of the sparse beamspace channel can
be estimated with low pilot overhead. Simulation results show
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that the proposed SD-based channel estimation outperforms
conventional schemes, especially in the low signal-to-noise
ratio (SNR) region, which is more attractive for mmWave
massive MIMO systems where low SNR is the typical case
before beamforming [5].

Notation: Lower-case and upper-case boldface letters denote
vectors and matrices, respectively;(·)H , (·)−1, and tr(·) de-
note the conjugate transpose, inversion, and trace of a matrix,
respectively;‖·‖F denotes the Frobenius norm of a matrix;
|·| denotes the amplitude of a scalar;Card (·) denotes the
cardinality of a set; Finally,IK is theK ×K identity matrix.

II. SYSTEM MODEL

In this paper, we consider a typical mmWave massive
MIMO system working in time division duplexing (TDD)
model, where the BS employsN antennas andNRF RF chains
to simultaneously serveK single-antenna users [3], [4]. As
shown in Fig. 1 (a), for conventional MIMO systems in the
spatial domain, theK × 1 received signal vectoryDL for all
K users in the downlink can be presented by

yDL = HHPs+ n, (1)

where HH ∈ CK×N is the downlink channel matrix,
H = [h1,h2, · · · ,hK ] is the uplink channel matrix according
to the channel reciprocity [7],hk of sizeN × 1 is the channel
vector between the BS and thekth user,s of size K × 1
is the signal vector for allK users with normalized power
E
(

ssH
)

= IK , P of sizeN ×K is the precoding matrix sat-
isfying the total transmit power constraintρ astr

(

PPH
)

≤ ρ.
Finally, n ∼ CN

(

0, σ2
DLIK

)

is theK × 1 noise vector, where
σ2
DL is the downlink noise power.

A. MmWave channel model

In this paper, we adopt the widely used Saleh-Valenzuela
channel model to embody the low rank and spatial correlation
characteristics of mmWave communications as [3]–[7]

hk =

√

N

L+ 1

L
∑

i=0

β
(i)
k a

(

ψ
(i)
k

)

=

√

N

L+ 1

L
∑

i=0

ci, (2)

wherec0 = β
(0)
k a

(

ψ
(0)
k

)

is the line-of-sight (LoS) component

of thekth user withβ(0)
k presenting the complex gain andψ(0)

k

denoting the spatial direction,ci = β
(i)
k a

(

ψ
(i)
k

)

for 1 ≤ i ≤ L

is theith non-line-of-sight (NLoS) component of thekth user,
and L is the total number of NLoS components which can
be usually obtained by channel measurement [9],a (ψ) is the
N × 1 array steering vector. For the typical uniform linear
array (ULA) withN antennas, we have

a (ψ) =
1√
N

[

e−j2πψm
]

m∈I(N)
, (3)

where I (N) = {l − (N − 1) /2, l = 0, 1, · · · , N − 1} is a
symmetric set of indices centered around zero. The spatial
direction is defined asψ

∆
= d

λ sin θ [3], whereθ is the physical
direction,λ is the signal wavelength, andd is the antenna spac-
ing which usually satisfiesd = λ/2 at mmWave frequencies.
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Fig. 1. System architectures: (a) conventional MIMO; (b) beamspace MIMO.

B. Beamspace MIMO

The conventional channel (2) in the spatial domain can
be transformed to the beamspace channel by employing a
carefully designed lens antenna array [3] as shown in Fig.
1 (b). Specifically, such lens antenna array plays the role of
a spatial discrete fourier transform (DFT) matrixU, which
contains the array steering vectors ofN orthogonal directions
(beams) covering the entire angle space as [3]

U =
[

a
(

ψ̄1

)

, a
(

ψ̄2

)

, · · · , a
(

ψ̄N
)]H

, (4)

where ψ̄n = 1
N

(

n− N+1
2

)

for n = 1, 2, · · · , N . Then, by
assumingNRF = K without loss of generality, the system
model of beamspace MIMO can be represented by

ỹDL = HHUHBPrs+ n = H̃HBPrs+ n, (5)

where ỹDL is the received downlink signal vector in the
beamspace,̃HH = HHUH = (UH)H is defined as the down-
link beamspace channel matrix whoseN columns correspond
to N orthogonal beams,B of size N ×K is the selecting
matrix whose entries belong to{0, 1}. For example, if thenth
beam is selected by thekth user, the element ofB at thenth
row and thekth column is 1. Finally,Pr of sizeK ×K is
the dimension-reduced digital precoding matrix. It is worth
pointing out that the beamspace channelH̃H (or equivalently
H̃) has a sparse structure [3], [4] due to the limited number
of dominant scatters in the mmWave prorogation environ-
ments [1]. Therefore, we can select only a small number of
appropriate beams according to the sparse beamspace channel
to significantly reduce the effective channel dimension without
obvious performance loss. Consequently, only a small-size
digital precoderPr is required, leading to a small number of
required RF chains. Unfortunately, acquiring the beamspace
channel of large size in practice is challenging, especially
when the number of RF chains is limited.



III. B EAMSPACE CHANNEL ESTIMATION

In this section, based on the beamspace MIMO architecture,
we first introduce a pilot transmission strategy. After that, an
adaptive selecting network is designed to obtain the measure-
ments of the beamspace channel. Finally, a SD-based channel
estimation is proposed to estimate the beamspace channel with
limited number of RF chains and low pilot overhead.

A. Pilot transmission

To estimate the beamspace channel, in the uplink of TDD
systems, all users need to transmit the known pilot sequences
to the BS overQ instants (each user transmits one pilot
symbol in each instant) for channel estimation, and we as-
sume that the beamspace channel remains unchanged within
such channel coherence time (i.e.,Q instants) [10]. In this
paper, we consider the pilot transmission strategy, whereQ
instants are divided intoM blocks and each block consists
of K instants, i.e.,Q =MK. For themth block, we define
Ψm of size K ×K as the pilot matrix, which containsK
mutually orthogonal pilot sequences transmitted byK users
overK instants [10]. Obviously, we haveΨmΨH

m = IK and
ΨH
mΨm = IK .
Then, according to Fig. 1 (b) and the channel reciprocity [7]

in TDD systems, the received uplink signal matrixỸUL
m of size

N ×K at the BS in themth block can be presented as

ỸUL
m =UHΨm+Nm=H̃Ψm+Nm, m=1, 2, · · · ,M, (6)

whereNm is theN ×K noise matrix in themth block, whose
entries are independent and identically distributed (i.i.d.) com-
plex Gaussian random variables with mean zero and variance
σ2
UL (the uplink noise power).

B. Measurements of the beamspace channel

We consider themth block without loss of generality. Dur-
ing the pilot transmission, the BS should employ a combiner
Wm of size K ×N to combine the received uplink signal
matrix ỸUL

m (6). Then, we can obtainRm of sizeK ×K in
the baseband sampled byNRF = K RF chains as

Rm = WmỸUL
m = WmH̃Ψm +WmNm. (7)

After that, by multiplying the known pilot matrixΨH
m on the

right side of (7), theK ×K measurement matrixZm of the
beamspace channel̃H can be obtained by

Zm = RmΨH
m = WmH̃+Neff

m , (8)

whereNeff
m = WmNmΨH

m is the effective noise matrix.
Note that here we focus on estimating the beamspace

channel̃hk of the kth user without loss of generality, and the
similar method can be directly applied to other users to obtain
the complete beamspace channelH̃. Then, afterM blocks for
the pilot transmission, we can obtain anQ× 1 measurement
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Fig. 2. Proposed adaptive selecting network in beamspace MIMO systems.

vector z̄k for h̃k as
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∆
= W̄h̃k+n̄k,

(9)
where zm,k, h̃k, and neff

m,k are thekth column ofZm, H̃,
and Neff

m in (8), respectively.̄zk, W̄, and n̄k are of size
Q× 1, Q×N , and Q× 1, respectively. Our target is to
reliably reconstruct̃hk based on̄zk with the pilot overhead
Q as low as possible. However, if we directly utilize the
traditional selecting network in beamspace MIMO systems as
shown in Fig. 1 (b) to design̄W (or equivalentlyWm for
m = 1, 2, · · · ,M ), each row ofW̄ will have one and only
one nonzero element [11]. Consequently, to guarantee that the
measurement vector̄zk contains the complete information of
the beamspace channelh̃k, the pilot overheadQ should be at
least larger thanN , which is unaffordable since the number
of antennasN is usually huge in mmWave massive MIMO
systems as mentioned above.

To this end, we propose an adaptive selecting network for
mmWave massive MIMO systems with lens antenna array as
shown in Fig. 2, where the selecting network in Fig. 1 (b) is
replaced by a phase shifter network. During the data trans-
mission, the proposed adaptive selecting network can be con-
figured to realize the traditional function of beam selection1.
Furthermore, during the beamspace channel estimation, this
adaptive selecting network can be also adaptively used as an
analog combinerWm [8] to combine the uplink signals. With
the help of the proposed adaptive selecting network, we can
guarantee that̄zk (9) has the complete information ofh̃k, even
if Q < N . Moreover, due to the limited number of dominant
scatters in the mmWave prorogation environments [4],h̃k is
a sparse vector. Therefore, (9) can be formulated as a typical
sparse signal recovery problem [12].

Our next target is to design the analog combinerW̄.
Under the framework of CS, to achieve the satisfying recovery
accuracy,W̄ should be designed to make the mutual coherence

1Specifically, we can turn off some phase shifters to realize “unselect” and
set some phase shifters to shift the phase 0 degree to realize“select” for beam
selection.



µ
∆
= max

i6=j

∣

∣w̄H
i w̄j

∣

∣ as small as possible, wherēwi is the ith

column ofW̄. There are already some matrices that have been
proved to enjoy smallµ, such as the i.i.d. Gaussian random
matrix and Bernoulli random matrix [12]. In our paper, we
select the Bernoulli random matrix as the combinerW̄, i.e.,
each element of̄W is randomly selected from1√

Q
{−1,+1}

with equal probability. This is due to the facts that: i) all
elements ofW̄ share the same normalized amplitude, which
can be realized by phase shifters; ii) the resolution of phase
shifter can be only 1 bit, since we only need to shift the phases
0 degree andπ degree. This means that the cost and energy
consumption of the phase shifter network can be significantly
reduced [13].

C. SD-based channel estimation

After W̄ has been designed by the proposed adaptive se-
lecting network, (9) can be solved by classical CS algorithms,
such as orthogonal matching pursuit (OMP) and compressive
sampling matching pursuit (CoSaMP) [14]. However, when
the uplink SNR is low, which is the typical case in mmWave
massive MIMO systems due to the lack of beamforming
gain and the low transmit power of users [5],h̃k will be
overwhelmed by noise. As a result, the support ofh̃k detected
by classical CS algorithms is usually inaccurate, leading to
the deteriorated performance. In this paper, by utilizing the
structural characteristics of mmWave beamspace channel, we
propose a SD-based channel estimation, which can detect the
support more accurately and achieve better performance than
classical CS algorithms, especially in the low SNR region.

In the following Lemma 1, we will first prove a special
property of mmWave beamspace channel, which is one of the
two bases of the proposed SD-based channel estimation.

Lemma 1. Represent the beamspace channelh̃k as
h̃k =

√

N/ (L+ 1)
∑L
i=0 c̃i, wherec̃i = Uci is theith chan-

nel component of̃hk in the beamspace. Then, any two channel
components̃ci and c̃j are asymptotically orthogonal when the
number of antennasN in mmWave massive MIMO systems
with lens antenna array tends to infinity, i.e.,

lim
N→∞

∣

∣c̃Hi c̃j
∣

∣ = 0, ∀ i, j = 0, 1, · · · , L, i 6= j. (10)

Proof: Based on (2)-(4), we have

c̃Hi c̃j = β
(i)∗
k β

(j)
k aH

(

ψ
(i)
k

)

UHUa
(

ψ
(j)
k

)

(11)

= β
(i)∗
k β

(j)
k Υ

(

ψ
(i)
k − ψ

(j)
k

)

,

where Υ(x)
∆
= sinNπx

N sinπx . Note thatψ(i)
k and ψ(j)

k belong to
[−0.5, 0.5] according to the definitions in (3). Therefore, as

long as
(

ψ
(i)
k − ψ

(j)
k

)

6= 0 or 1, which can be guaranteed by
i 6= j, we have

∣

∣

∣
Υ
(

ψ
(i)
k − ψ

(j)
k

)
∣

∣

∣
≤ 1

N

∣

∣

∣

∣

∣

∣

1

sinπ
(

ψ
(i)
k − ψ

(j)
k

)

∣

∣

∣

∣

∣

∣

. (12)
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Fig. 3. The normalized amplitude distribution of the elements in c̃i.

Based on (12), we can conclude that

0≤ lim
N→∞

∣

∣c̃Hi c̃j
∣

∣≤ lim
N→∞

1

N

∣

∣

∣

∣

∣

∣

β
(i)∗
k β

(j)
k

sinπ
(

ψ
(i)
k − ψ

(j)
k

)

∣

∣

∣

∣

∣

∣

=0, (13)

which verifies the conclusion (10).
Lemma 1 implies that we can decompose the total

beamspace channel estimation problem into a series of in-
dependent sub-problems, each of which only considers one
specific channel component approximately orthogonal to the
others. Specifically, we can first estimate the strongest channel
component. After that, we can remove the influence of this
component from the total estimation problem, and then the
channel component with the second strongest power can be
estimated. Such procedure will be repeated until all(L+ 1)
channel components have been estimated. Next, in the fol-
lowing Lemma 2, we will prove another special structural
characteristic of mmWave beamspace channel to show how to
estimate each channel component in the beamspace.

Lemma 2. Consider theith channel component̃ci in the
beamspace, and assumeV is an even integer without loss
of generality. The ratio between the powerPV of V strongest
elements of̃ci and the total powerPT of c̃i can be lower-
bounded by

PV
PT

≥ 2

N2

V/2
∑

i=1

1

sin2
(

(2i−1)π
2N

) . (14)

Moreover, once the positionn∗
i of the strongest element ofc̃i is

determined, the otherV − 1 strongest elements will uniformly
locate around it with the interval1/N .

Proof: Based on (2)-(4), theith channel component̃ci in
the beamspace can be presented as

c̃i=β
(i)
k

[

Υ
(

ψ̄1−ψ(i)
k

)

, · · · ,Υ
(

ψ̄N−ψ(i)
k

)]H

. (15)

Fig. 3 shows the normalized amplitude distribution of the
elements iñci, where the set of red dash lines (or blue dot dash
lines) presents the set of spatial directionsψ̄n = 1

N

(

n− N+1
2

)

for n = 1, 2, · · · , N in (4) pre-defined by lens antenna array.
From Fig. 3, we can observe that when the practical spatial
directionψ(i)

k exactly equals one pre-defined spatial direction,
there is only one strongest element containing all the power
of c̃i, which is the best case. In contrast, the worst case will
happen when the distance betweenψ(i)

k and one pre-defined
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spatial direction is equal to1/2N . In this case, the powerPV
of V strongest elements of̃ci is

PV =
2
(

β
(i)
k

)2

N2

V/2
∑

i=1

1

sin2
(

(2i−1)π
2N

) . (16)

Besides, according to (15), the total powerPT of c̃i can

be calculated asPT = c̃Hi c̃i =
(

β
(i)
k

)2

. Therefore, we can

conclude thatPV /PT is lower-bounded by (14). Moreover, as
shown in Fig. 3, once the positionn∗

i of the strongest element
of c̃i is determined, the otherV − 1 strongest elements will
uniformly locate around it with the interval1/N .

From Lemma 2, we can derive two important conclusions.
The first one is that̃ci can be considered as a sparse vector,
since the most power of̃ci is focused on a small number of
dominant elements. For example, whenN = 256 andV = 8,
the lower-bound ofPV /PT is about 95%. This means that we
can retain only a small number (e.g.,V = 8) of elements of̃ci
with strong power and regard other elements as zero without
obvious performance loss. The second one is that the support
of sparse vector̃ci can be uniquely determined byn∗

i as2

supp (c̃i) = mod N

{

n∗
i −

V

2
, · · · , n∗

i +
V − 2

2

}

, (17)

where Card(supp(c̃i)) = V , and modN (·) is the modulo
operation with respect toN , which guarantees that all indices
in supp (c̃i) belong to{1, 2, · · · , N}. After the support of̃ci
has been detected, we can extractV columns fromW̄ (9)
according tosupp (c̃i), and use the classical LS algorithm to
estimate the nonzero elements ofc̃i.

Based on the discussion so far, the pseudo-code of the
proposed SD-based channel estimation can be summarized in
Algorithm 1 3, which can be explained as follows. During the
ith iteration, we first detect the positionpi of the strongest
element of̃ci in step 1. Then in step 2, utilizing the structural
characteristics of beamspace channel as analyzed above, we
can directly obtainsupp (c̃i) according to (17). After that,

2Correspondingly, whenV is odd, the support ofc̃i should be
supp (c̃i) = mod N

{

n∗

i
− V −1

2
, · · · , n∗

i
+ V −1

2

}

.
3Note that the proposed SD-based channel estimation can be easily extended

to the scenarios where users employ multiple antennas. In this case, the
beamspace channel is a block sparse matrix instead of a sparse vector [3],
and we can useAlgorithm 1 for every column of this 2D sparse matrix.

Input :
Measurement vector:̄zk in (9);
Combining matrix:W̄ in (9);
Total number of channel components:L+ 1;
Retained number of elements for each component:V .

Initialization : c̃ei = 0N×1 for 0 ≤ i ≤ L, z̄(0)k = z̄k.
for 0 ≤ i ≤ L
1. Detect the position of the strongest element inc̃i as

pi = argmax
1≤n≤N

∣

∣

∣
w̄nz̄

(i)
k

∣

∣

∣
, w̄n is thenth row of W̄;

2. Detectsupp (c̃i) according to (17);
3. LS estimation of the nonzero elements ofc̃i as

fi =
(

W̄iW̄
H
i

)−1
W̄iz̄

(i)
k , W̄i = W̄(l, :)l∈supp(c̃i)

;
4. Form the estimated̃cei as c̃ei (supp (c̃i)) = fi;
5. Remove the influence of̃ci as z̄(i+1)

k = z̄
(i)
k − W̄H c̃ei

6. i = i+ 1;
end for
7. ST =

⋃

0≤i≤L
supp(c̃i);

8. fT =
(

W̄TW̄
H
T

)−1
W̄Tz̄k, W̄T = W̄(l, :)l∈ST

;
9. h̃e

k = 0N×1, h̃e
k (ST) = fT;

Output : Estimated beamspace channel for userk: h̃e
k.

Algorithm 1: Proposed SD-based channel estimation.

the nonzero elements of̃ci are estimated by LS algorithm
in step 3, and the influence of this channel component is
removed in steps 4 and 5. Such procedure will be repeated
(i = i+ 1 in step 6) until the last channel component is
considered. Note that for the proposed SD-based channel esti-
mation, we do not directly estimate the beamspace channel as

h̃e
k =

√

N
L+1

L
∑

i=0

c̃ei . This is because that most of the elements

with small power are regarded as zero, which will lead to
error propagation in the influence removal, especially wheni

is large. As a result,̄z(i)k will be more and more inaccurate
to estimate the nonzero elements in step 3. To this end, we
only utilize z̄

(i)
k to estimate the positionpi in step 1, which

can still guarantee a high recovery probability even ifz̄
(i)
k is

inaccurate [14]. Then, after the iterative procedure, we can
obtain the total supportST of h̃k in step 7. UsingST and z̄k,
we can alleviate the impact of error propagation and estimate
the beamspace channel more accurately in steps 8 and 9.

The key difference betweenAlgorithm 1 and classical CS
algorithms [14] is the step of support detection. In classical CS
algorithms, all the positions of nonzero elements are estimated
in an iterative procedure, which may be inaccurate, especially
for the element whose power is not strong enough. By contrast,
in our algorithm, we only estimate the position of the strongest
element. Then, by utilizing the structural characteristics of
mmWave beamspace channel, we can directly obtain the
accurate support with higher probability as illustrated inFig.
4. Moreover, we can also observe that the most compli-
cated part of the proposed SD-based channel estimation is
the LS algorithm, i.e., step 3 and step 8. Therefore, the
computational complexity of SD-based channel estimation is
O
(

LV 2M
)

+O
(

Card2 (ST)M
)

(Card(ST) ≤ V L), which
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Fig. 5. NMSE performance comparison.

is comparable with that of LS algorithm, sinceL andV are
usually small as discussed above.

IV. SIMULATION RESULTS

In this section, we consider a typical mmWave massive
MIMO system, where the BS equips a lens antenna array
with N = 256 antennas andNRF= 16 RF chains to simul-
taneously serveK = 16 users. For thekth user, the spatial
channel is generated as follows [3], [4]: 1) one LoS compo-
nent andL = 2 NLoS components; 2)β(0)

k ∼ CN (0, 1), and
β
(i)
k ∼ CN

(

0, 10−2
)

for i = 1, 2; 3) ψ(0)
k andψ(i)

k follow the
i.i.d. uniform distribution within[−0.5, 0.5].

Fig. 5 shows the normalized mean square error (NMSE)
performance comparison between the proposed SD-based
channel estimation and the conventional OMP-based channel
estimation (i.e., using OMP to solve (9)), where the total
number of instantsQ for pilot transmission isQ = 96 (i.e.,
M = 6 blocks). For SD-based channel estimation, we retain
V = 8 strongest elements as analyzed above for each channel
component, while for OMP, we assume that the sparsity level
of the beamspace channel is equal toV (L+1) = 24. From Fig.
5, we can observe that SD-based channel estimation enjoys
much better NMSE performance than OMP-based channel
estimation, especially when the uplink SNR is low (e.g.,
less than 15 dB). Since low SNR is the typical case in
mmWave communications before beamforming [5], we can
conclude that the proposed SD-based channel estimation is
more attractive for mmWave massive MIMO systems.

Next, we evaluate the impact of different beamspace chan-
nel estimation schemes on beam selection. We adopt the
interference-aware (IA) beam selection proposed in [15] as
it can support theNRF = K scenario, and the dimension-
reduced digital precoderPr in (5) is selected as the zero-
forcing (ZF) precoder. Fig. 6 provides the sum-rate perfor-
mance of IA beam selection with different channels. We
can observe that by utilizing the proposed SD-based channel
estimation, IA beam selection can achieve better performance,
especially when the uplink SNR is low. More importantly,
when the uplink SNR is moderate (e.g., 10 dB), IA beam se-
lection with SD-based channel estimation, which only requires
16 RF chains, can achieve the sum-rate performance not far
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Fig. 6. Sum-rate performance comparison.

away from the fully digital ZF precoder with 256 RF chains
and perfect channel state information (CSI).

V. CONCLUSIONS

This paper investigates the beamspace channel estimation
problem for mmWave massive MIMO systems with lens an-
tenna array. Specifically, we first propose an adaptive selecting
network with low cost to obtain the efficient measurements of
beamspace channel. Then, we propose a SD-based channel
estimation, where the key idea is to utilize the structural
characteristics of mmWave beamspace channel to reliably
detect the channel support. Analysis shows that the compu-
tational complexity of the proposed scheme is comparable
with the classical LS algorithm. Simulation results verifythat
the proposed SD-based channel estimation can achieve much
better NMSE performance than the conventional OMP-based
channel estimation, especially in the low SNR region.
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