
An Enhanced SCMA Detector Enabled by Deep
Neural Network

Chao Lu, Wei Xu, Hong Shen, Hua Zhang, and Xiaohu You
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

Email: {220170709, wxu, shhseu, huazhang, xhyu}@seu.edu.cn

Abstract—In this paper, we propose a learning approach
for sparse code multiple access (SCMA) signal detection by
using a deep neural network via unfolding the procedure of
message passing algorithm (MPA). The MPA can be converted
to a sparsely connected neural network if we treat the weights
as the parameters of a neural network. The neural network
can be trained off-line and then deployed for online detection.
By further refining the network weights corresponding to the
edges of a factor graph, the proposed method achieves a better
performance. Moreover, the deep neural network based detection
is a computationally efficient since highly paralleled computations
in the network are enabled in emerging Artificial Intelligence (AI)
chips.

Index Terms—deep learning, neural network, SCMA, MPA.

I. INTRODUCTION

The 5th generation (5G) wireless communication network
aims at realizing expectations including extremely heavy con-
nectivity, considerable high spectral efficiency, and ultra-low
latency. Sparse code multiple access (SCMA) is a typical non-
orthogonal multiple access (NOMA) strategy for 5G. It has
been seen as a potential solution to address some of the critical
requirements of 5G. Even though SCMA can deal with the
troublesome issues in 5G, it faces two major challenges in
terms of low-complexity detection [1] and efficient codebook
design [2].

Message passing algorithm (MPA) is the most popular
approach to implement multiuser detection with reduced com-
plexity. Theoretically, it has been proved that if there is no
loop in the factor graph of a, e.g., SCMA schema, the MPA
gets exactly the marginal probabilities needed for detection
[3], thus achieving the maximum likelihood (ML) boundary.
While there inevitably exists loops, this algorithm is inherently
suboptimal.

Recently, deep learning methods have been evidenced amaz-
ing progress in the fields of computer vision, speech recogni-
tion and natural language processing. Dramatic effects of deep
learning have attracted a lot of attention. In traditional research
fields of wireless communication, deep learning has been
showing the promising ability to solve some specific problems
[4]–[9]. Some researches showed that deep learning methods
are promising in performance enhancement of decoding [4],
[5]. Other researches treated a communication system as an
end-to-end encoder and decoder network [6]. In addition,
deep learning was proved successful in channel estimation by
treating the channel matrix as a 2D image [7].

Besides the above studies, the investigation of applying deep
learning approaches in wireless communication is still in its
infancy. In this paper we consider the multiuser detection
problem in the scenario of SCMA. By unfolding MPA and
assigning weights to the edges of the factor graph, we con-
struct a sparsely connected neural network. After training the
neural network offline, we can achieve a better performance
and the network can be deployed for online detection.

Note that a parallel work was presented in [8] recently on
the joint optimization of constellation mapping and detection
for SCMA network. [8] achieves great performance gain
compared with the conventional method since the constellation
mapping is also trained in the network which is crucial to the
system performance. However if the constellation mapping is
given, its neural network schema cannot outperform MPA. Or
other, there will still be some distance between the neural
network method proposed in [8] and MPA if a much more
better constellation mapping is given. Different from [8], we
only study the detection problem, which means we fix the
constellation mapping. From the results, our network can
outperform the MPA at high signal noise ratio (SNR).

The remainder of the paper is organized as follows. In
Section II, we describe the system model of SCMA structure.
Then in Section III, we present the neural network based
detection algorithm by transforming an MPA based detection
procedure. In Section IV, the symbol error rate (SER) of the
MPA and the neural network method is compared. Section V
draws a conclusion of this work.

II. SCMA ARCHITECTURE

We consider a SCMA network where there are J indepen-
dent users and K orthogonal resource blocks. For a NOMA
system, we generally have K < J. Each user has an M-
ary symbol set in which the symbols are assumed to be
independent with equal probability. The log2M symbols are
one-to-one mapped to K complex vectors by referring to a
pre-designed table or codebook in other words. The K vectors
all have p non-zero elements and (K-p) zero elements. Fig. 1
exemplifies a system architecture of 6 users and 4 resources.
The 4 resources are defined by the 4 square boxes. The blank
box implies that the user has no symbol transmission assigned
on this resource element. Mathematically, this process can be
expressed in the following formula

ar
X

iv
:1

80
8.

08
01

5v
1

 [
cs

.I
T

]
 2

4
A

ug
 2

01
8

Fig. 1. 6-user-4-resource SCAM Architecture.

y =

J∑
j=1

diag(hj)xj + n, (1)

where y = [y1, y2, ..., yK]T represents the received signal
while xj = [x(j,1), x(j,2), ..., x(j,K)]

T represents the K-ary
complex constellation signals of the j-th user at the trans-
mitter. The channel of the j-th user is denoted as hj =
[h(j,1), h(j,2), ..., h(j,K),]

T and h(j,k), k = 1, 2, ...,K defines
the channel of the j-th user on the k-th resource. As we can
see from (1), the signals of all J users are added together
on every resource block after passing the channel. Here, n
represents the additive white Gaussian noise (AWGN) caused
by the thermal noise of the amplifiers. The noise is a k-ary
vector and each element is subjected to a Gaussian distribution
with mean of 0 and variance of σ2.

For efficient elaboration, we consider a typical SCMA
network which has 6 users and 4 resources. As depicted in
Fig. 2, the relationship between users and resources can be
expressed by a factor graph. The edges between user nodes and
resource nodes mean that these users have signals transmitted
on these resource blocks. In Fig. 2, every resource has dc = 3
conflicting user signals. This means that the points of the
constellation on every resource are sparse, which makes it
possible to ensure the Euclidean distance of every two points
large enough for reliable detection.

Fig. 2. Typical factor graph.

Alternatively, the factor graph can be represented by an
indicator matrix F. The factor graph in Fig. 2 equivalently
corresponds to the indicator matrix:

F =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (2)

Using F, we define two sets,

V (k)= {j|[F]k,j = 1}, k = 1, 2, · · · ,K (3)

and
C(j)=

{
k|[F]k,j = 1

}
, j = 1, 2, · · · , J, (4)

where V(k) represents the set of users that reuse the k-th
resource block while C(j) represents the set of the resource
blocks that the j-th user occupies. V(k) and C(j) will be used
for illustration in the following part.

III. FROM MPA TO NEURAL NETWORK

MPA calculates the marginal probabilities through itera-
tions. In this work, we replace the iteration steps by neural
network layers. Next, we will explain how MPA and our neural
network work.

A. Message Passing Detection Algorithm

The detection of SCMA is conducted by maximizing the
posterior probability

X̂ = arg max
X∈XJ,K

p(X|y), (5)

where X = [x1,x2, ...,xJ] and xj ∈ Xj , j = 1, 2, ..., J . Xj

represents the set of the j-th users constellation signals, while
XJ,K is all the combinations of possible constellation signals
from different users. By calculating the marginal probability
in (5), the decision formula for each user can be written as

x̂j = arg max
xj∈Xj

∑
X∈XJ,K ,xj=[X]j

p(X|y), (6)

where x̂j is the estimation obtained by using, e.g., MPA for
solving (6).

In MPA, the posterior probability is calculated iteratively.
Two types of messages are calculated and then exchanged
in the factor graph. The message transmitted from the k-th
resource to the j-th user is defined by ItRk→uj

. The message
transmitted from the j-th user to the k-th resource is defined by
Qt

uj→Rk
. The superscript t represents the iteration index. The

two types of messages are updated according to the following
equations.

ItRk→uj
(xj) =

∑
XV (k)\j

p(yk|xj1 , j1 ∈ V (k))

×
∏

j2∈V (k)\j

Qt−1
uj2
→Rk

(xj2)

=
∑

XV (k)\j

1√
2πσ2

exp

(
− 1

2σ2
Ak

)
×

∏
j2∈V (k)\j

Qt−1
uj2
→Rk

(xj2),

(7)

Ak=

∥∥∥∥∥∥yk −
∑

j1∈V (k)

h(k,j1)x(k,j1)

∥∥∥∥∥∥
2

, (8)

Fig. 3. Structure of neural network, every blue square represents a block and the block in red circle is named as pooling-concat block.

Qt
uj→Rk

(xj) = p(xj)
∏

k′∈C(j)\k

It−1Rk′→uj
(xj), (9)

where C(j)\k means the set of C(j) after removing com-
ponent k and V (k)\j means the set of V (k) after removing
component j. XV (k)\j represents all possible combinations of
symbols sent by all other users in set V (k) expect for the j-th
user.

Multiplication can be replaced by addition in logarithmic
domain. Usually, equations (7) and (9) can be rewritten as

LItRk→uj
(xj) = ln

(∑
XV (k)\j

exp
(
− 1

2σ2
Ak+

∑
j2∈V (k)\j

LQt−1
uj2→Rk

(xj2)
))

+ β

≈ max
xj

(
− 1

2σ2
Ak+∑

j2∈V (k)\j

LQt−1
uj2→Rk

(xj2)

)
+ β,

(10)

LQt
uj→Rk

(xj) = ln(p(xj)) +
∑

k′∈C(j)\k

LIt−1Rk′→uj
(xj), (11)

where β = ln(1/
√
2πσ2) is a constant value.

B. Neural Network Architecture

Regarding for computations of MPA, it is possible to replace
manipulations with the propagation of a neural network. We
consider a deep neural network of 4 blocks and each block
consists of two layers divided by imaginary lines, as depicted
in Fig. 3. Let us focus on the major computation steps in (10)
and (11) of MPA. Each iterative computations of (10) and (11)
can be unfolded as the propagation between two layers in a
block. The pooling-concat block shown in Fig. 4. is calculated
according to

Fig. 4. Pooling-concat block, small bold color lines are the inputs of the
network.

LI
2(l+1)
Rk→uj

(xj) = max
XV (k)\j

(
−
c2(l+1),j1,j,k

2σ2
Ak+∑

j2∈V (k)\j

w2(l+1),j2,j,kLQ
2l+1
uj2
→Rk

(xj2)

)
+ aj,kβ.

(12)
In Fig. 2, dc is equal to 3, so V (k)\j has 2 elements. As

we can see in Fig. 4, the pooling-concat block has 2 inputs
which denote LI2l+1

Rk→uj
. When M is set to 4, each user will

have 4 symbols, thus each input of the pooling-concat block
has 4 nodes. The small bold color lines linked to the neurons
before max-pooling operation are the inputs of calculated Ak.
As for β in (12), it exists as an offset in a neuron. The neurons
assign different weights to different inputs and finally output
their summation. The outputs of the neurons are followed by
a maximum operation and the results will be merged to a 4-
nodes chunk since xj has 4 values.

The first layer in the block is calculated according to

LQ2l+1
uj→Rk

(xj) = b2l+1,j,k ln (p(xj))+∑
k′∈C(j)\k

w2l+1,k′,j,kLI
2l
Rk′→uj

(xj).
(13)

The front 4 chunks serve as placeholders to store the inputs
from the previous block, usually LQ

(2l+1)
uj→Rk

. The outputs of
the placeholders are all set to ln (1/M) if there are no inputs
such as the first block. Similar to the pooling-concat block,
the neurons of the back 6 chunks also output the weighted
summation of their inputs.

In (12) and (13), it can be seen that we do not apply any
activation functions which are often used to ensure the non-
linear of the neuron output. To ensure the equivalence with
MPA, we just let the linear combination of the inputs of
neurons become the outputs.

As for the output layer, we follow the equation (14) to
calculate the output logits of the network, which is also applied
in MPA.

LQuj
(xj) = ln (p(xj)) +

∑
k∈C(j)

LILRk→uj
(xj) (14)

Finally, we can decide the estimate symbol by

x′j = argmax
xj

LQuj (xj), j = 1, 2, · · · , J. (15)

After designing the structure of the neural network, we
construct the following loss function as our optimization
objective for network training:

Loss = E

∑
j

I(xj ,x
′
j) log(

exp(LQuj
(xj))∑

xj′

exp(LQuj
(xj′))

)

 , (16)

where the function I(xj ,x
′
j) is an indicator function and it

has the following form

I(xj ,x
′
j) =

{
1, xj = x′j
0, xj 6= x′j

, (17)

and E{·} represents mathematical expectation.
This loss function can be regarded as a softmax cross en-

tropy. More specifically, the 4 neurons’ outputs are normalized
by a softmax function separately. Then, the normalized results
are used to calculate the cross entropy. Since it is impossible
to calculate the mathematical expectation during training, we
can replace the function E{·} by batch average mean function.

IV. NUMERICAL EXPERIMENTS

In this section, we describe all the key details of our
experimental tests. All of our the simulation uses the codebook
proposed in [10] and its constellation graph is given in Fig. 5.
In our experiment, the SCAM network has 6 users and every
user has a set of 4 symbols. This corresponds to the output
layer with 24 neurons.

Fig. 5. Constellations on 4 resources.

A. Neural Network Training

We build our neural network by the TensorFlow [11] frame-
work. TensorFlow is an open source machine learning library
provided by Google. Because of its encapsulation, ease of use,
and free for academic research, we choose this framework to
implement our neural network.

In order to reduce the training time and achieve a better
result, it is important to give the neural network a good initial-
ization. We initialize all the parameters with the same non-zero
value such as all-in-one. We set the initial learning rate value
to 0.001, and then select the Adam [12] optimizer to optimize
all network parameters. It is much more suitable to use such
an advanced gradient optimizer because this optimizer can
adjust learning rate to learning steps while a raw stochastic
gradient optimizer cannot. We trained two neural networks
with 2 blocks and 4 blocks, respectively. Both the networks are
trained under the AWGN channel at a predetermined SNR. But
after training, these networks effectively work at an arbitrary
SNR.

B. Dataset

Here, we consider the SCMA setup where J is 6, K is 4 and
M is 4. The 6 users have 4096 signal combinations in total.
We generate the training data dynamically which means the
noises are all different at each step. The mini batch feed to
the network is fixed to 4096 (the total combinations) and the
training data is generated at a fixed SNR (16dB). We generate
the test data in the same way, but at 3dB intervals.

C. Results

In Fig. 6, we compare the SER performance of traditional
MPA with various iteration numbers. As is shown in Fig. 6,
with the growth of iteration numbers, the performance gets bet-
ter. On the other hand, the performance gain becomes less with
the increase of iteration numbers. When the iteration numbers
come to 4, the algorithm performance almost converges.

For comparing, we give the SER performance of MPA
and neural network method in Fig. 7 and Fig. 8. The neural

Fig. 6. SER of MPA with different iterations at AWGN.

Fig. 7. SER of MPA and neural network at AWGN.

Fig. 8. SER of MPA and neural network at AWGN.

network blocks are set to 2(4) when the MPA iterations are set
to 2(4) for a fair comparison. Obviously, the neural network
method show the potential to achieve a better performance
at high SNR. From Fig. 7 we can see that the curves of the
two method intersect together at 15 dB. After that point, the
curve of the neural network method shows some improvement.
Similarly, this phenomenon also appears in Fig. 8. In other
words, the neural network can find a better solution of this
problem after training.

V. CONCLUSION

In this article, we propose a neural network architecture for
SCMA detection. The result of this method converges faslty
when the number of iterations is up to four. We show how
to unfold the MPA to a neural network in detail. By adding
different weights to the edges of the factor graph, the MPA
is represented as a sparsely connected neural network. This
neural network outperforms the traditional MPA especially at
high SNR. Moreover, the neural network based method can be
accelerated by GPU or AI processor, which also makes sense.

ACKNOWLEDGMENT

This work was support by the National Natural Science
Foundation of China under Grants 61471114, 61521061,
61501110, 61601115, U1534208, Six talent peaks project
in Jiangsu Province under GDZB-005, the Natural Science
Foundation of Jiangsu Province under Grant BK20150635, and
the Fundamental Research Funds for the Central Universities
under Grant 2242014K40037.

REFERENCES

[1] F. Wei and W. Chen, “A low complexity SCMA decoder based on list
sphere decoding,” in Proc. IEEE GLOBECOM, Washington, DC, USA,
Dec. 2016 , pp. 1–6.

[2] M. Alam and Q. Zhang, “Performance study of SCMA codebook design,”
in Proc. IEEE WCNC, San Francisco, CA, Mar. 2017, pp. 1–5.

[3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[4] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, Sept. 2016, pp.
341–346.

[5] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-
based channel decoding,” in Proc. 51st Annual Conference on Information
Sciences and Systems, Baltimore, MD, Mar. 2017, pp. 1–6.

[6] T. J. OSheam and J. Hoydis, “An introduction to machine learning
communication systems,” arXiv preprint arXiv:1702.00832, 2017.

[7] C. K. Wen, W. T. Shih, and S. Jin, “Deep learning for massive MIMO
CSI feedback,” IEEE Wireless Commun. Lett., Mar. 2018, early access.

[8] M. Kim, N. I. Kim, W. Lee, and D. H. Cho, “Deep learning-aided SCMA,”
IEEE Commun. Lett., vol. 22, no. 4, pp. 720–723, Apr. 2018.

[9] H. Ye, G. Y. Li, and B. H. Juang,“Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Sept. 2018.

[10] Qualcomm Inc. “RSMA and SCMA comparison,” 3GPP R1–164689,
May 23–27, 2016.

[11] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous systems,” arXiv preprint arXiv:1603.04467, 2016.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv perprint arXiv: 1412.6980, 2014.

http://arxiv.org/abs/1702.00832
http://arxiv.org/abs/1603.04467

	I Introduction
	II SCMA Architecture
	III From MPA to Neural Network
	III-A Message Passing Detection Algorithm
	III-B Neural Network Architecture

	IV Numerical Experiments
	IV-A Neural Network Training
	IV-B Dataset
	IV-C Results

	V Conclusion
	References

