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Abstract—Resource allocation is of great importance in the
next generation wireless communication systems, especially for
cognitive radio networks (CRNs). Many resource allocation
strategies have been proposed to optimize the performance of
CRNs. However, it is challenging to implement these strategies
and achieve real-time performance in wireless systems since most
of them need accurate and timely channel state information
and/or other network statistics. In this paper a resource allocation
strategy based on deep neural networks (DNN) is proposed and
the training method is presented to train the neural networks.
Simulation results show that our proposed strategy based on DNN
is efficient in terms of the computation time compared with the
conventional resource allocation schemes.

Index Terms—Cognitive radio, resource allocation, deep neural
networks, energy efficiency.

I. INTRODUCTION

THE spectrum scarcity problem is increasingly severe due
to the unprecedented proliferation of mobile devices and

the rapidly growing demand on the broadband communication
services [1]. In order to alleviate this problem, cognitive radio
(CR) has been proposed and received considerable attention
in the past decade [2]. In CR networks (CRNs), the secondary
users (SUs) can access the spectrum bands of the primary
users (PUs) on the conditions that the interference caused to
the PUs is tolerable [3]. There are three operational modes
in CRNs, namely, interweave, overlay, and underlay [1]-[3].
Under the interweave mode, spectrum sensing is required to
find the available spectrum bands. Under the overlay mode,
the SUs cooperate with the PUs and obtain the opportunity
to access the spectrum bands of the PUs. For the underlay
mode, the SUs can coexist with the PUs provided that the
interference caused to the PUs is tolerable. In this paper, we
focus on the underlay mode due to its high spectral efficiency
(SE) and ease of implementation [1]-[3].

Meanwhile, how to improve energy efficiency (EE) is of
vital importance in the next generation wireless communica-
tion systems since it can decrease the greenhouse gas emission
and achieve a sustainable operation [4]. It has been reported

The research was supported by the National Science Foundation under
the grants NeTS 1423348 and EARS-1547312, the National Natural Science
Foundation of China under the Grant 61701214 and Grant 61728104, in
part by the Young Natural Science Foundation of Jiangxi Province under
Grant 20171BAB212002, in part by The Open Foundation of The State Key
Laboratory of Integrated Services Networks under Grant ISN19-08, and in
part by The Postdoctoral Science Foundation of Jiangxi Province under Grant
2017M610400, Grant 2017KY04 and Grant 2017RC17.

in [3], [4] that 2% of the greenhouse gas and 2% to 10%
of global energy consumption are caused by information and
communication technologies. Thus, it is important to develop
energy-efficient transmission techniques for the wireless com-
munication systems, especially for CRNs. The reason is that
energy-efficient transmission techniques can not only prolong
the operational time of SUs, but also well protect the PUs
from the harmful interference.

There have been many research works devoted to designing
resource allocation strategies for improving SE and EE of
CRNs [3], [5]-[12]. The SE of CRNs was maximized by the
proposed resource allocation strategies under the average/peak
power constraint in [5]. In [6], the authors extended the SE
maximization problem into the outage probability constraint
and proposed the optimal resource allocation strategies. In
contrast to the work in [6], the authors in [3] designed
energy-efficient resource allocation strategies for maximizing
the achievable EE of the secondary network. It was shown
that there is a tradeoff between EE and SE in CRNs. In
[7], the authors have extended the EE maximization problem
into CRNs with the opportunistic spectrum access mode. The
sensing time and the transmission power of the cognitive base
station (CBS) were jointly optimized to maximize the EE of
the SUs. In order to further improve the EE of the secondary
network, multiple-input multiple-output (MIMO) techniques
were exploited in CRNs and the energy-efficient precoding
scheme was designed [8]. In [3], [6]-[8], the average/peak
interference power constraint was applied to protect the quality
of service (QoS) of the PUs. Different from the works in [3],
[6]-[8], the authors in [9] leveraged the outage probability
constraint to protect the QoS of the PUs. It was shown that the
EE can be further improved by using this constraint. Recently,
in order to improve the SE of the secondary network, MIMO
techniques and orthogonal frequency-division multiplexing
(OFDM) techniques were exploited in CRNs and the optimal
resource allocation strategy was designed [12].

Note that the resource allocation strategies proposed in
[3], [5]-[12] were obtained by using iterative or alternative
algorithms, irrespective of SE or EE maximization. Moreover,
the sub-gradient algorithm was applied to update the dual
variables. The implementation complexity increases with the
number of users in CRNs, which makes it challenging to
apply these schemes in the Internet of Things with massive
number of users in the networks. What’s worse, these resource
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Fig. 1: The system model.

allocation strategies need the perfect channel state information
and the accurate information about the CRNs, which are
normally very difficult to acquire in practice, especially when
massive users exist.

Motivated by the fact that the exploitation of machine
learning to design resource allocation schemes has tremen-
dous potentials to reduce the implementation complexity and
to achieve real-time performance [14]-[16], the deep neural
networks (DNN) are applied to develop resource allocation
strategies for maximizing EE and SE of CRNs. A resource
allocation framework based on DNN is proposed to optimize
SE and EE of CRNs. The training method is given to obtain
the parameters of the DNN. Simulation results show that our
proposed resource allocation strategies based on DNN are
efficient in terms of the real-time implementation and the
system performance.

The remainder of this paper is organized as follows. Sec-
tion II illustrates the system model. The resource allocation
problems are examined in Section III. Section IV presents
simulation results. The paper concludes with Section V.

II. SYSTEM MODEL

As shown in Fig. 1, similar to [3], [6], and [9], a simplified
CRN is considered in order to permit meaningful insights
into the design of resource allocation strategies based on
DNN. In the CRN, the secondary network coexists with the
primary network by using the underlay mode. In this case,
the PBS and the CBS can transmit signals on the same
frequency channel. The primary link consists of one primary
base station (PBS) and one primary user (PU) while the
secondary link has one CBS and one secondary user. All
the terminals are equipped with one antenna. Similar to [3],
[6], and [9], it is assumed that all the channels are block
fading channel. All the channel power gains are independent

identically distributed (i.i.d.) ergodic and stationary random
variables with continuous probability density functions.

In order to protect the QoS of the PU, an interference power
constraint is imposed. According to [3] and [6], compared
with the peak interference power constraint, the average inter-
ference power (AIP) constraint can not only well protect the
QoS of the PU, but also improve the performance of the SU.
Thus, the AIP constraint is applied, given as

E {gspPs} ≤ PIn, (1)

where PIn denotes the maximum AIP that can be tolerable for
the PU; Ps denotes the transmit power of the CBS; E (·) rep-
resents the expectation operator, and gsp is the instantaneous
channel power gain from the CBS to the PU. Moreover, in
order to satisfy the long-term power budget of the CBS, the
average transmit power (ATP) constraint is considered, given
as

E {Ps} ≤ Pth, Ps ≥ 0, (2)

where Pth denotes the maximum ATP of the SU.

III. RESOURCE ALLOCATION PROBLEMS

In this section, the SE and EE maximization problems are
studied. The resource allocation framework based on DNN
is given. Moreover, the training method for the DNN is
presented.

A. Problem Formulations

In order to maximize the average transmit rate of the SU,
the SE maximization problem under the AIP and the ATP
constraints can be formulated as P1, given as

P1 : max
Ps

RSE (Ps) = E
{
log2

(
1 +

gssPs
hpsPp + σ2

w

)}
(3a)

s.t. (1) and (2) are satisfied, (3b)

where RSE (Ps) denotes the average transmit rate of the SU;
gss and hps are the instantaneous channel power gains of
the secondary link and the link from the PBS to the SU;
Pp is the transmit power of the PBS; σ2

w is the variance
of noise at the SU. In this paper, similar to [3], [6], and
[9], the PBS employs a non-adaptive power transmission
strategy and Pp is a constant. Using the Lagrange duality
method and the Lagrange dual-decomposition method [5], the
authors have proposed the optimal power allocation strategy.
For convenience, Lemma 1 is given to present this strategy.

Lemma 1: [5] The optimal power allocation strategy for
maximizing the SE of the CRNs under the AIP and ATP
constraints is given by

P optse =

[
1

(τ + µgsp) ln 2
−
(
hpsPp + σ2

w

)
gss

]+
, (4)

where [a]
+
= max (a, 0) and max (a, 0) represents the max-

imum between a and 0. In (4), P optse denotes the optimal
transmit power for maximizing the SE of the CBS; τ and



µ are the dual variables corresponding to the ATP and AIP
constraints, respectively. These dual variables are obtained by
using the sub-gradient method [5].

In contrast to the SE maximization problem, the EE maxi-
mization problem under the AIP and ATP constraints can be
formulated in CRNs as P2, given as

P2 : max
Ps

ηEE (Ps) =
E
{
log2

(
1 + gssPs

hpsPp+σ2
w

)}
E {ζPs + PC}

(5a)

s.t. (3b) , (5b)

where ηEE denotes the average transmit rate of the SU; ζ and
PC denote the amplifier coefficient and the constant circuit
power consumption of the CBS, respectively. Based on the
Dinkelbach’s method and the Lagrange duality method, in
[3], we proposed an energy-efficient optimal power allocation
algorithm to solve P2 and derived the energy-efficient optimal
power allocation strategy. Lemma 2 is given to present this
energy-efficient resource allocation strategy.

Lemma 2: [3] The energy-efficient optimal power allocation
strategy for maximizing the EE of CRNs under the AIP and
ATP constraints is given by

P optee =

[
1

(ηζ + τ + µgsp) ln 2
−
(
hpsPp + σ2

w

)
gss

]+
, (6)

where P optee denotes the energy-efficient optimal transmit
power of the CBS; τ and µ are the dual variables correspond-
ing to the ATP and AIP constraints, respectively. In (6), η is
a non-negative cost factor and the dual variables are obtained
by using the sub-gradient method [3].

Note that the sub-gradient method is required to obtain
the optimal power allocation strategy for maximizing the SE
of CRNs. Moreover, for the EE maximization problem, an
iterative algorithm and the sub-gradient method are required
to obtain the energy-efficient optimal power allocation strategy
proposed in [3]. The implementation complexity increases
with the number of the users in CRNs. Furthermore, these
resource allocation strategies are based on the perfect channel
state information. It is challenging to implement these strate-
gies and achieve real-time performance in practice when there
exist massive users.

B. Resource Allocation Framework Based on DNN

In this subsection, in order to obtain the resource allocation
strategy and achieve real-time implementation, a resource
allocation framework based on DNN is proposed. The training
method for obtaining the characteristic parameters of the DNN
is given. Let F and P respectively denote the feasible region
and the parameter space of the formulated problem. Moreover,
it is assumed that they are compact sets. The principle of this
resource allocation framework is given by Lemma 3.

Lemma 3: [15] The mapping from the problem parameter z
and the initial vaule x0 to the final output xf can be accurately
estimated by using the deep neural networks that have N
hidden units with the sigmoid activation function. Moreover,
a large enough positive constant N exists such that the upper
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Fig. 2: The resource allocation framework based on DNN.

bound of the error between the final output of the DNN and
the desired value cannot be larger than the given error.

Based on Lemma 3, it is proved in [17] that a deterministic
algorithm that iteratively updates the continuous mappings
can be learned by using a deep neural network. Since the
optimal power allocation strategy for maximizing the SE of
CRNs given by Lemma 1 is a continuous mapping between
the channel power gains and the transmit power level of
the CBS and each iteration of the energy-efficient optimal
power allocation algorithm proposed in [3] is also a continuous
mapping, a DNN can be exploited to learn the proposed power
allocation strategies given by Lemma 1 and Lemma 2.

Thus, according to Lemma 3, we propose a resource allo-
cation framework based on DNN to optimize the performance
of CRNs, irrespective of the SE and EE of the CRNs, which
is shown in Fig. 2. It consists of three layers, namely, the
input layer, multiple hidden layers, and the output layer. The
inputs are the instantaneous channel power gains gss, gsp,
and hps, which have continuous probability density functions.
The output is the resource allocation strategy of the CBS.
In this paper, the output is the optimal transmit power for
maximizing the SE of the CRNs P optse or the energy-efficient
optimal transmit power for maximizing the EE of the CRNs
P optee . The activation function for the hidden layers and the
output layer is ReLU, namely, y = max (0, x), where x and
y denote the input and output of the neural unit, respectively.
The detailed parameters for the network structure is presented
in the simulation results.

In order to obtain the weights of each neural unit, the DNN
needs to be trained. The training process for the proposed
resource allocation framework based on DNN is given in Fig.
3. The training data are obtained by using the conventional
resource allocation strategy proposed in [5] or the energy-
efficient resource allocation strategy proposed in [3]. The
instantaneous channel power gains gss, gsp, and hps have
continuous probability density functions, such as exponential
distributions. Let xi = [giss g

i
sp hips] denote the ith input

vector of the training process. The output data are the op-
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Fig. 3: The training process for the proposed resource alloca-
tion framework based o DNN.

timal power levels for maximizing the SE obtained from the
strategy proposed in [5] or the energy-efficient optimal power
levels obtained from the conventional scheme presented in
[3], denoted by P opt,ise and P opt,iee , respectively. Using the
conventional scheme, a set with a large volume of training
data can be obtained. In the training process, the mean squared
error minimization criterion is applied [18]. The mini-batch
gradient descent algorithm is exploited to update the weight
values since it can be implemented in a distributed manner.

C. Algorithm for Training DNN

The channel gains are identified as the input and the
corresponding optimal transmit power is the output of the
DNN for maximizing the SE or the EE of the CRNs. In this
paper, the training process is based on the mini-batch gradient
descent algorithm. The training data are firstly divided into
I batches and the size of each batch is M . For each batch,
DNN updates its weights θ by minimizing the loss function

J(θ) = 1
2M

M∑
m=1

(ym − P opts,m)2, where ym and P opts,m is the

mth output of DNN and the optimal transmit power obtained
by using the conventional scheme in a batch, respectively.
Using the gradient descent method, the weights θ is updated
by θ

′
= θ − α∂J(θ)∂θ , where α is the learning rate of DNN.

The details for the training algorithm is given in Table 1. By
utilizing the DNN-based framework, resource allocation can
reduce its implementation complexity and achieve real-time
performance. It is formally presented as Algorithm 1.

IV. SIMULATION RESULTS

In this section, simulation results are given to evaluate the
performance achieved by using our proposed resource alloca-
tion framework. Moreover, the training results are also given
to evaluate the training performance. The training process is
performed by using a computation server with four Intel Core
i9 CPUs, four Inter Xeon E7-4800 processers, and 128 GB

TABLE I: The DNN-based Framework

Algorithm 1: The DNN-based Framework

1. Obtain the training data: the channel gains vector x[gss gsp hps]
and the corresponding optimal transmit power P opts are obtained
by the conventional schemes proposed in [3] and [5];

2. Divide the training data into I batches, the size of each batch is M ;
3. Initialize the weights θ and the learning rate α;
4. For each batch bi(i = 1, 2, ..., I) do

Make xi = [giss g
i
sp h

i
ps] as the ith input of the DNN model,

obtain the ith output yi;
Update the DNN’s weights θ by minimizing the loss function

J(θi) =
1

2M

M∑
m=1

(ym − P opts,m)2, and θi+1 = θi − α ∂J(θi)∂θi
;

endfor
5. Save the trained DNN model.
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Fig. 4: The comparison of the optimal transmit power obtained
by using the conventional resource allocation strategy [3] and
achieved by using our proposed resource allocation framework
based on DNN at each DNN training step in the training
process.

random access memory. The test results are obtained by using
a computer with 8 GB random access memory and Intel Core
i7-6500U processor.

The number of neurons in each hidden layer is 200. The
training process is based on the data obtained by using
the schemes proposed in [3] and [5] with 1 × 107 channel
realizations. The test results are obtained by using 1 × 103

channel realizations. The simulation settings are from those in
[3]. The constant circuit power and the amplifier coefficient,
PC and ζ, are set as 0.05W and 0.2, respectively. The variance
of the noise is 0.01. Pp is 60 mW . All the iterative step
sizes of the subgradient method for updating µ and λ are 0.1.
The channels gss, gsp, and hps are all Rayleigh block fading
and are exponential distributed with means 1, 0.5, and 0.5,
respectively.

Fig. 4 shows the comparison of the optimal transmit power
obtained by using the conventional resource allocation strategy
[3] with that achieved by using our proposed resource alloca-
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Fig. 5: The mean square error between the optimal transmit
power obtained by using the conventional resource allocation
strategy [3] and that achieved by using our proposed resource
allocation framework based on DNN at each DNN training
step in the training process.

tion framework based on DNN at each DNN training step in
the training process. For a better presentation, we take samples
every 1000 points from the first 500 thousand training steps.
It is seen that the outputs of the DNN is increasingly getting
close to the target optimal transmit power with the increase
of training steps in the training process. The reason is that
the parameters of DNN are continuously updated by using the
mini-batch gradient descent algorithm until they are optimal.

Fig. 5 shows the mean square error between the optimal
transmit power obtained by using the conventional resource
allocation strategy [3] and that achieved by using our proposed
resource allocation framework based on DNN at each DNN
training step in the training process. The results are obtained
by sampling the results from the first 500 thousand training
steps. It can be seen that the mean square error decreases and
approaches 0 with the increase of the training steps in the
training process. The reason is similar to that for Fig. 4.

Fig. 6 shows the ergodic capacity of the SU versus the
AIP constraint for the EE maximization obtained by using
the conventional resource allocation strategy and achieved by
using our proposed resource allocation framework based on
DNN under the PTP/ATP constraint. The maximum average
power of the CBS is set as Pth = 100 mW . It can be seen that
the ergodic capacity achieved by using our proposed scheme is
not larger than that obtained by using the conventional scheme
proposed in [5]. The reason is that there is a training error
between the output power level and the desired power level.
Moreover, it can be seen that the gap between the ergodic
capacity achieved by using our proposed resource allocation
framework and that obtained by using the conventional scheme
decreases with the average interference power. The reason is
that the training error may be decreased when the transmit
power of the CBS is relatively large.
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Fig. 6: The ergodic capacity of the SU versus the AIP
constraint for the EE maximization obtained by using the
conventional resource allocation strategy and achieved by
using our proposed resource allocation framework based on
DNN under the PTP/ATP constraint, Pth = 100 mW .

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
20

21

22

23

24

25

26

27

28

Average interference power (W)

E
ne

rg
y 

ef
fic

ie
nc

y 
of

 th
e 

S
U

 (
B

its
/H

z/
Jo

ul
e)

 

 

EE maximization, [3]

EE maximization, our proposed scheme

Fig. 7: The EE of the SU versus the AIP constraint for the EE
maximization obtained by using the conventional resource al-
location strategy and achieved by using our proposed resource
allocation framework based on DNN under the PTP/ATP
constraint, Pth = 100 mW .

Fig. 7 shows the EE of the SU versus the AIP constraint
for the EE maximization obtained by using the conventional
resource allocation strategy and achieved by using our pro-
posed resource allocation framework based on DNN under the
PTP/ATP constraint. The maximum average power of the CBS
is set as Pth = 100 mW . It is also seen that the EE achieved
by using the conventional resource allocation proposed in [3]
is larger than that achieved by using our proposed scheme.



The reason is similar to that for Fig. 4.

TABLE II: Comparison of the ergodic capacity (Bits/s/Hz) and
computation time (sec.)for the SE maximization problem

AIP Our scheme Conventional scheme [5] The ratio

0.01 W 1.2874 1.3698 93.98%
0.02 W 1.4960 1.5749 94.99%
0.03 W 1.6471 1.6985 96.97%
0.04 W 1.7590 1.7789 98.88%
0.05 W 1.8126 1.8457 98.21%
0.06 W 1.8473 1.8764 98.45%

AIP Our scheme Conventional scheme [5] The ratio

0.01 W 0.478 187.53 0.25%
0.02 W 0.237 169.48 0.14%
0.03 W 0.185 154.84 0.12%
0.04 W 0.106 142.79 0.07%
0.05 W 0.054 116.42 0.04%
0.06 W 0.035 94.73 0.03%

TABLE III: Comparison of the EE (Bits/Hz/Joule) and com-
putation time (sec.)for the EE maximization problem

AIP Our scheme Conventional scheme [3] The ratio

0.01 W 20.0426 20.7431 96.62%
0.02 W 22.3457 23.0420 96.98%
0.03 W 24.1126 24.5138 98.36%
0.04 W 25.2363 25.5361 98.83%
0.05 W 25.8985 26.2969 98.48%
0.06 W 26.4802 26.8924 98.47%

AIP Our scheme Conventional scheme [3] The ratio

0.01 W 4.834 563.52 0.86%
0.02 W 3.365 493.73 0.68%
0.03 W 2.572 385.77 0.67%
0.04 W 1.694 297.95 0.57%
0.05 W 1.327 258.38 0.51%
0.06 W 0.826 189.79 0.44%

Table II and Table III are given to compare the computation
time required by the conventional schemes with that required
by using our proposed schemes. It is seen from Table II and
Table III that our proposed resource allocation framework
based on DNN can significantly decrease the computation
time, irrespective of the SE maximization or the EE maxi-
mization problem. This verifies the efficiency of our proposed
resource allocation framework based on DNN in terms of the
computational time and shows the potentials for achieving
real-time performance. Moreover, it is also seen from Table
II and Table III that the computational time required for the
SE maximization problem is lower than that required for the
EE maximization. The reason is that the conventional resource
allocation scheme for the EE maximization not only needs to
perform iteration, but also requires the sub-gradient method
to update the dual variables while the conventional scheme
for the SE maximization problem only needs the sub-gradient
method.

V. CONCLUSIONS

In order to achieve a real-time performance and realize low
implementation complexity, the application of DNN into de-
signing resource allocation strategies was studied in CRNs. A
resource allocation framework based on DNN was formulated
and the training method was presented. Simulation results
showed that our proposed resource allocation framework is
efficient in terms of the computation time compared with the
conventional schemes.
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